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Abstract Mathematical modelling of chemotaxis (the movement of
biological cells or organisms in response to chemical gradients) has
developed into a large and diverse discipline, whose aspects include
its mechanistic basis, the modelling of specific systems and the mathe-
matical behaviour of the underlying equations. The Keller-Segel model
of chemotaxis [44; 45] has provided a cornerstone for much of this
work, its success being a consequence of its intuitive simplicity, ana-
lytical tractability and capacity to replicate key behaviour of chemo-
tactic populations. One such property, the ability to display “auto-
aggregation”, has led to its prominence as a mechanism for self-organis-
ation of biological systems. This phenomenon has been shown to lead
to finite-time blow-up under certain formulations of the model, and
a large body of work has been devoted to determining when blow-
up occurs or whether globally existing solutions exist. In this paper,
we explore in detail a number of variations of the original Keller-Segel
model. We review their formulation from a biological perspective, con-
trast their patterning properties, summarise key results on their ana-
lytical properties and classify their solution form. We conclude with a
brief discussion and expand on some of the outstanding issues revealed
as a result of this work.

1 Introduction

From microscopic bacteria through to the largest mammals, the survival of
many organisms is dependent on their ability to navigate within a complex
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environment through the detection, integration and processing of a variety
of internal and external signals. This movement is crucial for many aspects
of behaviour, including the location of food sources, avoidance of predators
and attracting mates. The ability to migrate in response to external signals
is shared by many cell populations, playing a fundamental role co-ordinating
cell migration during organogenesis in embryonic development and tissue
homeostasis in the adult. An acquired ability of cancer cells to migrate is
believed to be a critical transitional step in the path to tumour malignancy.
The directed movement of cells and organisms in response to chemical gradi-
ents, chemotaxis, has attracted significant interest due to its critical role in
a wide range of biological phenomena (the book of Eisenbach [28] provides a
detailed biological comparison between chemotactic mechanisms across dif-
ferent cells and organisms). In multicellular organisms, chemotaxis of cell
populations plays a crucial rule throughout the life cycle: sperm cells are
attracted to chemical substances released from the outer coating of the egg
(e.g. [33]); during embryonic development it plays a role in organising cell
positioning, for example during gastrulation (see [26]) and patterning of the
nervous system (e.g. Park et al. [85]); in the adult, it directs immune cell mi-
gration to sites of inflammation (e.g. Wu [110]) and fibroblasts into wounded
regions to initiate healing. These same mechanisms are utilised during cancer
growth, allowing tumour cells to invade the surrounding environment (Con-
deelis et al. [19]) or stimulate new blood vessel growth (angiogenesis) [56].
Extensive research has been conducted into the mechanistic and signalling
processes regulating chemotaxis in bacteria, particularly in E. coli (Baker
et al. [4]), and in the life cycle of cell slime molds such as Dictyostelium
discoideum (Dormann and Weijer [26]). While the biochemical and physio-
logical bases are less well understood, chemotaxis also plays a crucial role
in the navigation of multicellular organisms. The nematode worm C. elegans
undergoes chemotaxis in response to a variety of external signals (Mori et al.
[67]) while in insects, the fruit fly Drosophila melanogaster navigates up gra-
dients of attractive odours during food location (Budick and Dickinson [10])
and male moths follow pheromone gradients released by the female during
mate location (Kennedy and Marsh [47]).

Theoretical and mathematical modelling of chemotaxis dates to the pioneer-
ing works of Patlak in the 1950s [86] and Keller and Segel in the 1970s [44; 45].
The review article by Horstmann [40] provides a detailed introduction into
the mathematics of the Keller-Segel (KS) model for chemotaxis. In its original
form this model consists of four coupled reaction-advection-diffusion equa-
tions. These can be reduced under quasi-steady-state assumptions to a model
for two unknown functions u and v which will form the basis for our study
in this article. The general form of the model is

ut = ∇(k1(u, v)∇u− k2(u, v)u∇v) + k3(u, v) ,
vt = Dv∆v + k4(u, v)− k5(u, v)v ,

(1)

where u denotes the cell (or organism) density on a given domain Ω ⊂ IRn and
v describes the concentration of the chemical signal. The cell dynamics derive
from population kinetics and movement, the latter comprising a diffusive flux
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modelling undirected (random) cell migration and an advective flux with
velocity dependent on the gradient of the signal, modelling the contribution
of chemotaxis. k1(u, v) describes the diffusivity of the cells (sometimes also
called motility) while k2(u, v) is the chemotactic sensitivity; both functions
may depend on the levels of u and v. k3 describes cell growth and death while
the functions k4 and k5 are kinetic functions that describes production and
degradation of the chemical signal. A key property of the above equations is
their ability to give rise to spatial pattern formation when the chemical signal
acts as an auto-attractant, that is, when cells both produce and migrate up
gradients of the chemical signal.

1.1 Derivation and Applications of Chemotaxis Models

Whilst a number of further approaches have been developed (for example,
stochastic and discrete approaches such as those in [99; 22; 84; 64; 66; 42]),
it is the deterministic Keller-Segel continuum model that has become the
prevailing method for representing chemotactic behaviour in biological sys-
tems on the population level. A large amount of effort has been expended
on explaining their origin from a mechanistic/microscopic description of mo-
tion. The review by Horstmann [40] considers five methods in detail and we
refer to this work for further details of this significant area. Briefly, these are
(i) arguments based on Fourier’s law and Fick’s law (e.g. Keller and Segel
[45]), (ii) biased random walk approaches (e.g. Othmer and Stevens [78]),
(iii) interacting particle systems (e.g. Stevens [97]), (iv) transport equations
(e.g. Alt [2] or Hillen and Othmer [35]), and (v) stochastic processes (e.g.
Patlak [86]). A more recent derivation from multi-phase flow modelling has
been proposed by Byrne and Owen [15].
As mentioned above, Keller-Segel type equations have become widely utilised
in models for chemotaxis, a result of their ability to capture key phenomena,
intuitive nature and relative tractability (analytically and numerically) as
compared to discrete/individual based approaches. To illustrate the breadth
of this field, we describe some of those areas that have benefited from the
use of KS equations, apologising to those whose works have been omitted for
succinctness.
In response to starvation, the slime mold Dictyostelium discoideum initiates
an aggregation process conducted by relay of and migration to the chemical
cAMP. A number of models have been developed based on systems of equa-
tions similar to (1) that successfully capture many key features of the lifecycle
(e.g. Keller and Segel [44], Höfer et al. [38]). Understanding bacterial pattern
formation has also benefited from modelling: certain bacteria, including E.
coli and S. typhimurium, can be induced to form a variety of spatial patterns
when provided a suitable environment (Budrene, Woodward and co-workers
[11; 12; 107]). Mathematical models indicate a chemotactic process in which
cells produce an auto-attractant may underlie this patterning (Woodward,
Tyson et al. [107; 101], see also Murray [68]). Models based on the Keller-
Segel equations have also been developed to understand whether chemotaxis
may underpin embryonic pattern forming processes, such as the formation
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and dynamics of the primitive streak (an early embryonic structure that co-
ordinates tissue movements) [81], pigmentation patterning in snakes (Murray
and Myerscough [69]) and fish (Painter et al. [83]) and cell colonisation and
neural crest migration (Landman et al. [54]).
Keller-Segel type models have been developed by Lauffenburger and others
[57; 3] to describe the inflammatory response of leukocytes to bacterial in-
fection and by various authors (e.g. [14; 96]) to model their migration in
a Boyden-chamber. Modelling the role of chemotaxis in pathological pro-
cesses is a large field: Luca et al. [61] considered whether the chemotactic
aggregation of microglia may provide a mechanistic basis for senile plaques
during progression of Alzheimer’s disease, while chemotaxis has been incor-
porated into the modelling of a number of distinct stages of tumour growth,
including the migration of invasive cancer cells (Perumpanani et al. [88]),
tumour-induced angiogenesis (see the reviews Chaplain [16] and Mantzaris
et al. [63]) and macrophage invasion into tumours (Owen and Sherratt [79]).
Finally, we should not neglect the modelling of taxis in the context of spatial
ecological processes, including “prey-taxis” (Kareiva and Odell [43] and Lee
et al. [58]), herd grazing (Gueron and Liron [31]) and the spatial dynamics
of mountain pine beetle attacks (Logan et al. [60]).

