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Abstract 

The transition to a low-carbon society will completely change the structure of energy 
systems from a standalone hierarchical centralised vision to cooperative and dis-
tributed Multi-Energy Systems. The analysis of these complex systems requires the 
collaboration of researchers from different disciplines in the energy, ICT, social, eco-
nomic, and political sectors. Combining such disparate disciplines into a single tool 
for modeling and analyzing such a complex environment as a Multi-Energy System 
requires tremendous effort. Researchers have overcome this effort by using co-
simulation techniques that give the possibility of integrating existing domain-specific 
simulators in a single environment. Co-simulation frameworks, such as Mosaik and 
HELICS, have been developed to ease such integration. In this context, an additional 
challenge is the different temporal and spatial scales that are involved in the real world 
and that must be addressed during co-simulation. In particular, the huge number of 
heterogeneous actors populating the system makes it difficult to represent the system 
as a whole. In this paper, we propose a comparison of the scalability performance of 
two major co-simulation frameworks (i.e. HELICS and Mosaik) and a particular imple-
mentation of a well-known multi-agent systems library (i.e. AIOMAS). After describing a 
generic co-simulation framework infrastructure and its related challenges in managing 
a distributed co-simulation environment, the three selected frameworks are introduced 
and compared with each other to highlight their principal structure. Then, the scal-
ability problem of co-simulation frameworks is introduced presenting four benchmark 
configurations to test their ability to scale in terms of a number of running instances. 
To carry out this comparison, a simplified multi-model energy scenario was used as 
a common testing environment. This work helps to understand which of the three 
frameworks and four configurations to select depending on the scenario to analyse. 
Experimental results show that a Multi-processing configuration of HELICS reaches the 
best performance in terms of KPIs defined to assess the scalability among the co-simu-
lation frameworks.
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Introduction
According to the United Nations Habitat, cities consume about 78% of global energy 
demand and generate more than 60% of greenhouse gas emissions primarily through the 
consumption of fossil fuels for energy supply and transportation (United Nations 2022). 
To reach the ambitious goals of the Glasgow agreement (Authors 2021), a drastic reduc-
tion in carbon emission is needed. To achieve such a reduction, a transition from clas-
sic fossil fuels to Renewable Energy Sources (RES) as well as the adoption of integrated 
energy system components, such as micro co-generators, are required. This transition 
will completely change the structure of the energy systems from standalone hierarchical 
centralised energy systems to cooperative and distributed energy systems, the so-called 
Multi-Energy System (MES) vision. Such a transition can not be left to chance and the 
development of novel Information and Communication Technology (ICT) tools, plat-
forms, and frameworks for driving this transition are attracting a strong research effort 
from the scientific community. In the last decades, researchers have given a great effort 
in the development of domain-specific simulation tools designed to simulate with high 
efficiency and accuracy the behavior of a particular energy system aspect  (Ringkjøb 
et  al. 2018). In MES context, the simulation of different energy systems will require a 
broader vision and, consequently, a larger number of domains from different systems 
involved. According to “Smart Grid Architectural Model” (SGAM) (Bruinenberg et al. 
2012) and in particular to its extension “General-puprose Architectural Model for Multi 
Energy Systems” GAMES  (Barbierato et  al. 2020) in Fig.  1, domains represents the 
overall conversion chain of an energy carrier that are: (i) generation, (ii) transmission, 
(iii) distribution, (iv) Distributed Energy Resources (DER), and (v) customer premises. 
Moreover, the analysis of complex MES requires the collaboration of researchers from 

Fig. 1 General-purpose architectural model for MES engineering application (GAMES)
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different disciplines applying different perspectives in the energy, ICT, social, economic, 
and political sectors. Therefore, researchers exploit co-simulation frameworks that must 
address (i) different domains for each individual energy system, (ii) different energy sys-
tems together (e.g. power grid, district heating, gas grid), and (iii) different perspectives 
of the overall MES (e.g. ICT, energy, economic and social) (Schloegl et al. 2015)

Many works have focused on the co-simulation of smart grids by integrating simula-
tors of power grids with ICT communication aspects, so-called Cyber-Physical Energy 
System (CPES)  (Georg et  al. 2013; Garau et  al. 2018; Pan et  al. 2016; Barbierato et  al. 
2020). Co-simulation has been widely applied also to integrate several models in order 
to represent and describe the planning of new RES deployment  (Reinbold et  al. 2019; 
Steinbrink et al. 2019; Bottaccioli et al. 2017; Schiera et al. 2019) or to study the effects 
of novel control strategies to exploit energy flexibility for demand response applica-
tions  (Song et  al. 2017; Bhattarai et  al. 2016; Abgottspon et  al. 2018; Mazzarino et  al. 
2021). To ease the coupling of simulators, researchers have started defining standards for 
co-simulation, such as Functional Mock-up Interface (FMI) (Blochwitz et al. 2011), and 
co-simulation frameworks, such as Mosaik (Schütte et al. 2011) and HELICS (Palmintier 
et  al. 2017). In particular, Mosaik and HELICS are gaining much attention from the 
energy research community and were used by several research projects focused on MES. 
The coordination of domain-specific simulators through co-simulation frameworks can 
help the development of digital twin platforms for MES (Palensky et al. 2021) that can be 
used to plan and operate this transition. However, such platforms will require the abil-
ity of domain-specific simulation models and co-simulation frameworks to scale up as 
much as possible to best represent the complexity and interdependencies of very large 
real systems. For instance, scalability is essential when testing the impact on the power 
grid of an innovative heat pump technology on a realistic scenario of one million build-
ings with photovoltaic installations on the rooftops. The present work is indented to 
compare the effectiveness of the Mosaik and HELICS co-simulation frameworks and the 
AIOMAS Multi-Agent System (MAS) library (Scherfke 2014) in scaling up the number 
of entities in a co-simulation environment, evaluating different possible configurations 
of their usage for parallelizing a simple Python simulator. The choice of these technolo-
gies depends mainly on their dominant role in energy sectors among other solutions and 
their ease of use. In fact, Mosaik and HELICS are popular co-simulation frameworks in 
the literature for Smart grids (Mihal et al. 2022) and unlike the other solutions they are 
also thought to be extended to MES or general purpose applications [e.g.  (Widl et  al. 
2022; Sergi and Pambour 2022)]. To the best of our knowledge, this is the first work that 
tries to benchmark these two co-simulation frameworks (i.e. HELICS and Mosaik) with 
respect to their scalability performance.

