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ABSTRACT 

 

Waste from electric and electronic equipment (WEEE) 

represents the fastest growing waste stream in EU. The large 

amount and the high variability of electric and electronic 

products introduced every year in the market make the 

WEEE recycling process a complex task, especially 

considering that mechanical processes currently used by 

recycling companies are not flexible enough. In this context, 

hyperspectral imaging systems (HSI) can represent an 

enabling technology able to improve the recycling rates and 

the quality of the output products. This study shows the 

preliminary results achieved using a HSI technology in a 

WEEE recycling pilot plant, for the characterization of fine 

metal particles derived from WEEE shredding. 

 

Index Terms— WEEE Recycling, Hyperspectral 

Imaging, Fine Particles Characterization 

 

1. INTRODUCTION 

 

Waste from electric and electronic equipment (WEEE) 

represents both a disposal issue and a market opportunity. 

WEEE is the fastest growing waste stream in EU, with an 

increasing rate of 3%–5% per year. The large amount of 

electrical and electronic equipment introduced every year in 

the market and the wide variety of materials used to 

manufacture these products lead to the problem of managing 

and treating the electrical and electronic waste, making the 

process required to recycle WEEE a very complex task. 

According to the Eurostat review, only one third of WEEE is 

recycled and reused. The remaining WEEE is either 

collected by unregistered enterprises or disposed to landfills 

or incinerators as part of residual waste. On the other hand, 

electrical and electronic waste can represent a very 

important source of key-metals for advanced technological 

products. For example, printed circuit boards (PCBs) are 

called “urban mineral resources”, since they are composed 

by 25%–40% (in weight) of valuable metals such as copper, 

iron, brass, tin, nickel, gold and silver. 

Due to the problem of WEEE recovering, the growth of 

primary material costs, as well as the supply shortage risk 

for key metals used in high-tech applications, many 

countries have introduced laws designed to improve material 

recycling rates, such as the recent EC WEEE Recycling 

Directive [1], which states that all EU countries have to 

recover about 70%–80% of the weight of the produced 

WEEE and to reuse 50%–75% of the recovered materials or 

components. For these reasons, the interest of companies in 

WEEE recycling has substantially increased in recent years. 

In the European recycling industry 85% of these companies 

are small and medium enterprises (SMEs) which, despite the 

high variability and the continuous evolution of EEE 

products, use extremely rigid mechanical processes. The 

rigidity of the system coupled with the high variability in the 

input material composition ultimately causes i) poor 

recycling rates, especially for key-metals, ii) the abuse of 

landfilling also for those materials which are potentially 

recyclable and iii) the lack of competitiveness of SMEs due 

to low purity of recycled materials. 

In this context, hyperspectral imaging systems (HSI) can 

represent an enabling technology to support both the 

characterization of particles derived from the shredding of 

WEEE and the control parameters of sorting systems, 

finalized to ensure a high quality of the output product. 

Although preliminary studies regarding the application of 

HSI in WEEE recycling processes have been carried out, the 

developed solution are mainly related to WEEE fractions 

with sizes ranging from 10 mm to 50 mm [2]. The main 

constraint is that usually these dimensions do not guarantee 

the generation of pure particles of high value materials (key 

metals and rare earth). Currently, a HSI system able to 

characterize metallic particles with a size lower than 10 mm, 

has only been tested in [3] for the characterization of a 

mixture derived from the shredding of electric cables. 
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This paper shows the preliminary results obtained in the 

characterization of fine metal particles (lower than 2 mm) 

derived from WEEE post-shredding, using a HSI system 

integrated in the de-manufacturing pilot plant developed at 

the Institute of Industrial Technologies and Automation – 

National Research Council of Italy (ITIA-CNR). 

 

2. MATERIALS AND METHODS 

 

2.1. System overview 

 

The ITIA-CNR de-manufacturing pilot plant consists of 

three cells for the end-of-life products treatment: Cell-1, 

Disassembly; Cell-2, Reworking; Cell-3, Recycling. 

In particular, Cell-3 includes two shredding systems 

(coarse and fine), a Corona Electrostatic Separator (CES), 

the vision system and a pneumatic transport system that 

ensure the process re-configurability. 