1.2 The Model Variations

In addition to their utilisation within models for biological systems, a large
body of work has emerged on the mathematical properties of the Keller-Segel
equations (1) and, in particular, on the conditions under which specialisation
or variations of (1) either form a finite-time blow-up or have globally existing
solutions. The majority of this work has been devoted to a special case of
(1), in which the functions kj are assumed to have linear form (see model
(M1) below), a model we shall refer to as the minimal model following the
nomenclature of Childress and Percus [18].
The minimal model has rich and interesting properties including globally
existing solutions, finite time blow-up and spatial pattern formation. Detailed
reviews can be found in the survey of Horstmann [40], and in the textbooks
of Suzuki [98] and Perthame [87]. We shall discuss further details of these
aspects in Section 2.1.
The minimal model is derived according to a limited set of conjectures and
a number of variations have been described based on additional biological
realism. In this paper, we systematically consider some of these variations.
For obvious reasons, it is impossible to cover all variations and, as an example,
the limiting case of zero diffusion in the chemical signal studied by Levine
and Sleeman [59] and coworkers will not be considered here (although we will
discuss this case further within the concluding discussion). A non-diffusing
signal represents an immovable entity and is perhaps more appropriately an
example of haptotaxis.
The variations are each introduced in a form that includes a single additional
parameter that, under an appropriate limit, reduces the system to the mini-
mal form. In many cases this modification regularises the problem such that
solutions exist globally in time. Hence we call the corresponding parameter
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for each of the extended models the regularisation parameter. The regulari-
sation parameter allows us to study in detail bifurcation conditions, pattern
formation and properties of the nonuniform solutions. We will not discuss
certain questions such as the convergence of solutions of the variations to
the minimal model in the corresponding limit case and leave this for future
studies.
Below we list the ten models studied in this paper. We give explanations,
motivations and literature references in Section 2.

The Minimal Model

ut = ∇ (D∇u− χu∇v) ,
vt = ∇2v + u− v .

(M1)

Signal-Dependent Sensitivity Models

We study two versions of signal-dependent sensitivity, the “receptor” model,

ut = ∇
(
D∇u− χu

(1+αv)2∇v
)

,

vt = ∇2v + u− v ,
(M2a)

where for α → 0 the minimal model is obtained, and the “logistic” model

ut = ∇
(
D∇u− χu 1+β

v+β∇v
)

,

vt = ∇2v + u− v ,
(M2b)

where for β → ∞ the minimal model follows and for β → 0 we obtain the
classical form of χ(v) = 1/v.

Density-Dependent Sensitivity models

We study two models with density-dependent sensitivity, the “volume-filling”
model,

ut = ∇
(
D∇u− χu

(
1− u

γ

)
∇v
)

vt = ∇2v + u− v,
(M3a)

where the limit of γ →∞ leads to the minimal model, and

ut = ∇
(
D∇u− χ u

1+εu∇v
)

,

vt = ∇2v + u− v ,
(M3b)

where ε → 0 leads to the minimal model.

The Non-Local Model

ut = ∇
(
D∇u− χu

◦
∇ρ v

)
,

vt = ∇2v + u− v ,
(M4)

The non-local gradient
◦
∇ρ v is defined in Section (2.4) and chosen such that

the minimal model follows for ρ → 0.
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The Nonlinear-Diffusion Model

ut = ∇ (Dun∇u− χu∇v) ,
vt = ∇2v + u− v,

(M5)

where the minimal model corresponds to the limit of n → 0.

The Nonlinear Signal Kinetics Model

ut = ∇ (D∇u− χu∇v) ,

vt = ∇2v +
u

1 + φu
− v, (M6)

which approximates the minimal model for φ → 0.

The Nonlinear Gradient Model

ut = ∇ (D∇u− χuFc(∇v)) ,
vt = ∇2v + u− v,

(M7)

The vector-valued function Fc is defined in Section 2.7 and chosen such that
the minimal model follows for c → 0.

The Cell Kinetics Model

ut = ∇ (D∇u− χu∇v) + ru(1− u) ,
vt = ∇2v + u− v ,

(M8)

which in the limit of zero growth, r → 0, leads to the minimal model.

1.3 Outline of the Paper

In Section 2 we provide a detailed motivation for the above models, refer-
ring to relevant literature that focuses on their biological and mathematical
properties. In Section 3, mathematical approaches for determining global ex-
istence are summarised. In Section 4 we perform a linear stability analysis
at the homogeneous equilibrium. We show how the instability conditions de-
pend on the additional parameter introduced in the variations (M2)–(M8). In
Section 5, numerical simulations are presented to confirm theoretical findings
and explore issues regarding long-time dynamics. In Section 6 we employ a
classification of spikes and plateaus from Hillen [34] to investigate the form
of nonhomogeneous steady state solutions. Although the analysis does not
confirm our initial conjecture, namely that models with globally existing so-
lutions “typically” have plateau solutions, our analysis does indicate that the
presence of plateau solutions is a strong indicator of global existence.
Finally, we shall discuss the findings and consider some outstanding issues in
the field.
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Model D(u) A(u) B(v) C(∇v) f(u) g(u)

(M1) D u χ ∇v 0 1

(M2a) D u χ
(1+αv)2

∇v 0 1

(M2b) D u χ(β+1)
(β+v)

∇v 0 1

(M3a) D u
“
1− u

γ

”
χ ∇v 0 1

(M3b) D u
1+εu

χ ∇v 0 1

(M4)∗ D u χ
◦
∇ρ v 0 1

(M5) Dun u χ ∇v 0 1

(M6) D u χ ∇v 0 1
1+φu

(M7) D u χ 1
c

tanh
“

c∇v
1+c

”
0 1

(M8) D u χ ∇v ru(1− u) 1

Table 1 Summary of the submodels and their functional forms. ∗For the nonlocal

model the gradient, ∇v is replaced by the non-local gradient
◦
∇ρ v (see Section 2.4).

2 The Models

The models described in the following section can be summarised in the
following form:

ut = ∇(D(u)∇u−A(u)B(v)C(∇v)) + f(u),
vt = ∆v + ug(u)− v,

(2)

on the domain Ω ⊂ IRn with prescribed initial data. Unless stated otherwise,
we shall assume zero-flux boundary conditions:

n · (D(u)∇u−A(u)B(v)C(∇v)) = n · ∇v = 0 ,

where n is the outer unit normal to ∂Ω and ∂Ω is piecewise smooth. In
the above, it is assumed that the chemical signal acts as an auto-attractant
and thus the chemical kinetics consist of cell-dependent chemical production
and linear degradation. Where applicable, cell proliferation/death is assumed
to be independent of the chemical signal. The specific functional choices for
D(u), A(u), B(v), C(∇v), f(u) and g(u) are given in Table 1. In the majority
of the models, C(∇v) is simply given by∇v and we can define the chemotactic
potential φ(v) (Biler [7]) to be the antiderivative of B(v) such that

B(v)∇v = ∇φ(v) . (3)

2.1 (M1) Minimal Model

The minimal model has been derived through a variety of different approaches
as indicated earlier. To motivate the various models, we describe its deriva-
tion as a “space-jump” process in which cell movement is modelled as the
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biased random walk of a particle executing instantaneous jumps in space (see
Othmer and Stevens [78]). Whilst biologically naive, it serves to illustrate as
to how a macroscopic model for cell movement can be derived in which the
macroscopic parameters (e.g. diffusion coefficient, chemotactic sensitivity) re-
late to specific microscopic rules. We presume that a particle executes jumps
of constant length h left or right on a discrete 1-D lattice. Assuming that
particles do not interact directly, we obtain a continuous-time, discrete space
evolution equation for the particle density u(x, τ) at position x, time τ to be

∂u(x, τ)
∂τ

= T+
x−hu(x− h, τ) + T−x+hu(x + h, τ)− (T+

x + T−x )u(x, τ)

where T±x gives the probability per unit time for a particle at x to jump to
x± h. Different classes of movement can be modelled through the choices of
these functions, for example to model chemotaxis we assume cells bias their
jump in response to a local spatial gradient of the chemical v:

T±x = a + b (v(x± h, τ)− v(x, τ)) . (4)

We substitute these into the particle evolution equation, expand the terms
of the right hand side in powers of h and introduce a time scaling τ = λt to
obtain

ut = λh2(aux − 2b u vx)x + O(h4).

Assuming that the limits limh→0,λ→∞ aλh2 = Du and limh→0,λ→∞ 2bλh2 =
χu exist, we have

ut = (Duux − χu u vx)x.