Moreover, this study includes a particular implementation of AIOMAS as a viable 
alternative to build a co-simulation framework. The choice to include AIOMAS in this 
study follows the recent trends of coupling co-simulation and MAS concepts  (Jung et al. 
2018; Paris et al. 2017; Motie et al. 2018; Camus et al. 2016). In particular, from our find-
ings, AIOMAS is the only well-documented and easy-to-use Python library that ena-
bles the deployment of MAS with powerful capabilities regarding agent distribution and 
communication infrastructure. AIOMAS incorporates different abstraction layers that 
ensure a proper Time Regulation, Synchronization, and Data Exchange Management of 
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the MAS setup. These additional layers are very powerful and allow the proposed paral-
lelism between MAS and Co-simulation Framework application. Steinbrink et al. (2018) 
present a comparison between Mosaik and implementation of the IEEE 1516 High-Level 
Architecture (HLA), which is similar to HELICS implementation. In particular, the 
objective was to provide researchers with guidelines to assess which of the two imple-
mentation suits their needs. They compared both the framework architectural concepts 
and the accuracy results from a Smart Grid co-simulation study over a representative 
power system scenario. The authors conclude that implementing benchmarks and deriv-
ing a comparative performance analysis of the co-simulation frameworks is worth inves-
tigating for future works. In fact, our study fulfills this gap focusing in particular on the 
scalability aspect of the three above-mentioned frameworks.

The rest of the paper is organised as follows: “Enabling technologies for co-simulation 
environments” section presents Mosaik and HELICS co-simulation frameworks and the 
AIOMAS implementation; “Methodology for benchmarking design” section better dis-
cusses the problem of scalability, presenting the different co-simulation framework con-
figurations, and the bench-marking metrics; “Setup of co-simulation scenario” section 
presents the simulators involved in the MES scenario to the purpose of the scalability 
benchmarking; “Experimental results” section instead presents the experimental results 
of the benchmark and a qualitative comparison of the analysed frameworks in imple-
menting a co-simulation scenario; finally, “Conclusion” section provides our concluding 
remarks.

Enabling technologies for co‑simulation environments
The co-simulation approach is effective when dealing with multi-domain complex sys-
tems in which analytical assessment is no longer feasible considering their complexity. 
Co-simulation is often related to Cyber-Physical Systems (CPS)  (Palensky et  al. 2017) 
and, in particular, Cyber-Physical Energy Systems (CPES) (Zhang et al. 2020), of which 
the most prominent example can be found in the Smart Grid concept. General notions 
about co-simulation are thoroughly reported in Gomes et al. (2018) and Schweiger et al. 
(2019). In these literature definitions, co-simulation allows integrating together hetero-
geneous domain-specific Simulators creating a shared simulation environment. There-
fore, this paradigm allows decomposing a complex system in a System-of-System (SoS) 
structure by applying system engineering. Each of the identified sub-systems deals with 
a well-defined problem while interacting with each other. From this perspective rises our 
parallelism with MAS. In literature, some integration of MAS simulators in Co-simu-
lation frameworks can be found, but by abstracting a little more the concept of MAS it 
is possible to see a co-simulation framework as a system in which really complex and 
different agents (e.g. the simulators) interact among each other. Agents are thought of 
as software components that perform computations and virtually mimic the actions 
and interactions of real-world systems. Usually MAS agents are considered intelligent 
components, but abstracting from this definition the main characteristics are autonomy, 
responsiveness and proactivity  (Coelho et  al. 2017). These characteristics, despite the 
level of human-like intelligence, could be applied to the subsystems operating in com-
plex macro-system environments, such as Smart Grids or MESs.
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Besides the different co-simulation frameworks such as Mosaik and HELICS, which 
have different functions and implementations, a shared general architecture can be 
highlighted.

The main components required to build a co-simulation framework are depicted in 
Fig. 2a: (i) the Scenario, (ii) the Orchestrator, (iii) the Simulator, and (iv) the Model 
Instance. This figure offers a general overview of the interacting components in a 
co-simulation framework, while Fig. 2b–d represent the specific implementations of 
these components inside the three main framework analysed: Mosaik, HELICS and 
AIOMAS.

The Scenario is a representation of the simulated environment that contains the 
formal knowledge of the entire CPES. It is not an actual physical component of the 
co-simulation framework. In fact, it represents the configuration offered by the co-
simulation framework that manages the startup of the Orchestrator, the initialization 
of the Simulators, and states the relationships that occur between Model Instances. 
The Orchestrator is the main component of a co-simulation framework and manages 
the exchange of data from the Simulators and their time regulation and synchroni-
zation. Simulators instead contain a specific Model Instance class and have different 
functionalities (e.g. solvers) to perform their domain-specific computations. Simula-
tors instantiate their Models multiple times and govern the resulting collection by 
acting as a communication adapter with the Orchestrator. In fact, Simulators trans-
mit inputs received by their peers via the Orchestrator and the Orchestrator com-
mands to their Model Instance collection. In return, Simulators receive outputs from 
Model Instances that are sent to the Orchestrator. Finally, Model Instances are repre-
sentations of multiple homogeneous physical entities. They contain a physical model 

Fig. 2 Component relational schema of a general co-simulation framework (a) and its declination for Mosaik 
(b), HELICS (c), and AIOMAS (d)
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that could belong to different mathematical types, ranging from pure algebraic equa-
tions to differential equations, as well as finite element methods or behavioural mod-
els (Palensky et al. 2017).

In addition, the arrangement of the components addresses three main tasks, which 
are (i) the Initialization, (ii) the Time Regulation and Synchronization, and (iii) the Data 
Exchange Management. The Initialization task is performed by the Scenario that initi-
ates the Simulators with the proper parameters setting (e.g. time step duration and start 
date) and communicates the number of Model Instances that compose their collection. 
The Initialization process finally sets up the co-simulation environment by establishing 
all the relationships and connections among Model Instances of all Simulators involved 
in the co-simulation environment. The Time Regulation and Synchronization task 
instead manages and regulates the time step progression of each individual Simulator. 
In fact, co-simulation can be classified according to its time regulation paradigms (Sch-
weiger et  al. 2019), which are: (i) Discrete Event (DE) or event-based regulation, and 
(ii) Continuous Time (CT) or time-stepped regulation. The DE paradigm proceeds in 
time by exploiting events that trigger an evolution of the dynamics of the co-simulated 
environment. Thus, Model Instances communicate via Simulators with each other using 
events that might change their internal state or trigger other events. Conversely, the 
CT paradigm determines the evolution of the time step with a constant time interval in 
which the Simulators evolve their internal states by exchanging inputs and forwarding 
outputs at the end of each time step. Some co-simulation frameworks are able to handle 
both paradigms, resulting in a hybrid regulation paradigm. This case requires a complex 
time regulation algorithm where the synchronization task becomes even more critical. 
Finally, the Data Exchange Management task handles the communication among Model 
Instances, Simulators, and the Orchestrator by implementing telecommunication pro-
tocols that are usually the most effective solution for this task. In data exchange man-
agement, the main issue is related to the communication latency that usually affects 
telecommunication protocols. More specifically, communication latency in co-simula-
tion frameworks refers to the amount of time elapsed from the forwarding of the out-
put variables of one Model Instance to the reception of the variable as input by another 
Model Instance. Large latency can compromise the overall co-simulation environment 
when dealing with strict time constraints of a particular Simulator that could internally 
trigger a time step overflow. In conclusion, the Initialization, Time Regulation and Syn-
chronization, and Data Exchange Management represent the most important challenges 
in ensuring a reliable, accurate, and stable co-simulation framework.