The vision system includes i) the hyperspectral camera, 

ii) the illumination system and iii) the transport system. The 

hyperspectral camera used in this study is the PFD model 

from Specim, Finland. It consists of an ImSpector V10E 

covering the wavelength range 400–1000 nm, and a high 

speed CMOS detector. The CMOS sensor can register 1312 

spatial pixels in 768 spectral bands at a frame rate of 65 fps. 

This rate can be increased up to 100 fps using a spectral 

binning up to 8x (98 spectral bands). The camera mounts an 

OLE 23 fore objective lens with a focal length of 23 mm and 

a FOV of 25.7°. The camera has been placed at 

approximately 30 cm from the transport system: at this 

distance, the FOV guarantees a spatial coverage of 13 cm 

with a spatial resolution of 0.1 mm. The camera is controlled 

by a PC unit equipped with the SpectralDAQ software [4], 

which allows data acquisition, camera parameters setting 

and image visualization in real time. The illumination system 

is based on a dark-field configuration which provides high-

contrast images and highlights specific components or 

defects. Dark-field illumination directs most reflected light 

away from a camera so surface variations or features appear 

bright on a dark background field. The transport system 

consists of a moving conveyor belt (width = 20 cm and 

length = 100 cm) with an adjustable speed ranging from 0 to 

4 m/min. Spectra acquisition could be carried out 

continuously or at specific time intervals. 

 

2.2. Data acquisition 

 

For this study, several fine metal particles have been 

manually selected from the shredded material. These 

particles have been sorted according to their colors 

(yellowish, greyish or reddish) and attached to a 5x5 cm 

plate in a grid of 9x7 particles (Fig. 1). 

 
Fig. 1 – Input image showing the fine metal particles derived by 

WEEE shredding, sorted by color in a 9x7 grid. The overlaid 

polygons in blue (brass), green (iron) and red (copper) are the 

samples used to train the classification algorithms. 

 

A raw image (DN) of the plate with the particles has 

been acquired using the PFD camera, with an 8x spectral 

binning, resulting in 98 spectral bands. Images of dark 

current (B) and white reference (W) have been measured as 

well with the PFD in the same configuration. The white 

reference image has been acquired using a standard white 

calibration tile (300x25x10 mm). 

Each particle on the plate has been also analyzed by a 

Scanning Electronic Microscope (SEM). The SEM analysis 

has allowed the recognition of the yellowish particles as 

brass, the greyish particles as iron and the reddish particles 

as copper. This information has been used as a reference for 

the classification, in both training and validation steps. 

 

2.3. Data processing 

 

The processing chain adopted in this study includes the 

following steps. 

The first step is represented by the calibration of the 

input image for the illumination source. This has been 

performed using the dark current and the white reference 

images according to the following equation: 
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In order to avoid bands with poor signal to noise ratio, 

bands at both edges of the sensor spectral range have been 

removed, resizing the original spectral range to 500–900 nm. 

Anyway, the high number of bands included in the data 

cube leads to a high level of redundant information. In order 

to reduce the amount of data and their level of redundancy, 

the original bands have been merged together using a 

method based on spectral fuzzy sets proposed in [5]. In this 



method the membership value for each band of the spectrum 

is defined by a triangular function. This method is not only 

useful for the data compression but also to reduce band 

noise, since the triangular membership helps to smooth the 

resulting spectral values. In this study, we have analyzed the 

effect of different numbers of fuzzy sets, ranging from 4 to 

24, on the classification results. 

As observed in [6], the acquisition process of the 

hyperspectral image is highly affected by shadows, specular 

reflections (highlights), and inhomogeneous particles 

illumination. To compensate for these effects, we have 

tested two normalization methods, originally proposed in [7] 

and [8], as well as the Standard Normal Variate (SNV) 

method: 
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where 
L  and 

L  represent the spectrum average and the 

spectrum standard deviation, respectively. 