The extension to higher dimensions is straightforward and, after incorporat-
ing linear chemical kinetics, we obtain

ut = ∇(Du∇u− χuu∇v) ,

vt = Dv∆v + µu− δv ,

on the domain Ω ⊂ IRn with zero-flux boundary conditions imposed. The
above equations possess a single homogeneous steady state

(
uss,

µuss

δ

)
where

uss is determined via the initial data as uss =
∫

Ω
u(x, 0)dx/ |Ω|.

For each of the models, nondimensionalisation techniques are employed to
reduce the number of parameters and rescale the homogeneous steady state
to (uss, vss) = (1, 1). While the employed scaling varies slightly, the overall
technique remains the same, here illustrated only with the minimal model.
Choosing the following scaling/parameter groupings,

x∗ =
√

δ
Dv

x , t∗ = δt , u∗ = u/uss ,

v∗ = δ
µuss

v , D = Du

Dv
, χ = χuµuss

δDv
,

substituting into the above equations and dropping the *’s for notational
simplicity yields the minimal chemotaxis model (M1). Note that the nondi-
mensionalisation ensures that 1

|Ω|
∫

Ω
u(x, 0)dx = 1 and the homogeneous

steady state therefore is (ū, v̄) = (1, 1).
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For (M1) on bounded domains it has been shown that the qualitative be-
haviour of solutions strongly depends on the space dimension. An extensive
review article by Horstmann [40] concerning (M1) and related models pro-
vides greater detail, here we summarise the essentials. In one space dimension,
solutions exist globally, a fact only recently proved (Osaki and Yagi [75]). For
2-D domains, global existence depends on a threshold: when the initial mass
lies below the threshold solutions exist globally, while above the threshold
solutions blow up in finite time. These blow-up results for the minimal model
(M1) were derived in a long sequence of papers by various authors during the
1990’s and early 2000’s (Horstmann [40]). In the textbook by Suzuki [98] the
blow-up results were extended further and the property of quantised blow-up
was demonstrated: blow-up points each carry a fixed mass (depending on the
model parameters) and the number of possible blow-up points can be deter-
mined from the given initial cell concentration. A further source of recent
results are found in the chapter “Cell Motion and Chemotaxis” in the book
of Perthame [87], which includes an elegant and short proof for the existence
of blow-up solutions using the second spatial moment of the particle distri-
bution. Moreover, it is shown based on [20], that the critical function space
for (M1) in Ω ∈ IRn is Ln/2(Ω), meaning that a threshold value θ exists such
that initial conditions below threshold in the Ln/2-norm lead to global exist-
ing solutions, whereas initial data above threshold lead to finite time blow up.

Under the biologically relevant cases for aggregation to occur, initial con-
ditions typically lie above this threshold — hence, while the model does
predict aggregation, this takes the form of a finite time blow-up. For chemo-
tactic bacteria such as Salmonella typhimurium and E. coli or slime molds
such as Dictyostelium discoideum (Dd), aggregation into swarms and mounds
is only the first step in a sequence of stages. For example, aggregation of Dd
is followed by sorting into pre-spore and pre-stalk cells, slug formation and
fruiting body development (e.g. [26]). To model the stages following the ag-
gregation it is therefore necessary to modify the model in a manner that
allows pattern formation but without blow-up.
A number of modifications have been made to the minimal model that allow
global existence of solutions and hence understanding of the post-aggregation
stages. We term these modifications regularisations and we use this paper to
compare and contrast some typical cases.
Each of the regularisations that follow comprises of a single alteration to one
of the functional forms in equations (2), representative of additional biological
realism during the formulation of the model. Of course, in any particular
biological system, several or all of these assumptions may be valid, however
for ease of comparison we study each case separately.

2.2 (M2) Signal-Dependent Sensitivity

In vivo, the chemotactic response is mediated through the external detec-
tion of a signal and its subsequent transduction to internal pathways. The
former will typically occur by binding of the signal to certain classes of cell
surface receptors. The latter may occur either through a transformational
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change of the internal receptor component or through internalisation of the
entire receptor-signal complex. Once internalised, interactions with intra-
cellular signalling pathways feeds not only into a movement response, but
may also affect other pathways such as those controlling signal/receptor pro-
duction and degradation. As such, the signal therefore has the potential to
heavily impact on different components of the model. A common feature of
many chemotaxis models is to build some of this complexity into the equa-
tions through a signal-dependent chemotactic sensitivity function. Two of
the most commonly utilised forms are the “receptor”and “logistic” forms,
respectively

k2(u, v) =
χ

(1 + αv)2
and k2(u, v) =

χ

v

in equations (1).
The former can be motivated by a simple model for receptor-signal binding.
At high concentrations of v the receptors may become fully occupied and the
cell is unable to further resolve a gradient. Following the argument in [78],
we let V denote a single molecule of the chemical signal, R a free cell surface
receptor and B an occupied one. We take the simple reaction

R + V
k1



k−1

B ,

and assume both that the total number of receptors is constant (i.e. there
is no receptor turnover) and that the reaction is rapid. Employing a quasi
steady-state hypothesis we can derive the following expression for the con-
centration of bound receptors

Phi(v) =
βv

αv + 1

where the parameters α, β depend on both the rate constants and the con-
centration of receptors. Here we assume that the number of bound receptors
defines the chemotactic potential φ(v), that is we assume that cells base
movement on a local gradient in the number of bound receptors in equa-
tion (4), rather than the local gradient of v. Then, by taking the diffusion
limit and appropriate nondimensionalisation of the equations we derive the
receptor-binding model of chemotaxis (M2a), with homogeneous steady state
(1, 1). Note that the receptor-binding model formally reduces to the minimal
model in the limit α → 0.
The above “receptor” sensitivity law has been derived and applied in numer-
ous models for chemotaxis (e.g. Segel [93; 94], Ford et al. [29], Tyson et al.
[100], Levine and Sleeman [59], [55]). By including further details of the signal
transduction process, other forms of sensitivity dependence can be deduced:
if co-operative binding occurs, then the concentration of bound receptors
may more reasonably by described as a Hill function φ(v) = βvn

αvn+1 ; the ef-
fects of internalisation of receptor-signal complexes has been incorporated by
Sherratt et al. [96; 95]); an extension to multiple chemical species has been



Hillen, Painter 11

investigated in Painter et al. [82]; memory effects have been included in a
model by Boon and Herpigny [8].
We study a second form of signal-dependent sensitivity, with chemotactic
potential φ(v) = (1 + β) ln(v + β) as given by (M2b). This model can be de-
rived using a slight variation of the biased random walk approach above (see
Othmer and Stevens [78] for details) or through an argument from a “Weber-
Fechner” law for cell behaviour [46]. Note that this model is again presented
in nondimensional form with homogeneous steady state given by (1, 1). With
this version, we obtain the minimal model as β → ∞, while for β = 0
we obtain the “logistic” chemotactic sensitivity mentioned briefly above. Al-
though the logistic sensitivity has inherent problems, amplified on below, its
prominent employment both in specific applications (e.g. [46; 21; 3; 5]) and
mathematical analyses (for a review, see section 6.1.1 of Horstmann’s paper
[40]) merits its consideration here. As to its problems, we note Nanjundiah
[72] who writes of the logistic form “ . . . even this fails at both, very small
and very large concentrations” (p. 67 in [72]). By inspection, the dynamics
of movement are dominated by the taxis term as v → 0, whereas realisti-
cally a low signal concentration would not be expected to elicit a significant
chemotactic response. This specific problem, however, can be alleviated by
the form of equations given in (M2b) for β > 0.

2.3 (M3) Density-Dependent Sensitivity

Hillen and Painter ([36; 80]) introduced mechanistic descriptions of volume ef-
fects. Assuming that cells carry a certain finite (nonzero) volume and that oc-
cupation of an area limits other cells from penetrating it, a density-dependent
chemotactic sensitivity function can be derived. This effect was modelled by
the introduction of a function q(u) describing the probability of finding space
given a local cell density u. Thus, we alter equation (4) to

T±x = q(u(x± h))(a + b (v(x± h)− v(x))) .

Following the derivation of the continuum limit and nondimensionalising as
before, we obtain the general volume filling model

ut = ∇ (D (q − uqu)∇u− χuq(u)∇v) ,
vt = ∇2v + u− v .