As previously mentioned the MAS concept could be studied along with co-simulation, 
indeed we have exploited AIOMAS as follows:

(a) we have used AIOMAS as a modelling library for a MAS simulator that has 
been integrated into a co-simulation framework. In this case, the co-simulation 
framework (whichever it is) encapsulates a MAS simulator. We will refer to this con-
cept as ’MAS as a simulator’. (b) We have also used AIOMAS as a tool to build up a 
co-simulation framework in which the integration of simulators is done through the 
agent concept. In particular, agents (understood as intelligent entities that commu-
nicate with each other and the environment) are designed as wrappers for real exter-
nal simulators (e.g., building thermal simulators, photovoltaic panel simulator). In 
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this way, the replication of simulators is done through the spreading and spawning of 
agents. We will refer to this case as ’MAS as co-simulation’. This type of architecture 
reflects the possibility of decoupling the agent envelope from the simulator, i.e. the 
intelligence (e.g., control algorithm, management system) and the physical model 
respectively. The agent could model explicitly any intelligent control and encapsu-
late an interchangeable physical simulator (which models the physical behaviour as 
it is) on which to test intelligent strategies. Indeed, several studies implement co-
simulation alike environments exploiting MAS tools (Pipattanasomporn et al. 2009; 
Roche et al. 2010; Mazzarino et al. 2021; Nunna and Doolla 2012; Jung et al. 2018). 
The concept of Agents in MAS applications can easily comply with the definition of 
SoS covering the needs of a co-simulation framework and, in particular, its required 
components.

The aim of this paper is the scalability analysis of Mosaik and HELICS, two of the 
most widely adopted co-simulation frameworks in literature. The analysis is per-
formed by applying a comprehensive benchmark of the possible configurations that 
each framework could implement. In addition, a similar benchmark is introduced 
for the integration of the AIOMAS library, presenting both MAS as a simulator and 
MAS as a co-simulation framework [as in Mazzarino et al. (2021)]. In the following 
sections, the details and peculiarities of these three frameworks are addressed.

Mosaik

Mosaik is a Python co-simulation framework developed to couple existing Simula-
tors in the Smart Grid field. Its general architecture does not preclude other domain 
applications. Mosaik provides different Application Program Interfaces (APIs) and 
components for the main functionalities of a co-simulation framework. Firstly, the 
Python Scenario API allows creating a Python script Scenario in which instantiates 
and establishes input/output relationships between Model Instances and Simula-
tors. The High-level Simulators API instead provides an abstract class with commu-
nication, time regulation, and synchronization features already implemented. They 
are language agnostic, thus allowing the integration of different programming lan-
guages (i.e. Python, C++, and JAVA) and Simulator software (e.g. MATLAB). The 
Low-level API instead offers the possibility to establish a plain network socket for 
exchanging serialized JSON data to extend Mosaik Simulators integration capabili-
ties. The implementation of this API requires a meta description of the Simulator 
that states its parameters and the exchanged variables.

Figure 2b depicts the relational entities in Mosaik architecture. The Orchestrator 
role is fulfilled by two components: the SimManager and the Scheduler. These two 
components respectively share the tasks of Data Exchange Management and Time 
Regulation and Synchronization. The SimManager starts the Simulators that gov-
ern their Model Instance collection and, subsequently, handles their data exchange. 
Mosaik manages multiple Simulators that can create Model Instance collection by 
instantiating their Models. The Scheduler instead synchronizes the Simulators time 
regulation and could manage both CT and DE paradigms (only in Mosaik version 3.0 
which has integrated the support to DE and allows specification of simulators type).
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HELICS

Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) is a co-
simulation framework based on IEEE High-Level Architecture (HLA) standards  (IEEE 
Standard for Modeling and Simulation 2010a, b). It integrates Simulators from different 
programming languages (i.e. Python, C++, JAVA, Nim) and simulation software (e.g. 
MATLAB) in a scalable and distributed environment.

The HELICS architecture and its relational entities are presented in Fig. 2c. The Sce-
nario in this framework consists of a JSON configuration file in which all the necessary 
links and parameters for the instances are made explicit. HELICS introduces a differ-
ent terminology with respect to Fig. 2a. It retains the concept of Simulators, which in 
this case, are generic executables that can instantiate a multitude of Federates. Federates 
represent specific entities defined in the Scenario that executes their respective physi-
cal models. HELICS architecture is distributed so each Federate can communicate with 
others through a publish/subscribe approach (Eugster et al. 2003) via Cores. Cores are 
components embedded in Simulators that allow their Federates to join Federations and 
enable communication with the HELICS architecture. The Data Exchange Manage-
ment task among Federation is guaranteed by the Broker component that coordinates 
the exchange among different Federations. A Broker could also communicate with other 
Brokers, and consequently with other Federations, enabling the possibility of deploying 
a hierarchical architecture. Finally, the Orchestrator is managed by the Run-Time Infra-
structure (RTI), a component inherited by HLA standard, to ensure a proper Time Regu-
lation and Synchronization of the overall co-simulation environment in both CT and DE 
paradigms.

AIOMAS

AIOMAS is a Python library to implement MAS. It has been chosen to present paral-
lelism between MAS and co-simulation frameworks. At an higher level of abstraction, 
AIOMAS provides four main classes: (i) the Container, (ii) the Agent , (iii) the Remote 
Procedure Call (RPC) along with the Clock and (iv) the Object Oriented Programming 
(OOP) Scenario.

Figure 2d shows AIOMAS relational entities following the generic co-simulation infra-
structure described above. The OOP Scenario component in this configuration does 
not have a specific implementation. In fact, its design and development are completely 
up to the end user who can decide to create a specific general Python script or distrib-
ute Agents linking inside their Python classes (i.e. OOP Scenario). The tasks required 
to establish the co-simulated environment are similar to the aforementioned frame-
works and are: (i) the Container creation, (ii) the Agent collection generation, (iii) and 
the distributed orchestration infrastructure start-up (i.e. Clocks/RPC). Agents incor-
porate specific models of the physical entities they describe and execute their behav-
iour. Containers, on the other hand, host Agents and communicate with them via RPC 
servers that handle the Data Exchange Management task. In a Container, Agents imple-
ment RPC clients that manage remote communication, using the Container as a gate-
way to reach Agents that belong to other Containers. Each Container implements the 
task of Time Regulation and Synchronization through the implementation of a shared 
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distributed Clock. The time evolution of the co-simulation environments could follow 
the CT or DE paradigms, depending on the user’s implementation choice. This peculi-
arity addresses one of the main challenges of co-simulation, which is the complex time 
regulation when it comes to hybrid simulation; with AIOMAS, it is possible to distribute 
the time regulation and customize it at the expense of more implementation effort.