The classification step has been performed testing four 

different classification algorithms, for each normalization 

method used in the previous step. The four algorithms 

chosen for this study are the Spectral Angle Mapper (SAM, 

[9]), the Minimum Distance (MD, [10]), the Mahalanobis 

Distance (MahalDist, [10]) and the Maximum Likelihood 

(ML, [10]). The samples used to train these algorithms have 

been selected from Regions Of Interest (ROI) drawn on each 

particle in the first row of the three different metals (Fig. 1). 

The testing samples for the validation step have been 

generated using a stratified random sampling strategy. For 

each of the three classes, 100 pixels have been randomly 

selected, visually checked and corrected when necessary. 

The resulting testing samples have been used to assess the 

performances of each classification performed in this study. 

 

3. RESULTS AND DISCUSSIONS 

 

The classification results for each combination of 

illumination normalizations and classification algorithms are 

presented in Fig. 2. The results derived by the validation 

analysis are summarized in Tab. 1, in terms of overall 

accuracy (OA) and kappa coefficient (K). 

Tab. 1 – Results of the validation expressed in terms of overall 

accuracy (OA) and Kappa coefficient (K) 

OA SAM MD MahalDist ML 

NONorm 83.7% 57.3% 96.3% 92.0% 

NormSG 59.0% 89.0% 98.0% 98.3% 

NormM 66.3% 67.0% 81.3% 95.7% 

NormSNV 56.0% 71.3% 87.3% 90.0% 

 
K SAM MD MahalDist ML 

NONorm 0.75 0.36 0.95 0.88 

NormSG 0.38 0.83 0.97 0.98 

NormM 0.49 0.50 0.72 0.94 

NormSNV 0.34 0.57 0.81 0.85 

 

 
Fig. 2 – Classification results for each combination of 

compensation method and classification algorithm (metals are 

represented in blue (Brass), green (Iron) and red (Copper)). 

 

The best classification results have been achieved using 

the ML and the MahalDist algorithms, with the NormSG 

normalization. Regarding the NormM normalization, only 

the ML algorithms reached values of OA and K greater than 

90% and 0.9, respectively. Surprisingly enough, both the 

MahalDist and the ML algorithms present very good results 

– with OA values greater than 90% – even for data without 

the illumination compensation. 

In order to understand the influence of the number of 

fuzzy sets on the classification performances, a sensitivity 

analysis has been conducted using the MahalDist algorithm 

with both the NONorm and the NormSG normalizations. In 

this test, the number of fuzzy sets has been changed from 4 

to 24. The results, illustrated in Fig. 3, show for both cases 

that very good level of performances can be achieved 

starting from 10-12 fuzzy sets. Considering that the 

classification process should be performed on-line, this 

result is very important, showing that good classification 

performances can be achieved with a high data compression, 

thus helping to speed up the process. 



 
Fig. 3 – Sensitivity analysis of the classification using the 

MahalDist algorithm changing the number of fuzzy sets from 4 

to 24. The results are shown in terms of OA and K values. 

 

4. CONCLUSIONS 

 

This study presents the preliminary results relative to the 

classification of fine metal particles (lower than 2 mm) 

derived from the shredding of waste from electric and 

electronic equipment. After a feature reduction through a 

fuzzy set approach, several combination of normalization 

methods and classification algorithms have been tested. The 

best results have been obtained with the Mahalanobis 

distance and the maximum likelihood algorithms, 

normalizing the dataset during the pre-processing step, to 

take into account different illumination conditions. 

However, the Mahalanobis distance algorithm has 

guaranteed very good performances even without using any 

data normalization. The sensitivity analysis performed 

changing the number of fuzzy sets has shown that very good 

performances can be achieved starting from 10-12 

membership functions. 

These preliminary results seem promising (OA greater 

than 95% and K greater than 0.95) and support the use of 

hyperspectral imaging analysis within a WEEE recycling 

system. The role of HSI can be manifold: it can be useful i) 

to characterize the WEEE mixture before the sorting 

process, ii) to provide the proper parameters to the 

separator, and iii) as a quality control system on the sorted 

output. Future work will aim to both increase the number of 

different metals to characterize and describe shapes and 

dimensions of the WEEE particles. 
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