(5)

Our prototype volume filling model (M3a) appears for the simple and plausi-
ble choice of q(u) = 1−u/γ, for 0 ≤ u ≤ γ, where γ ≥ 1 denotes the maximum
cell density. Clearly, the volume-filling model (M3a) reduces to the minimal
model as γ →∞, corresponding to allowing an unlimited number of cells to
accumulate at each location.
The qualitative properties of the volume filling model are quite well under-
stood. Global existence of solutions in any space dimension has been shown
in [36] for (M3a) and in [109] for the full model (5) where the existence of a
compact global attractor was additionally shown. The structure of the attrac-
tor can be understood using Lyapunov functions [108]. In [80] a numerical
exploration was conducted to determine the longtime patterning behaviour,
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revealing formation of multiple plateau type patterns which undergo a coars-
ening process with increasingly long transient times. In [90] the metastability
of steady states was studied and the underlying bifurcation diagram was iden-
tified, revealing that the unstable eigenvalues are exponentially small. The
plateau interactions were studied using asymptotic methods by Dolak and
Schmeiser [25] where a system of ODEs was obtained for the location of
transition layers. In [24], the volume filling idea was used to model pattern
formation of Dictyostelium discoideum and Salmonella typhimurium. Burger
et al. [13] compare two volume filling models, one with linear diffusion and the
second with nonlinear diffusion of the form ∇(u(1−u)∇u). They prove global
existence of solutions and study non-trivial steady states. Finally, Wang and
Hillen [105] allow cells to squeeze into openings and include elastic cell effects
through a convexity condition of q′′(u) < 0.

An alternative form for density-dependent chemotactic sensitivity has been
introduced and studied by Velazquez ([102; 103]). This model assumes that
the advective velocity of cells will decrease with increasing cell density; a
typical functional form for A(u) that incorporates this behaviour is A(u) =
u/(1 + εu). Substituting this into the model and nondimensionalising the
equations leads to the model (M3b). We again notice that the minimal model
can be obtained in the limit ε → 0 and nondimensionalisation has been
employed to scale the homogeneous steady state to (1, 1).

2.4 (M4) Non-Local Sampling

Different cells detect spatial gradients through distinct mechanisms. Certain
cells, such as Dictyostelium discoideum, fibroblasts and leukocytes, can detect
and respond to a small gradient in the chemical signal across the length of
their body using a process of internal amplification and polarisation. Smaller
cells, such as E. coli, detect a gradient by sampling the concentration at dif-
ferent time points and modifying their movement accordingly. In either case,
the signal detected by the cell is intrinsically non-local and it may therefore
be appropriate to consider movement based on a non-local gradient by the
integration of the signal by the cell over some region. A model incorporating
this was postulated in [77] and a detailed derivation, analytical and numerical
study has been carried out by [37].
In its nondimensional form, the non-local model is given by Equations (M4)
with homogeneous steady state (1, 1). The non-local gradient is defined for a
constant radius ρ > 0 as

◦
∇ρ v(x, t) =

n

ωρ

∫
Sn−1

σv(x + ρσ, t) dσ, (6)

where ω = |Sn−1| and Sn−1 denotes the (n − 1)-dimensional unit sphere in
Rn. The nonlocal gradient describes sensing of the chemical signal over an
effective sampling radius ρ > 0 which, in its simplest interpretation, may
represent the spatial extent of the cell; effectively it provides the dominant
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direction of the chemical signal. For example, in one spatial dimension (6)
reduces to

◦
∇ρ v(x, t) =

1
2ρ

(v(x + ρ, t)− v(x− ρ, t)) .

Clearly, this collapses to the minimal model as ρ → 0. A detailed deriva-
tion of the above model has been carried out by [37] where for ρ > 0 it
was shown that the above equations have globally existing solutions in all
space dimensions. In addition, detailed stability and numerical analyses were
performed.

2.5 (M5) Nonlinear Diffusion

Typically, chemotaxis models incorporate a diffusion term into the cell dy-
namics to model an undirected or random component to movement. In by
far the majority of applications a constant diffusion coefficient is assumed,
yet it is far more likely that this term should depend nonlinearly on the sig-
nal concentration and/or the cell density, as can be seen from derivations
of Keller-Segel type systems through the various approaches mentioned in
the introduction (e.g. [45; 92; 96; 95; 80; 15]). An explicit example is given
in the formulation of the density-dependent chemotactic sensitivity models
above, where a diffusion coefficient of the form D(u) = D (q − uqu) was de-
rived. Although the dependence on u dropped out under the special choice
of q(u) = 1− u/γ, used in the derivation of the volume-filling model (M3a),
generally this would not be the case. Nonlinear dependence on the cell den-
sity has generally been neglected in studies of cell movement, yet has fre-
quently been employed in ecological applications where it is used to describe
“population-induced” movement for insect populations.
Here, we consider the case studied by Kowalczyk [50] for nonlinear diffusion
of the form D(u) = un for n ≥ 0, i.e. the rate of diffusion increases with
increasing cell density. This formulation has also been used by Eberl [27] in
a model for biofilm growth. Introducing this term into our basic chemotaxis
system and nondimensionalising as before leads to the nonlinear-diffusion
model (M5), with homogeneous steady state (1, 1).
As mentioned above, very few Keller-Segel based models have incorporated
nonlinear dependence on the cell density in the diffusion term. Höfer et al. [38]
introduced a phenomenological description of cell-cell adhesion in a model
for Dictyostelium discoideum aggregation by considering D(u) = µ1 + µ2N4

N4+u4

where N is a critical cell density. In a more theoretical study, Kuiper and
Dung [52] consider nonlinear chemotaxis models with a non-linear diffusion
term of the form ∇(P (u, v)∇u), where the nonlinear diffusion coefficient
grows at least linearly in u, i.e. P (u, v) ≥ d(1 + u). Kuiper and Dung show
that this nonlinear diffusion term dominates other typical nonlinearities and
leads to global solutions and to finite dimensional attractors.
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2.6 (M6) Saturating Signal Production

As remarked in Section 2.2, the binding of external signals to cell surface
receptors induces a range of downstream responses that not only includes
movement but also synthesis, release and degradation of the signal through
interference with the appropriate pathways. These actions may be induced
either by the signal itself or by other external molecules such as “quorum-
sensing” cues. In either case, linear kinetics are an unduly simplistic approx-
imation of the true signal dynamics.
Clearly, it is neither practical or illustrative to consider the many different
kinetics utilised in chemotaxis models and we restrict our focus to a sin-
gle form employed in a number of applications and mathematical analyses.
Here, we follow example 2 in [39] and assume that the production of chemical
saturates with increasing cell density; intuitively this would prevent exces-
sive chemoattractant production as the cell density increases. Following the
nondimensionalisation process, we obtain the saturating signal production
model given by (M6) and with homogeneous steady state (1, 1/(1 + φ)).
The above signalling kinetics have been used in a number of chemotactic
models, for example [62; 70] and may be particularly appropriate if signal
production is linked to “quorum-sensing” mechanisms.

2.7 (M7) Nonlinear Gradient Models

The chemotactic component of the general Keller-Segel model (1) is an ad-
vective term with velocity dependent on the chemical signal (Section 2.2), the
cell density (Section 2.3) and the signal gradient. The linear dependence on
the signal gradient (whether in local or non-local form) may allow unbounded
velocities to develop, an unrealistic depiction of individual cell behaviour
where cells have a maximum velocity.
A number of authors dating back to Patlak [86] in the 1950s have derived
models for chemotaxis based on a more realistic description of individual
cell migration (see also [2; 76]). Rivero et al. [92] studied a probabilistic
transport equation for an individual’s migration in one dimension. Different
macroscopic descriptions for a population flux were derived according to
different types of migration (flagella bacteria or leukocytes). Under certain
assumptions, a number of generalised Keller-Segel equations were derived in
which the advective velocity −k2(u, v)vx in Equations (1) was replaced with
a form depending nonlinearly on the signal gradient, for example

v0 tanh

(
σvx

(1 + κv)2

)
for the case of the flagella bacteria Escherichia coli. Notice also that their
derivation resulted in a nonlinear signal-dependent diffusion coefficient.
We will therefore study a version of model (2) in which the chemotactic com-
ponent to motion depends nonlinearly on the signal gradient. We base the
model on that proposed in [92] for Escherichia coli, however, we greatly sim-
plify their model by assuming a constant cell diffusion and and a chemotactic
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component that depends only on the signal gradient and a single regulari-
sation parameter. We extend the model to a higher dimensional version,
however we note that this has not been derived in detail. Following nondi-
mensionalisation we obtain the model (M7) with homogeneous steady state
(1, 1). For the function Fc : IRn 7→ IRn we shall assume

Fc(∇v) =
1
c

(
tanh

(
cvx1

1 + c

)
, . . . , tanh

(
cvxn

1 + c

))
. (7)

Observe that this form reduces the model to (M1) as c → 0. Of course, a
variety of other choices for Fc may also be appropriate.