Methodology for benchmarking design
The most complicated and debated issue in co-simulation applications is scalability 
which is defined as the property of a co-simulation framework to handle an increasing 
amount of heterogeneous Simulators and their model instances, considering the com-
posite relationships that interconnect them together to run a large-scale complex sys-
tem, such as a Multi-Energy System (MES). From an Information and Communication 
Technology (ICT) perspective, scalability is measured typically with three indicators 
known as scalability dimensions: (i) size, (ii) geographical, and (iii) administrative scala-
bility. Size scalability represents the issues in growing the dimension of the co-simulated 
system and what are the possible solutions to manage the high number of Simulators 
and Model Instances to run a huge complex Scenario and its orchestration. Geographi-
cal scalability, on the other hand, is the representation of the complexity of managing 
an increasing number of geographically distributed computational nodes (e.g., different 
laboratories) to implement a co-simulation Scenario. Finally, administrative scalability 
represents the difficulties in managing a co-simulation framework when dealing with 
increasing both previous scalability dimensions, thus the engineering effort required 
to avoid the complex setup of the co-simulation framework, the orchestrator, and the 
distribution of Simulators and their Model Instances among network nodes, and their 
interconnections.

Fig. 3 Vertical and horizontal scaling
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The two main scaling directions of a co-simulation framework are (i) vertical scaling 
and (ii) horizontal scaling, as illustrated in Fig. 3. Vertical scaling takes advantage of 
the parallel capabilities of a single node to distribute the co-simulated Scenario across 
multiple processes, each of which runs a certain Simulator. Depending on the Simula-
tors, their Model Instances, and their relationships defined by the Scenario, vertical 
scaling could be applied with different methods and strategies. It is worth noting that 
this scaling direction commonly results in limited scaling of the size of the complex 
system. Conversely, horizontal scaling exploits the distribution of the co-simulation 
Scenario over multiple network nodes, joining them by means of telecommunication 
protocols. In this view, different Simulators are distributed over different network 
nodes that manage their Model Instances. Also, in this case, there are different solu-
tions depending on the relationships between the Model Instances of each involved 
Simulator. This approach requires a distributed co-simulation Orchestrator that can 
act as a load balancer that distributes tasks and manages data exchange and synchro-
nization of all working nodes. The above two directions of scalability are not mutu-
ally exclusive and, instead, are typically used in a jointed configuration to improve the 
scalability of a co-simulation framework. Merging Vertical and Horizontal scalability 
is an advantage when dealing with particular simulation software and/or hardware 
needed to simulate a specific component of a complex system. For instance, a Digital 
Real-Time Simulator (DRTS) is required in some specific MES Scenarios to perform 
an Electromagnetic Transient (EMT) analysis of a power grid (Barbierato et al. 2022). 
This particular hardware acts as a vertical scaling component of the jointed scaling 
vision to enable fast real-time simulation of the power grid model. Then, the DRTS 
will be interconnected with a distributed co-simulation environment running other 
MES models. This distributed configuration participates in the hybrid scaling vision 
of implementing horizontal scaling.

Fig. 4 The proposed co-simulation benchmark configurations: (a) Classic Co-simulation, (b) Multi-process 
Co-simulation, (c) Multi-Agent System as Co-simulation framework, and (d) Classic Co-simulation 
configuration with encapsulated multi-process Multi-Agent System
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For the purpose of evaluating the scalability of the co-simulation frameworks pre-
sented in “Enabling technologies for co-simulation environments” section, a hybrid scal-
ing approach has been chosen among the three possible options to assess what could be 
the impact of scaling up and scaling out a generic MES Scenario on a distributed cluster 
of nodes. The benchmark configurations in Fig. 4 are described in the following.

(a) The Classic Co-simulation configuration (see Fig. 4a) is the common configuration 
of co-simulation frameworks (i.e. Mosaik and HELICS) where Simulators are run by dif-
ferent cluster nodes handled by the Orchestrator master node that manages their data 
exchange and synchronization. Each Simulator node manages iteratively its M Model 
Instances in a single process. By implementing a distributed deployment of Simulator, 
this configuration will enhance the simulation capabilities with respect to standalone 
simulation. However, performances are expected to be low because each cluster node 
runs the assigned simulator and its instances in a single iterative process. It is worth 
noting the significant impact of the information exchange among Simulators and the 
Orchestrator.

(b) The Multi-process Co-simulation configuration (see Fig. 4b) evolves the classic con-
figuration by enabling a multi-process division of a Simulator node (e.g. Simulator A), 
replicating it in N Simulator processes (e.g. Simulator A1, ...,AN ). Considering M Model 
Instances, each Simulator process manages M/N Model Instances. With respect to Clas-
sic Co-simulation configuration, it enables a multi-process execution of the assigned 
simulator and its instances for each cluster node. This configuration considerably raises 
the performance of each simulator time step execution. However, the setup of the multi-
process execution may take longer and could be a drawback that reduces the configura-
tion performances. The information exchange among Simulators and the Orchestrator 
instead is identical to the previous configuration.

(c) The Multi-Agent System as Co-simulation configuration (see Fig. 4c) is the typical 
configuration of the AIOMAS framework in which agents are represented as simula-
tors. When dealing with a small number of Agents, AIOMAS exploits the Main Con-
tainer for each Agent class that is spread on one of the available cluster nodes. Each 
Main Container manages (i) the data exchange with its fellow and its Agents through the 
RPC protocol and (ii) the distributed synchronization through its internal Clock. Like-
wise Model Instances, Agents (Simulators) are replicated in a single process by apply-
ing a concurrent multi-threading. When dealing with a high number M of Agents, a 
Main Container (e.g. Main Container A) could delegate to N spawned Containers (e.g. 
Container A1, ...,AN ) the Agent management, resulting in M/N Agents assigned to each 
child Container. This configuration avoids the required information exchange for Time 
Regulation, Synchronization, and Data Exchange Management of the Classic and Multi-
process Configurations. In fact, the Time Synchronization and Regulation is distributed 
among the Main Container via the Clock/RPC. Moreover, each Agent directly commu-
nicates its output (i.e. events) with other Agents interested in receiving it. This approach 
enhances the performances with respect to having a centralized Data Exchange Manage-
ment with an Orchestrator. The drawback of this configuration is related to the setup of 
the N spawned Containers when dealing with a high number of Agents.

(d) The Classic Co-simulation configuration with encapsulated multi-process Multi-
Agent Systems (see Fig. 4d) manages a hybrid configuration of the Classic Co-simulation 
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configuration where each Simulator is a MAS simulator. They are built with AIOMAS 
Main Containers that spawn N child Container in different sub-processes. Each of the 
child Containers manages M/N Agents, enhancing the scalability of a Classic Co-simu-
lation configuration by integrating MAS simulators that manage several physical entities 
exploiting multi-process and multi-threading AIOMAS capabilities. This configuration 
exploits the capabilities of spawning Containers of the Multi-Agent System as Co-sim-
ulation configuration without incurring typical drawbacks of the Multi-Process Co-
simulation configuration, raising the performance of this configuration. However, this 
configuration could suffer from the typical information exchange drawback of the Clas-
sic Co-simulation configuration due to the central Data Exchange Management of the 
Orchestrator.

Benchmark key performance index (KPI)

The KPI is defined over a time interval of the main contributions that compose the Total 
Execution Time of a co-simulated Scenario. These processes are depicted in Fig. 5 and 
are: (i) the Scenario Setup Process, in which the co-simulation framework starts the 
Orchestrator, initializes Simulators with their Model Instances, and, finally, links all the 
Model Instances to deploy the co-simulated Scenario; (ii) the Co-simulation Process that 
is an iterative process in which the co-simulated Scenario evolves its state each Time 
Step (i.e. its fundamental unit); (iii) the Termination Process in which the co-simulation 
framework stops the Orchestrator, releases Model Instances and terminates Simulators 
execution. Each Time Step is a complex routine in which each Simulator retrieves the 
input dependencies for its Model Instance collection, iteratively executes each Model 
Instance calculation updating its state, and, finally, collects Model Instance collection 
outputs to forward them to other Simulators. Simulators operate in parallel as depicted 

Fig. 5 Decomposition of the Total Execution Time in its main contribution: (i) the Scenario Setup, (ii) the 
Co-simulation, and (iii) the Termination Processes. The former Co-simulation Process could be decomposed 
into its main time interval units, the Time Steps
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in Fig. 5 where the execution of the four Simulators is highlighted for the Time-Step 4. 
This parallel execution impacts the accuracy of the co-simulated solution with a finite 
time step latency related to Simulator input/output dependencies that causes negligi-
ble inaccuracies of the solution with respect to a standalone simulation  (Steinbrink 
et al. 2018). Each Time Step duration could vary depending on the input/output Data 
Exchange Management, the communication latencies, and from the particular computa-
tional condition of each cluster node.

Three main time-based KPIs have been employed to evaluate the scalability of each 
benchmark configuration and its Scenario implementation:

• the Setup Execution Time which is the time interval in which the co-simulation 
framework executes the Scenario operations;

• the Average Time Step Duration µT that is estimated as the maximum of the means 
of the time duration T of the S co-simulative time steps of each Simulator Simi 
involved in the co-simulation environment I; 

• the Total Execution Time that includes all the contributions of the Scenario Setup, 
the Co-simulation, and the Termination Processes.

The main objective of this paper is to understand which of the proposed benchmark 
setups performs better in terms of simulation time when it comes to increase the size 
of the simulated environment. The chosen KPIs are general and reflect the main simu-
lation times, so they are useful for making comparisons on the scalability of different 
frameworks.

Setup of co‑simulation scenario
In order to test the benchmark presented in “Methodology for benchmarking design” 
section, a common realistic scenario has been prepared. The chosen simulators and 
related physical models are heterogeneous ranging from very simple to more complex. 
Only the simplest interactions and data exchanges have been included (same time loop, 
feedback exchanges, or control actions have been excluded) in order to keep the simula-
tion workflow as simple and linear as possible. The motivation behind this choice is to 
be able to fully relate simulation time performances to the increase of running instances, 
ignoring any other possible slowing down aspect.

A high-level representation of the multi-model energetic scenario is presented in 
Fig. 6, while Fig. 7 depicts the declination of the benchmark setup to the specific case 
study. The energetic Scenario includes four typical actors of a networked urban envi-
ronment. The four Simulators (or Containers in the AIOMAS perspective) are: (i) the 
Meteo Simulator, (ii) the PV Simulator, (iii) the Building Simulator, and (iv) the Power 
Grid Simulator. Furthermore, still looking at Fig. 6 the simple input/output interactions 
between Simulators are presented. Specifically, both the PV and the Building Simula-
tors take weather data from the Meteo Simulator as inputs to perform their calculations. 
Their outputs are sent to the Power Grid Simulator which uses them to calculate the 
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power flow of the power grid. The time resolution of the simulators is configurable and 
could differ from one simulator to another. All of these simulators have really short wall-
clock times for executing a single step thus the simulation time-step could range from 
seconds to hours. Nevertheless, the time resolution choice must take into consideration 
the physical significance and constraints of the involved model, so for the Building simu-
lators, the chosen simulation time-step was 1 h. In contrast, mainly to show the possibil-
ity of mismatched time resolution, photovoltaic simulators update their state every 15 
min. Each Simulator is presented in the following sections.

Fig. 6 Simulator of the analyzed physical MES Scenario

Fig. 7 Different implementations of the co-simulation framework benchmark configurations: (a) Classic 
Co-simulation, (b) Multi-process co-simulation, (c) MAS as co-simulation, and (d) Classic Co-simulation with 
encapsulated MAS
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The meteo simulator

The Meteo Simulator is a stateless Simulator and acts as a weather file reader (.epw for-
mat), obtaining measurements about the weather (i.e. temperature, solar irradiance, and 
humidity) for each simulation time step. It forwards these outputs to both PV and Build-
ing Simulators.

The PV simulator

The PV Simulator is a stateless Simulator that uses the estimate PV energy service of the 
model in Bottaccioli et al. (2017). It estimates the hourly energy production of PV solar 
panels for each simulation time step. The given model receives weather conditions and 
information about the surface area of each panel and uses them to perform its calcula-
tions. It also estimates the cell temperature using the so-called NOCT method (Brihmat 
and Mekhtoub 2014) when wind speed is not available as input and, on the other hand, it 
uses the Mattei method (Mattei et al. 2006) when wind speed is available. The output of 
this simulator is the generating power for the given time step, which is forwarded to the 
Power Grid Simulator.

The building simulator

The building simulator is a stateful Simulator that exploits the model presented in Maz-
zarino et al. (2021) to simulate a building equipped with a heat pump system. Within the 
model, the thermal behaviour of the envelope is treated with a Resistance-Capacitance 
model (Massano et al. 2019) and a fine-grained model of the heat pump with all subsys-
tems (e.g., emission, distribution, and generation) is provided. The model calculates the 
hourly heating demand of the building considering also the heat contributions gener-
ated from human occupancy and appliances through archetypes patterns. The heat load 
is then converted to the heat pump power request. To conclude, the former model has 
four main functionalities that calculate: (i) the real-time heat pump power demand, (ii) 
the heat pump power demand forecasting, (iii) the heat pump energy flexibility, and (iv) 
the actuation commands of the heat pump control strategy. The proposed Scenario only 
uses the heat pump’s real-time power demand as output for the Power Grid Simulator. 
The Building Simulator is stateful because it keeps track of the previous indoor air tem-
perature condition when calculating the heat pump demand for a new time step. The 
inputs for this simulator are the weather information sent by the Meteo Simulator, while 
the output is the heat-pump demand load for the given time step, which is forwarded to 
the Power Grid Simulator.

The power grid simulator

The power grid simulator is a stateless Simulator that emulates a power grid model with 
different connected loads. The power grid is based on the model presented in Esteb-
sari et al. (2021) and takes advantage of the Python electrical system analysis tool pan-
dapower  (Thurner et  al. 2018). This model contains a representation of the network 
topology and its main components (e.g. buses, lines, transformers) along with their 
nominal parameters. It is easily configurable and allows the integration of loads, genera-
tors, and storage. This Simulator collects the hourly data coming from the PV Simulator 
and the Building Simulator (i.e. the PV power generation and the Building power load) 
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to solve the power flow analysis of the grid network. In this simulation, it is actually used 
as a discrete event simulator that is triggered by the reception of both building and PV 
data.