2.8 (M8) The Cell Kinetics Model

We have so far ignored the potential role of cell kinetics. This may be a
reasonable modelling assumption for certain systems, for example during
the aggregation stages of Dictyostelium discoideum when cell proliferation
has halted, or if the time-scale of movement is significantly faster than that
of cell growth. The inclusion of cell proliferation and cell death, however,
becomes natural in systems when patterning through movement is occurring
on a similar or slower timescale than that that due to growth. There are many
biological situations where this is likely to be the case, for example bacterial
pattern formation (e.g. Tyson, Woodward et al. [107; 101]) or endothelial cell
movement and growth in response to VEGF during angiogenesis (Chaplain
and Stuart [17]).
As was the case for defining appropriate signal kinetics, the functional rep-
resentation of cell growth/death will vary according to the biological sys-
tem under consideration. Here we will examine a standard choice of logistic
growth for the cells. Incorporating this into the minimal model and scaling
the equations leads to the model (M8). Notice that this system has a single
nontrivial steady state (1, 1). Model (M8) has been studied numerically in
[80] and interesting pattern interaction dynamics have been found. Patterns
form as local maxima and complicated dynamics, which comprises merging
and emerging of the maxima, subsequently occurs. An example of these dy-
namics is shown in (M8) of Figure 2. We will discuss the theoretical results
of Osaki and Yagi [74], Wrzosek [109], and Wang and Hillen [105] in detail
in the section on global existence.
A kinetic term combined with chemotaxis also appears in Wang [104], where
the chemical signal is a cell nutrient and is supplied externally. Wang inves-
tigates the effects of chemotaxis and cell motility on the final population size
and determines that a combination of small diffusion coefficient and large
chemotaxis coefficient serve to increase the total population size.
The case for a cell kinetics term describing an Allee effect (f(u) = u(1 −
u)(u− α)) has been studied in a series of papers [65; 32; 48; 23], where it is
assumed that the kinetics term acts on a faster time scale compared to that
of cell movement. Depending on the choice of scaling, solutions in the form
of viscous shock solutions can be found.



16 Hillen, Painter

Model global existence reference

(M2a) open question

(M2b) β > 0 global existence in 2-D Biler [7]

(M2b) β = 0 global exist. below threshold 6.1.1. in Horstmann [40]

(M3a) global existence in n-D Hillen and Painter [36]
and Wrzosek [108]

(M3b) global existence in n-D Velazquez [102] and Lemma 5

(M4) global existence in n-D Hillen, Painter, Schmeiser [37]

(M5) global existence in n-D Kowalczyk [50]

(M6) global existence in n-D Horstmann [39]

(M7) global existence in n-D Lemma 3

(M8) global existence in n-D Wrzosek [109]

Table 2 Summary of global existence results for the models (M2)-(M8).

3 Global Existence

Fundamental to the success of the Keller-Segel model is its ability to demon-
strate aggregation in certain parameter regions, a phenomenon that can be
intuitively understood through the process of chemotactic migration up gra-
dients of a self-produced chemical. The question thus arises as to whether
solutions blow-up or exist globally in time.
As mentioned earlier, the minimal model (M1) has globally existing solutions
in one space dimension (Osaki and Yagi [75]) and a threshold phenomenon
with blow-up solutions in higher dimensions (Horstmann [40], Suzuki [98],
and Perthame [87]). For most of the modified models (M2)-(M8), global
existence of solutions is known, since they have been studied theoretically or
are special cases of more general models. For some of the models for which
this has not previously been studied, we shall prove global existence here,
while global existence of some of the models (e.g. (M2a)) remains an open
problem. We summarise the relevant results in Table 2.
Exploration of the literature reveals two principal methods for demonstrating
the global existence of solutions; (i) finding an L∞ a-priori estimate for the
chemotaxis term in the population flux, i.e. the term −k2(u, v)u∇v in (1),
and (ii) to find a Lyapunov function.
The first method can be summarised in the following Lemma 1 from [37].

Lemma 1 Let the components of the vectorfield Ψ : Ω × (0,∞) → IRn be
uniformly bounded, and let uI ∈ L∞(Ω) ∩ L1(Ω) satisfy uI ≥ 0. Then the
solution of the initial-boundary value problem

ut = ∇ · (∇u− uΨ), u(x, 0) = uI , n · (∇u− uΨ) = 0 on ∂Ω

satisfies u ∈ L∞((0,∞)×Ω) and

sup
t
‖u‖∞ ≤ C(‖uI‖1, ‖uI‖∞, sup

t
‖Ψ‖∞, n).
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This method provides global existence for the 1-D models. A general 1-D
case was studied in Osaki and Yagi [75] and applies to our models (M1),
(M2a), and (M2b). Global existence for the other models is contained in the
corresponding literature listed in Table 2. We summarise

Lemma 2 Solutions to the 1D versions of models (M1)-(M8) are global in
time.

The method of uniform estimates in higher dimensions has been applied,
for example, to the volume-filling model (M3a) in [36], and the non-local
model (M4) in [37]. It also applies to model (M7), since the chemotaxis term
contains Ψ = Fc, with Fc given in equation (7). Here Ψ is uniformly bounded
and the above Lemma 1 applies directly, thus

Lemma 3 Solutions to model (M7) exist globally in all space dimensions.

Biler [7] derives global estimates in 2-D using the notion of strictly sublin-
earity. A chemotactic potential φ(v) is strictly sublinear, if the chemotactic
sensitivity, χ = φ′ satisfies

χ(v) > 0, χ(v) → 0 as v →∞ and χ(v)v is increasing .

In this case Biler demonstrates the following result ([7]):

Lemma 4 If n = 2 and φ(v) is strictly sublinear, solutions to (M2a) exist
globally in time.

This result applies to model (M2b) for β > 0.

The second method is to find a Lyapunov function. A Lyapunov function
for the minimal model (M1) was simultaneously introduced by Gajewski and
Zacharias [30], Biler [6] and Nagai et al. [71]. All authors demonstrate global
existence of solutions in the sub-critical case. This Lyapunov function has
inspired many further generalisations to prove global existence for chemo-
taxis models. Horstmann [39] developed a systematic approach to construct
a Lyapunov function for cross-diffusion models. To illustrate his approach
we consider a more general formulation which includes many of the above
models:

ut = ∇(D(u)∇u−A(u)∇v)
vt = ∆v + u− v.

(8)

Using Horstmann’s notation from [39], we need to find a solution R(u) of the
differential equation

R′′(u) =
D(u)
A(u)

,

which satisfies R′′(u) ≥ 0. Then the functional

H(u, v) =
∫

Ω

(
v2

2
+
|∇v|2

2
− uv + R(u)

)
dx

is a Lyapunov function for system (8) on a smooth domain Ω with homoge-
neous Neumann boundary conditions.
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For the volume-filling model (M3a), D(u) = D and A(u) = χu(1 − u
γ ) we

find

RM3a(u) =
D

χ

(
u lnu + γ

(
1− u

γ

)
ln
(

1− u

γ

))
.

This Lyapunov function has been used by Wrzosek in [108] to prove global
existence for the volume filling model.

For the model (M3b) we have D(u) = D and A(u) = χu
1+εu , leading to

RM3b(u) =
D

χ

(
u lnu +

εu2

2

)
.

While Velazquez [102; 103] studied the qualitative properties of solutions to
(M3b), the Lyapunov function H(u, v) with RM3b for (M3b) has not yet been
studied in the literature. Hence we apply Horstmann’s result and state

Lemma 5 Solutions to model (M3b) exist globally in time.

For the nonlinear diffusion model (M5) we find

RM5(u) =
D

n(n + 1)χ
un+1.

This Lyapunov function has been used by Kowalczyk [50] to prove global
existence.

The model (M6) was studied as Example 1 in Horstmann [39].

Table 2 reveals two cases that are not entirely solved. Model (M2a) does not
fall under any of the above mentioned methods. The Lyapunov function of
Horstmann cannot be constructed, and a-priori estimates of the chemotaxis
term are not known. Further, the methods of Biler [7] or Post [89] do not
apply.
For model (M2b) we have global existence only in 2-D and for β > 0. Biler
states in [7] that strict sublinearity is not sufficient for global existence in
higher dimensions (n ≥ 3). The results for the case of β = 0 have been sum-
marised in section 6.1.1 of Horstmann’s review [40]. The results indicate that
in this case there is a threshold for global existence and it has not, to our
knowledge, been demonstrated whether solutions above threshold blow up in
finite time.