Benchmark configuration

The benchmark design will consider the general Scenario depicted above. The scalabil-
ity problem is addressed by rising up the M number of Model Instances (i.e. Agents for 
AIOMAS framework) of the PV and Building Simulators. The benchmark will run on an 
Internet distributed computing system, which is composed by a cluster of 4 nodes with a 
master node serving as Orchestrator when needed. The implementations of the Scenario 
for each configuration and its cluster deployment are described in Fig. 7 and are:

(a) The Classic Co-simulation implementation (see Fig. 7a) that uses the master node 
as Orchestrator and the four cluster nodes, one for each of the above-mentioned Simula-
tors. Two cluster nodes manage respectively the Meteo Simulator and the Power Grid 
Simulator, each one handling its single Model Instance. The remaining nodes manage 
respectively the PV Simulator and the Building Simulator. Finally, each Simulator itera-
tively runs M Model Instances in its process;

(b) The Multi-process Co-simulation implementation (see Fig. 7b) that uses the same 
implementation of the previous case (a). However, the cluster nodes, assigned to PV and 
Building Simulators, replicate on N processes each individual Simulator, equally distrib-
uting in each process the M Model Instances. For instance, each of the PV Simulator 
processes A1, ...,AN manages M/N Model Instances;

(c) The Multi-Agent System as co-simulation implementation (see Fig. 7c) that uses the 
four cluster nodes without the master node. Two cluster nodes implement a simple Con-
tainer structure that handles respectively the Meteo Agent and the Power Grid Agent. 
The other two cluster nodes manage respectively the Main PV Container and Main 
Building Container, each one handling M Agents. Each Main Container spawns N child 
Containers that handle M/N Agents. For instance, the Main PV Container spawns child 
Containers A1, ...,AN each one managing M/N equally distributed Agents;

(d) The Classic Co-simulation implementation with encapsulated Multi-Process Multi-
Agent Systems (see Fig. 7d) that uses the same implementation of the Classic Co-simula-
tion case. However, the PV and Building Simulators processes on the two cluster nodes 
encapsulate the Main Container class that manages the spawning of N child Containers 
in different sub-processes. Each of the child Container manages M/N Agents like in the 
Classic Multi-Agent System implementation of Main PV/Building Containers;

Finally, the analysis was conducted on seven different co-simulation configurations. 
For each configuration, the M number of Model Instances (PVs and buildings) was 
scaled from 1, 100, 10k, 100k, to 1M with the exception of configurations involving 
Mosaik. In fact, Mosaik has a design limitation on the maximum size of data exchanged 
that did not allow scaling beyond 10k of Model Instances. It is correct to point out that 
this limitation could be overcome by applying some modifications to the inner SimPy 
(python library) methods used in the Mosaik source code. However, since these modifi-
cations are not user-friendly and are not included in Mosaik’s API implementation, this 
framework was used as is, with this scaling limitation. The proposed configurations are: 
(i) two configurations of the Classic Co-simulation (Fig. 7a) for HELICS and Mosaik; (ii) 
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two configurations of the Multi-process Co-simulation (Figure  7b) for HELICS multi-
process and Mosaik multi-process; (iii) one configuration of MAS as a Co-simulation 
framework (Fig. 7c) for AIOMAS; (iv) two configurations of the Classic Co-simulation 
with encapsulated MAS (Fig. 7d) for HELICS-AIOMAS and Mosaik-AIOMAS. To con-
clude and easily interpret the analysis of experimental results, in the next section, a sum-
mary of all the tested configurations is presented in Table 1.

Experimental results
The co-simulation benchmark has been deployed in a Virtual Machines environment 
based upon OpenStack cluster with the specification illustrated in Table 2.

To test the scalability of the different implementations presented in Fig. 7, the Multi-
model energetic Scenario has been used as a baseline for the seven proposed configu-
rations in “Benchmark configuration” section. The co-simulated environment has been 
run for seven winter days with configurable time resolutions for each simulator (1 h for 
buildings and power grid, 15 min for PVs and meteo). Model Instances of Building and 
PV Simulators were scaled up. In the next sections, the time-based KPIs mentioned in 
“Benchmark key performance index (KPI)” section are presented to evaluate the com-
parison among the different co-simulation framework configurations.

Setup execution time

The setup execution time considers the time duration of the Scenario configuration 
operations. In a nutshell, these operations are related to the Initialization task of a gen-
eral co-simulation framework. In Fig. 8, the setup execution time performances of the 
different configurations are presented. Classic Mosaik keeps the setup time nearly con-
stant around 7s but it cannot handle more than 10k instances due to its design limita-
tions. This result highlights that Classic Mosaik is a really well-designed and efficient 

Table 1 Summary of the tested configurations

Tested configurations description

Mosaik Classic Mosaik

HELICS Classic HELICS

AIOMAS Co-simulation framework implemented through AIOMAS library

Mosaik multi-process Mosaik implementation parallelized through multiprocessing

HELICS multi-process HELICS implementation parallelized through multiprocessing

Mosaik-AIOMAS Mosaik co-simulation with encapsulated MAS simulator (AIOMAS)

HELICS-AIOMAS HELICS co-simulation with encapsulated MAS simulator (AIOMAS)

Table 2 Summary of the computational nodes used in the simulations

Node name Core RAM Storage OS Role

Cloud Master 16 64 Gb 128 Gb Ubuntu server 20.04.2 LTS Orchestrator (when needed)

Cloud 1 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Building Simulators

Cloud 2 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS PV Simulators

Cloud 3 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Meteo Simulator

Cloud 4 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Power Grid Simulator
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framework when dealing with limited-size co-simulation environments. Mosaik multi-
process instead presents the most time-consuming initialization phase among the 
benchmarked frameworks. In fact, Mosaik multi-process experiences a big setup time 
duration difference when rising from 1 instance (i.e. 1 process) to 100 instances (i.e. mul-
tiple processes), going from around 6s to 62s. Then, the trend flattens out because the 
same number of parallel processes have been launched. In this graph HELICS, HELICS 
multi-process, and HELICS-AIOMAS do not differ much in performance, but an inter-
esting aspect of multi-process HELICS is that it slightly reduces its computation time 
when going from 100 to 10k model instances, saturating the available cores. Classic 
HELICS suffers a drastic increase in the setup time from around 7s to 66s only when the 
instance number passes from 100k to 1M. The best performing configuration is HELICS 
multi-process framework which is stable at around 5s from 1 to 100k instances. It is 
worth noting that this framework drastically reduces the time increase of classic HELICS 
when going from 100k to 1M instances by distributing the computational power for any 
Simulator over multiple cores, resulting in a setup time of 19s. For the Mosaik-AIOMAS 
framework, results are similar to the Mosaik multi-process framework with the main 
difference that the major time increment occurs when going from 10s for 100 instances 
to 61s for 10k instances. This is due to the threshold used to decide when AIOMAS 
starts the creation of the multi-process containers. In our case, this threshold is above 
100 Model instances. This behaviour does not occur when coupling HELICS and AIO-
MAS because launching multi-processes and container creation is handled by HELICS 
with less computational overhead, following the same HELICS multi-process trend.

Average time step duration

The average time step duration reports the execution time of a complete time step that 
is estimated as the maximum among the mean time step duration of every single Sim-
ulator. Figure  9 reports this KPI for all the benchmarked co-simulation frameworks. 
The average time step duration differences among the co-simulation frameworks are 
really small up to 10k instances, except for Mosaik-AIOMAS and AIOMAS due to the 
overhead introduced by the message exchange between Agents. Indeed, Mosaik-AIO-
MAS takes 0.78s at 10k instances and AIOMAS takes 0.76s, while all the others take 
around 0.1s. As already mentioned, a comparison with Mosaik is only possible below 
10k Model Instances. Up to this point, the benefits of a multi-processing approach are 

Fig. 8 Setup time duration of the different co-simulation frameworks and their configurations
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not significant compared to the respective classic solutions. The limitations of both clas-
sic and the AIOMAS frameworks are clearly visible when dealing with more than 10k 
Model Instances. In fact, classic HELICS takes about 16 times longer than its multi-pro-
cess version with 1M Model Instances. Instead, solutions incorporating AIOMAS even 
though they perform better than pure HELICS are outperformed by HELICS multi-pro-
cess. Overall, the configuration with multi-process HELICS performs the best, particu-
larly with paramount performance on the largest scaling Scenario.

Total execution time

Total execution time represents the time duration of the entire co-simulation process 
from Initialization to the end of all the tasks. Figure  10 presents trend similarities 
with the average time step duration KPI in Fig. 9.

In fact, this KPI is a composition of the setup execution time and the sum of the 
duration of the time steps required to fulfil the co-simulation of the Scenario. When 
dealing with short simulations, the effect of the setup execution time on the total exe-
cution time is larger. Instead, with longer simulations, this effect could be negligi-
ble. The KPI trends of the total execution time in Fig. 10 consolidate the performance 
considerations made in “Average time step duration” section, showing the HELICS 
multi-process as the best performing framework.

Fig. 9 Average time step duration of the different co-simulation frameworks and their configurations

Fig. 10 Total execution time of the proposed Scenario for the different co-simulation frameworks and their 
configurations
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Figure 11 is an enlarged representation of Fig. 10, that focuses on the first 10k Model 
Instances so as to fairly compare the execution times of all proposed solutions. By ana-
lyzing this graph, it can be seen that Mosaik and Mosaik-AIOMAS diverge about 80s 
while Mosaik multi-process by about 50s from the best performing solutions. This is due 
to the higher setup execution time of these configurations and greater variability of the 
average time step execution.

Qualitative comparison

Table 3 presents a qualitative comparison among the benchmarked co-simulation solu-
tions. This comparison is done considering the only multi-process versions of HELICS 
and Mosaik frameworks because their classic versions, as well as the hybrid configura-
tions (HELICS-AIOMAS and Mosaik-AIOMAS), do not bring any KPI improvements. 
In addition, also AIOMAS is included in this comparison, it is not a co-simulation 

Fig. 11 Zoom on the first 10,000 instances for the Total execution time

Table 3 Qualitative comparison among Mosaik, HELICS, and AIOMAS

Co-simulation frameworks Mosaik HELICS AIOMAS

Scenario Configuration Programmatic 
(scripting)

JSON Programmatic (Agent-
based/ scripting)

Complexity Low Low High

Orchestrator Synchronization Scheduler (SimPy) Scheduler (RTI) Custom (Distributed 
clocks)

Communication 
paradigm

Request/ Response Publish/ Subscribe Request/ Response

Data Exchange TCP ZeroMQ TCP/RPC

Tipology Time-stepped/ 
Event-based

Time-stepped/ 
Event-based

Time-stepped/ Event-
based

Simulator Integra-
tion

Programming lan-
guages / Simulator 
Software

Python MATLAB Java 
C++

Python MATLAB 
Java C++ Nim

Python

Integration Com-
plexity

Low Low High

Scalability Horizontal Distributed Distributed Distributed

Vertical Multi-process 
(Manual)

Multi-process (Auto-
matic)

Concurrent Multi-
threading (Automatic) 
Multi-processing 
(Manual)

Performance Low High Medium
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framework but, as in our case, it could be used as a viable alternative to build one from 
scratch. The qualitative comparison among the benchmarked co-simulation solutions 
presented in Table 3 points out different characteristics of the frameworks that can help 
in choosing the right solution depending on the Scenario under analysis. Concerning 
the Scenario component (see Scenario in Table 3), a first consideration could be made 
on how the configuration is performed and what effort is required to fulfill the Sce-
nario implementation. Mosaik needs a Python script in which the end user must start 
the Simulators, instantiate their Models and link them through connectors. This process 
requires low effort since it is well documented and standardized. HELICS instead uses a 
JSON file to set up all the required configurations and, thus, has a really low implemen-
tation complexity. However, this process could suffer from errors in deploying the cor-
rect connection among Model Instances. Finally, AIOMAS requires more effort in the 
initialization due to the absence of predefined Scenario standards. Linking and instan-
tiating the Models can occur within the Agent definitions or in separate scripts, and is 
completely up to the end user design. This results in a more complex but freer imple-
mentation process.

Simulation management, which is the primary responsibility of the Orchestrator, has 
different characteristics among the three frameworks (see Orchestrator in Table  3); 
specifically with respect to communications and synchronization. Mosaik handles 
synchronization via its Scheduler, limiting or making cumbersome custom intra-step 
operations. Vice versa, HELICS offers an RTI to manage the time regulation and syn-
chronization, allowing greater freedom of development than the Mosaik Scheduler. 
In contrast, AIOMAS does not offer a synchronization orchestrator, thus time regula-
tion must be autonomously implemented by exploiting distributed external clocks and 
designing the wrapping agents properly. This means that the end user must take into 
account this task in a programmatic way encapsulating time management into Agents 
or creating an external agent as an orchestrator. The communication approach is based 
on Request/Response for both Mosaik and AIOMAS that exploit respectively TCP and 
RPC over TCP for communication purposes. HELICS instead uses a Publish/Subscribe 
approach that could enhance the performance but can lead to wasting resources in data 
polling requests. To conclude, the three frameworks implement both event-based and 
time-based simulation paradigms.

Another important aspect is Simulator Integration (see Simulator Integration in 
Table 3). While HELICS and Mosaik allow the integration of a wide range of Simulators 
based on different programming languages and simulation software, AIOMAS has no 
particular API for integrating other programming languages than Python and, if neces-
sary, this must be implemented ad-hoc by the end user. Therefore, the integration of the 
Simulators in Mosaik and HELICS results in a low-effort task. AIOMAS instead is more 
complex.

Looking at Scalability (see Scalability in Table  3), the three frameworks can deploy 
Simulators or Containers horizontally by distributing them on different cluster nodes 
for their management. However, they differ in the possible implementation of vertical 
scaling. For instance, Mosaik allows multi-processing but its implementation has to be 
done manually. HELICS multi-processing instead is handled automatically by the co-
simulation framework. AIOMAS provides an automatic concurrent multi-threading 
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of Containers. Conversely, AIOMAS multi-processing requires a manual implemen-
tation. Finally, the above features and proposed results allow for a comparison of the 
overall scalability performance. Mosaik performed the worst scalability mainly due to 
the intrinsic limitation that does not allow to scale up beyond 10k Model Instances. 
AIOMAS performed medium scalability limited by the overhead increment when deal-
ing with a rise of Agents. HELICS returned the best scalability, showing that its multi-
process management of Simulators is capable of reaching 1M instances with paramount 
performances.