The situation is very different for the kinetic model (M8). Here the kinetic
term can control the local population growth due to migration. Our model
(M8) falls into the class of models studied by Osaki et al. [74]. They demon-
strate that certain generalisations of (M8) have global existing solutions and
an exponential attractor (a compact attracting set of finite fractal dimen-
sion, that attracts bounded sets exponentially). The generalisations include
choices of chemotactic potential φ(v) = v, φ(v) = log(1 + v), or φ(v) = v

1+v .
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For these choices of φ(v) we obtain the model (M8), the combined model of
(M2b) and (M8), and the combined model of (M2a) and (M8), respectively.
The combination of volume-filling and cell kinetic model, (M3a) and (M8)
has been studied for different cases in [105] and [109], where the existence of
a compact global attractor is shown in [109].
The existence and uniqueness of solutions and steady states for a related
model by Chaplain and Stuart [17] has been studied by Allegretto et al. [1].
A global existence result for a very general cross-diffusion model with kinetic
terms has been derived by Kuiper [51]. However, this model assumes no signal
production, and only applies to (M8) if there is no production term in the
v-equation.

4 Stability Analysis

The parameter regimes under which spatial patterning arises can be studied
through a standard linear analysis at the homogeneous steady state of the
models (M1)-(M8). We briefly illustrate the method using the base model
(2) in one-dimension. We assume (u∗, v∗) is a spatially homogeneous steady
state of (2). Linearisation about this steady state leads to the system

Ut = D(u∗)Uxx −A(u∗)B(v∗)C ′(0)Vxx + f ′(u∗)U
Vt = Vxx + (g(u∗) + u∗g′(u∗))U − V

for small perturbations U(x, t), V (x, t). To abbreviate the notation we will
use A∗ = A(u∗), B∗ = B(v∗), etc. The stability of the homogeneous steady
state is given by the eigenvalues of the stability matrix (e.g. see Murray [68])

Ak =
(
−k2D∗ + f ′

∗
k2A∗B∗C ′(0)

g∗ + u∗g′
∗ −k2 − 1

)
, (9)

where k ≥ 0 denotes the mode. The modes k are the eigenvalues of the
Laplace operator on the given domain with the given boundary conditions.
For example, on an interval [0, L] with homogeneous Neumann boundary
conditions we have k = nπ/L, n = 0, 1, 2, 3, . . . whilst with periodic boundary
conditions we have k = 2nπ/L. On the whole domain −∞ < x < ∞ we have
k ∈ IR+.
If the stability matrix Ak has eigenvalues with positive real part, then the
homogeneous steady state is unstable. In that case we expect spatial pat-
tern formation, since we know that solutions to the models (M1)-(M8) exist
globally in time (Lemma 2). To study the eigenvalues of Ak we use the trace-
determinant formula

λ1,2 =
trAk

2
± 1

2

√
(trAk)2 − 4detAk,

with

trAk = −k2D∗ + f ′
∗ − k2 − 1 ,

detAk = k2D∗(k2 + 1)− f ′
∗(k2 + 1)− (g∗ + u∗g′

∗)k2A∗B∗C ′(0).
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For f = 0 we always have an eigenvalue λ = 0 corresponding to the mode
k = 0. If k 6= 0 and f = 0 we see that trAk < 0, hence Reλ1,2 can only be
positive, if detAk < 0. Following the nondimensionalisation, each of models
(M1)-(M8) have the same (nontrivial) steady state for the cell density, u∗ = 1.
Stability of the eigenvalues in each of the cases (M1)-(M8) is calculated sepa-
rately (not shown here) and results are summarised in the following Lemma.

Lemma 6 Necessary conditions for instability and the corresponding unsta-
ble modes of models (M1)–(M8) are as follows:

(No.) necessary cond. unstable modes k

for instability

(M1): χ > D k2 < χ
D − 1

(M2): χ > D(1 + α)2 k2 < χ
D(1+α)2 − 1

(M2a): χ > D k2 < χ
D − 1

(M3a): χ
(
1− 1

γ

)
> D k2 <

χ(1− 1
γ )

D − 1

(M3b): χ > D(1 + ε) k2 < χ
D(1+ε) − 1

(M4): χ > D k2 < χ
D

sin(kρ)
kρ − 1

(M5): χ > D k2 < χ
D − 1

(M6): χ > D(1 + φ)2 k2 < χ
D(1+φ)2 − 1

(M7): χ > D(1 + c) k2 < χ
D(1+c) − 1

(M8): χ > (
√

D +
√

r)2 k2 ∈ (κ1, κ2), with

κ1,2 = χ−D−r
2D ± 1

2D

√
(D + r − χ)2 − 4rD.

It is quite clear from the above that the necessary condition for instability
for each of the regularised models converges to that of the minimal model as
the regularisation parameter is varied appropriately.

5 Numerical Simulations

5.1 1D Numerics

In Figure 1 (M1) we plot numerical simulations of the minimal chemotaxis
model on a fixed domain [0, 1] with zero-flux applied at the boundaries. The
cell density and chemical concentration are plotted at distinct times, showing
the growth of the 1st mode solution as cells accumulate into a sharp boundary
peak.
In Figure 1 (M2)–(M8) we plot steady-state distributions for each of the reg-
ularisations as the appropriate parameter is varied. The purpose of these sim-
ulations is two-fold. Firstly we confirm the linear stability analysis through
the numerical results. For zero-flux boundary conditions on the interval [0, 1],
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(No.): critical parameter value instability for:

(M2a): α∗ = 1.144 α < α∗

(M2b): no critical value β ≥ 0

(M3a): γ∗ = 1.277 γ > γ∗

(M3b): ε∗ = 3.600 ε < ε∗

(M4): ρ∗ = 0.8127 ρ < ρ∗

(M5): no critical value n > 0

(M6): φ∗ = 1.144 φ < φ∗

(M7): c∗ = 3.600 c < c∗

(M8): r∗ < 3.553 r < r∗

Table 3 Critical parameter values for the parameters D = 0.1 and χ = 5 on the
interval [0, 1] with zero-flux boundary conditions.

the smallest non-zero mode is the 1st mode, i.e. kc = π. For each of the mod-
els (M1)–(M8) we can calculate a critical parameter using the conditions in
Lemma 6, such that above (or below) this value no pattern formation is pos-
sible. Using the parameters for D and χ fixed in the numerical simulations,
we list critical values in Table 3. Clearly, numerical results are consistent with
the analytical results. Secondly, we consider convergence with the minimal
model. For each of the models (M2)–(M7) we observe numerical convergence
of solutions to the minimal model at its steady state distribution as the regu-
larisation parameter is appropriately varied. However, the cell kinetics model
(M8) does not: while solutions converge on a short time-scale for small val-
ues of r, over the longer time scale the kinetics term dominate and the peak
density is greatly reduced.
In our next set of simulations we explore the evolution of patterns on a larger
domain with random initial data, see Figure 2. We note that while the time-
scale of patterning and the profile of the solutions varies from models (M1) to
(M7), a consequence of the value chosen for the regularisation parameter, sim-
ilar patterning dynamics are observed throughout: initially a many-peaked
solution emerges which subsequently undergoes a “coarsening” process dur-
ing which the wavelength increases and the number of peaks decreases. Over
a longer evolution time (not shown) patterns eventually evolve into a single
boundary peak pattern (for example, see [80] for numerical simulations of
the volume filling model). Again, however, model (M8) demonstrates starkly
different behaviour. For the chosen parameters, a continual process of coars-
ening and “peak renewal” occurs, in which new peaks emerge in the space
between the existing ones. For other forms of cell kinetics (data not shown),
solutions may eventually evolve into stable multi-peak patterns.