Discussion on experimental results

The experimental results presented in previous Sections allows to determine the proper 
selection among the presented co-simulation frameworks and configurations depending 
on the MES scenario dimension:

(a) Mosaik with a Classic configuration offers easy implementation of a MES scenario 
and is a well-documented framework. It works well with small to medium scenarios but 
has limited scalability when going over large scenarios. Furthermore, when dealing with 
complex relationships and data exchange among simulators it is not as efficient as other 
solutions.

(b) HELICS with a Classic configuration also offers extensive documentation and an 
easy implementation, a little less intuitive with respect to Mosaik. It easily scales over 
a million instances, being an optimal choice for small to large scenarios. Thanks to its 
publish/subscribe paradigm (Eugster et al. 2003), complex interactions among simula-
tors are easier to implement.

(c) AIOMAS can be used to implement a co-simulation framework, but, being a 
Generic Python library for MAS, the implementation is up to the user. Thus, the docu-
mentation of AIOMAS is not oriented to this kind of usage resulting in a lack of sup-
port. Depending on these reasons it must require much more effort and could not be 
suitable for inexperienced programmers. On the other side, it gives a lot of freedom 
when designing interactions among agents or complex data exchange workflows. It is 
suitable for highly customized scenarios such as event-based Simulators that behave in 
a sequential workflow. It can scale from small to large scenarios but with significantly 
lower performances with respect to HELICS due to the high overhead of the Agent Data 
Exchange Management.

(d) Mosaik with a Multi-processing configuration is thought to speed up the Mosaik 
Classic configuration. The implementation requires some manual workarounds that are 
not embedded into the Mosaik framework as it is. It can only manage small/medium 
scenarios because it suffers from the same limitations of the classic version, but it brings 
some benefits in terms of timing performance. Then choosing this configuration will 
depend on a personal trade-off between implementation efforts and slightly better tim-
ing performances. As a last consideration it could be useful when dealing with simula-
tors running on different machines.

(e) HELICS with a Multi-processing configuration is the best performing solution in 
terms of scalability. It can support above the million Model Instances with stunning tim-
ing performances. Thus it is suitable for very large scenarios, or very complex systems 
populated by lots of modelled components to be. The multi-processing configuration is 
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well described and embedded in the HELICS documentation. From the point of view of 
Simulators interactions have the same qualities of classic HELICS.

(f ) Mosaik with encapsulated AIOMAS configuration integrates the MAS simulator 
inside the Mosaik framework. The implementation of this configuration is not straight-
forward but some examples in Mosaik documentation are present. By looking at the 
timing performance when scaling up it does not bring any benefits with respect to the 
Mosaik or AIOMAS classic solutions, and it suffers from the same model instance limit 
of Mosaik. Thus, it is suitable for small/medium scenarios. In addition, it allows encap-
sulation of a MAS ecosystem inside a co-simulation framework. This can be useful when 
dealing with complex systems having a high number of interactions that we want to con-
tain inside the MAS environment.

(g) HELICS with encapsulated AIOMAS configuration integrates the MAS simula-
tor inside the HELICS framework. No documentation for this configuration is present, 
making its implementation require more effort. In a very large scenario, it performs 
slightly better than HELICS with Classic configuration but it cannot be compared with 
the performances of multi-processing HELICS. The last consideration is that the reason-
ing on interactions above mentioned for Mosaik-AIOMAS still holds for this configura-
tion, making HELICS-AIOMAS the best choice among the solutions with encapsulated 
AIOMAS.

In conclusion, up to 100 Model Instances for each Simulator, Mosaik with a Multi-pro-
cessing configuration, HELICS with a Classic configuration, and HELICS with encap-
sulated AIOMAS configuration are the best performing solutions. The choice could 
be dictated by the needs of the analysis: Mosaik has a very simple implementation, but 
places some constraints on interactions between simulators, HELICS offers more free-
dom on interactions, and AIOMAS offers much more freedom, but with a greater imple-
mentation effort. By increasing the number of instances, especially from 10 k, the best 
solution in terms of time performance and with the same features is the HELICS with a 
Multi-processing configuration.

Conclusion
This paper compared the scalability performance of two popular co-simulation frame-
works and a MAS library used to build a co-simulation framework. Mosaik, HELICS, 
and AIOMAS were tested on a simple multi-model energy scenario in order to under-
stand their ability to increase the number of co-simulation instances. The increase 
in model instances, which might be excessive for the given scenario, was used as a 
way to understand the response of these solutions when dealing with larger scenarios, 
from the perspective of simulating entire cities or regions. The co-simulation scenario 
consisted of a weather simulator, a photovoltaic simulator, a building heating/cool-
ing simulator, and a power grid simulator. The complexity of the models involved was 
heterogeneous, but the interactions between them were kept simple. The reason for 
this choice was to be able to easily increase the number of model instances for the PV 
and Building simulators and to focus the study on the increasing size of the problem. 
The results show that Mosaik has a limitation in the number of connected entities 
that stopped at 10k model instances of PV and buildings. On the other hand, HELICS 
demonstrated the ability to scale up to 1M model instances. AIOMAS demonstrated 
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the same ability to scale as HELICS with respect to the number of instances. How-
ever, HELICS outperforms AIOMAS in terms of simulation time if the simulators are 
run in multiprocess. To draw some conclusions, it is possible to say that Mosaik is 
a very useful framework when dealing with small/medium size environments, offer-
ing good quality results and ease of implementation. AIOMAS allows implementing 
co-simulation for very large scenarios, but it does not scale perfectly because of its 
exponential increase in overhead. Finally, HELICS outperforms all other solutions in 
terms of scalability while retaining all the advantages of a well-structured framework 
like Mosaik. HELICS, in particular when implemented in its multi-processing con-
figuration, gives the best scalability performance allowing to be suitable for any sce-
nario size, furthermore, it is easy to be implemented and allows more freedom on 
the interactions design due to its publish subscribe paradigm, on the overall this con-
figuration proved to be the most flexible and performing above all the tested ones. 
This work is intended to test and compare the co-simulation frameworks in different 
configurations on their basic ability to scale up a generic MES scenario. So, the time-
based KPIs are still related to the kind of MES scenario and simulators involved. Thus, 
a future works will be the standardization of benchmarking standards for co-simu-
lation framework taking into consideration the different kinds of simulators charac-
teristics (e.g. DE vs. CT, real-time vs. non real-time). Moreover, the development of 
co-simulation scenarios in cluster computing systems by integrating simulators and 
co-simulation frameworks in containers, such as Dockers managed by a Kubernetes 
orchestrator, is part of our future work to study the scalability of large co-simulation 
setups.
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