5.2 2-D Numerics

We next extend our numerics to consider two dimensions. Analytically the 2-
D case is critical: in the biologically relevant parameter region for aggregation
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to occur the minimal model displays finite-time blow up. A summary of
the global existence results for the various models (M2)–(M8) was given in
Section 3.
Numerical simulations on the unit square are plotted in Figure 3. For the
minimal model, solutions quickly evolve into a blow-up. Following a critical
time, which we classify as numerical blow-up, we are unable to track the
solution any further, therefore a plot of the cell density is shown just prior
to this point in the appropriate plot of Figure 3 (a).
Results from the numerical simulations of models (M2)–(M8) are displayed
in the remaining plots of Figure 3 (a). The result for both forms of (M2)
are somewhat ambiguous: for the model (M2a) (“receptor”) a steady state
distribution in the cell density is achieved, yet the aggregation is highly
concentrated and we should query as to whether the numerical scheme is
sufficiently accurate at such steep gradients. A similar ambiguity appears for
model (M2b) (“logistic”); whilst global existence has been proved by Biler
[7] for β > 0, whereas for β = 0 global existence has only been determined
below a threshold (see 6.1.1 in Horstmann [40]). The numerical results here,
for β = 0 and above the threshold in [40], lead to numerical blow-up at time
t = 1.13. To fully resolve the nature of these solutions it will be necessary
to develop more sophisticated numerical schemes, for example an adaptive-
meshing algorithm similar to that developed by Budd et al. [9]. The remaining
cases, (M3)–(M8), are less ambiguous and the models have globally existing
solutions. The temporal evolution of the cell density at the aggregation peak
is tracked in Figure 3 (b). Two cases deserve special attention. Firstly, for the
nonlinear diffusion model (M5), the cell density aggregate appears to form a
compact mass with steep fronts. Secondly, for the cell kinetics model (M8),
solutions initially lie close to those of the minimal model before cell kinetics
dominate and the peak density drops to a steady state profile.
In our second set of 2-D numerics, we consider the evolution on a larger
domain with random initial data. We split our study into two distinct cases:
in the first we incorporate all of the regularisations (M2a), (M3a), (M5) and
(M6) into a single model. The resulting numerics, Figure 4 (a), demonstrate
the initial emergence of multiple peaks, which subsequently merge and the
average wavelength increases: eventually a single boundary peak will remain.
The same type of behaviour is observed when each of the regularisations is
considered separately. In the second simulation we add a logistic growth term
to the model of Figure 4 (a). The resulting numerical simulations demonstrate
a continual process of peak collision and peak emergence, Figure 4 (b), akin
to the 1-D findings. Here the average wavelength between peaks roughly
remains the same.

5.3 3-D Numerics

The properties for the various models in higher dimensions are less well
understood. Due to the computationally exhaustive nature of 3D simulations
we restrict our numerical exploration to just 2 cases: the minimal model
(M1), for which finite time blow-up occurs in 3D, and the volume-filling
model (M3a), which is known to have globally existing solutions [36; 109].
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As expected, 3D numerical simulations of the minimal model (not shown)
demonstrate a rapid evolution to a blow-up. For the volume-filling model,
however, solutions evolve into a stable spherical aggregation of cells, Figure
5 (a) from initial conditions on a small domain with biased initial data. For
random initial data on a larger domain, a number of aggregates form which
undergo the same coarsening process as observed above in the 1-D and 2-D
numerics. A snapshot from this process is shown in Figure 5 (b).

6 Plateaus and Spikes

The various models above each show pattern formation in certain parameter
ranges. Numerically these may appear either as sharp peaks (e.g. for the
minimal model (M1)) or as wide plateaus (e.g. for the volume filling model
(M3a)), or as combinations of these. In Hillen [34] a classification of “spikes”
versus “plateaus” was formulated as:

Theorem 1 Assume f ∈ C5(U) and Hess
(
∆f(x̄)

)
is invertible. Then

x̄ is a spike ⇐⇒ Hess
(
∆f(x̄)

)
is positive definite,

x̄ is a plateau ⇐⇒ Hess
(
∆f(x̄)

)
is negative definite.

In this section, we employ this classification in one space dimension to study
the form of nontrivial steady states. Spikes and plateaus have differing stabil-
ity properties (see [34]), with spikes often unstable and indicative of singular
behaviour. Plateaus are often stable or metastable. Following the arguments
in [34] it may be conjectured that spikes relate to models that blow-up in
higher dimensions (such as the minimal model (M1)), whereas plateaus in-
dicate global existence of solutions in any space dimension (such as for the
volume-filling model (M3a)). As our analysis below demonstrates, this rela-
tion does not hold and in fact spike patterns occur for the majority of the
regularised models. Numerically, plateaus have only been observed in certain
parameter regions for the volume-filling (M3a) and for the nonlinear diffusion
model (M5): solutions of plateau-type are labelled with an asterisk in Figure
1.
In one dimension, the criterion for spikes versus plateaus from Theorem 1
can be simplified to

Corollary 1 Assume x̄ is an isolated maximum of f(x) and f ∈ C5. Then
x̄ is a spike if and only if f IV (x̄) > 0 and x̄ is a plateau if and only if
f IV (x̄) < 0.

For each of the models we assume that the instability conditions of Lemma
6 are satisfied, such that the homogeneous steady state is unstable and a
pattern arises. Under these assumptions we consider a steady state with
isolated local maximum at x̄. For this maximum we evaluate the fourth order
derivatives, uIV (x̄), vIV (x̄). We omit the elementary details and summarise
the results:
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Theorem 2 Assume the instability conditions of Lemma 6 and assume that
x̄ is a common local maximum of a steady state u(x), v(x). We denote the
values at maximum by ū = u(x̄), v̄ = v(x̄).
(M1): ū and v̄ are spikes.

(M2a): If ū > D
χ (1 + αv̄)2 and v̄ < χ−2Dα

2Dα2 then ū and v̄ are spikes.

(M2b): If ū > D(β+v̄)
χ(β+1) then ū and v̄ are spikes.

(M3a): (see also [34]) We define

u1,2 =
γ

2

(
1±

√
1− 4D

χγ

)
.

(i) The maxima ū and v̄ are plateaus if

u(x̄) >

{
u2 for 4D < χγ
γ
2 otherwise.

(ii) If 4D < χγ and ū ∈ (u1, u2), then ū and v̄ are spikes.

(M3b): If ū > D
χ−εD then ū and v̄ are spikes.

(M4): The maximum v̄ is a spike. The maximum ū cannot be classified,
because of the nonlocal gradient term in the equation for u.

(M5):
(i) For n = 0 we obtain the result for the minimal model from (M1).

(ii) For 0 < n < 1 and ū > 1−n

√
D
χ we obtain spikes for ū and v̄.

(iii) For n = 1 we obtain spikes for ū and v̄.
(iv) For n > 1 we obtain plateaus when ū > n−1

√
χ
D . If ū < n−1

√
χ
D then

v̄ is a spike.

(M6): If ū
(1+φū)2 > D

χ then ū and v̄ are spikes.

(M7): The maximum ū cannot be classified, and v̄ is a spike.

(M8): If ū > D
χ (1 + r) then ū and v̄ are spikes.

Remarks:
1. The above regularisations have one additional parameter compared to the

minimal model (M1). Note that taking the appropriate limit in all of the
above cases shows that the conditions for spikes and plateaus match with
those for the minimal model.

2. The simulations in Figure 2 confirm the theoretical result. Plateaus are
marked with an asterisk *.

3. Notice that in [37] we claimed that v̄ is a plateau for model (M4). Unfor-
tunately, our proof of Theorem 3 in [37] is wrong, and we use an appendix
A of this paper to correct this.
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7 Discussion

In this article we have explored the relevance of the Keller-Segel equations in
the modelling of chemotactic cell migration. Motivated by a consideration of
the different biological factors underpinning the modelling, we have system-
atically derived a number of variations that have received significant scrutiny
in the modelling and mathematical literature. We have proceeded to sum-
marise results pertaining to the existence of solutions to the models, their
ability to initiate spatial patterning, the long-time behaviour of solutions and
the form of steady state patterns.
Whilst we have made every effort to explore the consequences of a diverse set
of biological assumptions, we make no claim that our analysis is complete.
Indeed, there are a number of further cases that would merit consideration.
For example, in the model (M5), the nonlinear diffusion depended only on the
cell density; realistically this term would also depend on the signal concen-
tration, as indicated by derivations of Keller-Segel models from microscopic
descriptions of cell motion. Incorporating further details of the internal trans-
duction of the chemical signal, the role of multiple chemical species, the effect
of time delays between signal detection and response, may all lead to signif-
icantly different models compared to those considered here. Furthermore, it
should be noted that in the application to a specific biological system, a com-
bination of the models mentioned here may be appropriate. The choice as
to what should be included and what can justifiably be neglected is entirely
dependent on the biological system under consideration.
We have not discussed the case of zero diffusion in the chemical signal, as may
occur if the signal becomes bound to a rigid external structure such as the
extracellular matrix. This has been considered mathematically by Levine and
Sleeman [59] and Rascle and Ziti [91] amongst others. The strong regularising
property arising through signal diffusion is lost and more singular behaviour
can be expected. Indeed, both Rascle and Ziti [91] and Levine and Sleeman
[59] showed the existence of finite time blow-up solutions. The complimentary
case of zero cell diffusion was studied by Dolak and Schmeiser [25] and Wang
and Hillen [106]. In both papers it was shown that for different models shock
solutions can develop.
We note that this paper has principally concentrated on the pattern forming
abilities of the chemotactic equations, specifically the initiation of patterning,
the dynamics of solutions and questions regarding global existence. A signif-
icant proportion of the mathematical and modelling literature has focused
on other types of behaviour observed in the Keller-Segel equations, such as
their ability to generate travelling wave solutions (e.g. [46; 73; 41; 53]).
From a mathematical point of view, a number of open problems are revealed
as a result of the explorations here. It would be of significance to study in de-
tail the convergence to the minimal model under the corresponding parameter
limit of models (M2)-(M8). In particular, in 2-D solutions to all the models
must become unbounded. To our knowledge this has so far only been inves-
tigated for model (M3b) by Velazquez [102; 103]. Of particular interest here
is the question of convergence for model (M8): while numerical simulations
in 1D demonstrated a close similarity at the heterogeneous steady states for
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models (M2)-(M7) as the regularisation parameter was varied appropriately
(Figure 1, top row), this did not occur in the case (M8) – convergence only
occurred on a short time scale before the kinetic term begins to dominate.
Another interesting limit occurs for model (M2b) as β → 0. As mentioned
earlier, the singular case of χ = 1/v is not so relevant biologically, but it
has been studied mathematically in many publications. It would be of inter-
est to observe whether the singularity produces effects not observed in the
regularised cases of β > 0.
A complete understanding of global existence is still lacking. For example,
global existence of model (M2a), one of the more widely utilised forms of
chemotactic sensitivity, remains open. A complete classification of global
existence/blow-up in model (M2b) for the case β = 0 is also absent.
Penetration into the long-time dynamics of solutions requires significant fur-
ther analysis. Numerical simulations of the models typically reveal merging
of local maxima. These dynamics have so far been studied for the volume
filling model (M3a) by Potapov and Hillen [90] and by Dolak and Schmeiser
[25]. For the other models this has not been done, however, merging dynam-
ics are also known from other cross-diffusion models. For example, merging
dynamics for the Brusselator model has been studied by T. Kolokolnikov
[49], and it is believed the instability for the chemotaxis models might well
be of the same type (personal communication). Of further interest are the
merging and emerging dynamics observed in the kinetics model (M8). We
are currently pursuing some first ideas to tackle these problems.

A Correction of an earlier classification of plateaus for (M4)

The original definition of spikes versus plateaus as given in [34] is based on the

non-local gradient
◦
∇ρ. In one dimension, a maximum f(x̄) is defined to be a spike,

if there exists an ρ∗ > 0 such that 0 >
◦
∇ρ f ′(x̄) > f ′′(x̄) for each 0 < ρ < ρ∗,

and a plateau, if there exists a ρ∗ > 0 such that 0 > f ′′(x̄) >
◦
∇ρ f ′(x̄) for each

0 < ρ < ρ∗. Hence Corollary 1 is an equivalent formulation for smooth functions.

In [37] it has been claimed for model (M4) that v̄ is a plateau. Unfortunately, the
proof of Theorem 3 in [37] is wrong, since the function ψ = u exp(−χv) typically
has a minimum at x̄, and not a maximum, as assumed in [37]. We use this oppor-
tunity to correct the proof and show that typically, ū and v̄ are spikes.

For the steady state equations of (M4) we compute for an isolated maximum x̄ that

v̄′′ = v̄ − ū (10)

ū′′ =
χū

D

◦
∇ρ v̄

′ (11)

v̄IV = v̄′′ − ū′′ = v̄′′ − χū

D

◦
∇ρ v̄

′ (12)

ūIV = 3
(ū′′)2

ū
+

 
1− χū

D

◦
∇ρ ū

′

ū′′

!
ū′′ (13)
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Notice that ū′′ < 0. Hence we find that ū is a spike if

D

χū
<

◦
∇ρ ū

′

ū′′
< 1.

This can be satisfied if we know that ū > D
χ

is large enough. Hence for ū > D
χ

large

enough we would expect spikes (although we cannot prove it here, since we need

to compare
◦
∇ρ ū

′ with ū′′).

For ū > D
χ

we assume now that v(x̄) is a plateau, i.e. v̄IV < 0. This implies that

v̄′′ < χū
D

◦
∇ρ v̄

′ and with χū
D
> 1 this implies v̄′′ <

◦
∇ρ v̄

′. If this last inequality is true
for small ρ, then v̄ classifies as a spike, which contradicts the previous assumption.
Hence v̄ cannot be a plateau.
A second argument can be obtained by expanding the non-local term up to O(ρ2):

ut = Duxx − χ(uvx +
ρ2

3
uvxxx)x

vt = vxx + u− v

At a local maximum (ū, v̄) of the non-uniform steady state:

0 = Dū′′ − χūv̄′′ − χρ
2

3
ūv̄IV (14)

0 = v̄′′ + ū− v̄ (15)

Differentiation of (15) twice gives v̄′′ = ū′′+ v̄IV , which we substitute into equation
(14). After rearrangements we get

v̄IV =
D − χū
D + χū ρ2

3

ū′′

In the relevant region of parameter space for patterning, we have ū > D
χ

and hence

v̄IV > 0 , i.e. v̄ is a spike. Note also that the above converges to the minimal case
as ρ→ 0.
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Fig. 1 (M1) Numerical simulation of minimal model showing evolution of cell
density (solid line) and chemical concentrations (dash-dot line) to the steady state.
(M2)–(M8) Numerical results for the regularised models, showing steady state cell
distributions (solid line) at different values of the regularisation parameter. For
comparison, the steady state distribution of the minimal model is plotted as the
dash-dotted line.
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Fig. 1 (cont-d) The cell distributions marked with an asterisk have been classified
(numerically) as plateau type – all others are spikes. For all numerics, the same
model set-up is considered: parameters D and χ are set at 0.1 and 5.0 respectively;
initial conditions are set to be u(x, 0) = 1 and v(x, 0) = 1 + 0.1 exp(−10x2); 201
discretisation points are employed on a domain of length 1.
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Fig. 2 Numerical simulations of models (M1)–(M8) on a larger domain from
unbiased initial data. For all numerical simulations the following conditions are
employed: parameters D and χ are set at 0.1 and 2.0 respectively; initial data
u(x, 0) = 1 and v(x, 0) = 1.0 + r(x) where r(x) is a 1% random spatial perturba-
tion of the steady state; domain [0, 20] with 401 grid parameters.
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Fig. 3 (a) 2-D numerical simulations showing cell density distributions from mod-
els (M1)–(M8). For model (M1) and (M2b) the solution is shown just prior to
numerical blow-up. For models (M2a) and (M3)–(M8) the solution is shown fol-
lowing evolution to a steady state. (b) Evolution of the peak cell density on a
logarithmic scale from the numerical simulations plotted in (a). In all numerical
simulations the following conditions are employed: D = 0.1 and χ = 5.0; initial
data u(x, y, 0) = 1 and v(x, 0) = 1 + 0.1 exp(−10((x− 1)2 + (y − 1)2)) on the unit
square.
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Fig. 4 (a) Numerical simulation of the 2-D model for chemotaxis incorporating
receptor binding (with α = 0.5), volume-filling (γ = 10), non-linear diffusion (n =
1.0) and saturating chemical production (φ = 1.0). (b) As for (a), but with the
addition of logistic cell growth (r = 0.1). For both sets of numerics we let D = 0.1,
χ = 5.0 on a domain of size 20 × 20 with initial data u(x, y, 0) = 1 and v(x, y, 0) =
1.0+r(x, y), where r(x, y) is a 1% random spatial perturbation of the steady state.
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Fig. 5 Numerical simulation of the volume filling model (M4a) in 3D. Left hand
plots show cell density distribution at various “slices” through the 3D data, right
hand plots shows the contours for which u = 5. (a) Formation of a spherical ag-
gregation of cells from biased initial conditions, u(x, y, z, 0) = 1 and v(x, y, z, 0) =
1 + 0.1 exp(−10((x− 1)2 + (y − 1)2 + (z − 1)2)) on the 2× 2× 2-cube. (b) Pattern
formed from random initial data on a larger domain at t = 100.0. In both simu-
lations we set D = 0.1, χ = 5.0 and γ = 10 and employ 41 × 41 × 41 spatial grid
points.


