
12 June 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A comparison study of co-simulation frameworks for multi-energy systems: the scalability problem / Barbierato, Luca;
Rando Mazzarino, Pietro; Montarolo, Marco; Macii, Alberto; Patti, Edoardo; Bottaccioli, Lorenzo. - In: ENERGY
INFORMATICS. - ISSN 2520-8942. - 5:S4(2022). [10.1186/s42162-022-00231-6]

Original

A comparison study of co-simulation frameworks for multi-energy systems: the scalability problem

Publisher:

Published
DOI:10.1186/s42162-022-00231-6

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974024 since: 2022-12-21T14:32:14Z

Springer

A comparison study of co‑simulation
frameworks for multi‑energy systems:
the scalability problem
Luca Barbierato1*, Pietro Rando Mazzarino2, Marco Montarolo2, Alberto Macii2, Edoardo Patti2 and
Lorenzo Bottaccioli1

From Energy Informatics.Academy Conference 2022 (EI.A 2022)
Vejle, Denmark. 24-25 August 2022

Abstract

The transition to a low-carbon society will completely change the structure of energy
systems from a standalone hierarchical centralised vision to cooperative and dis-
tributed Multi-Energy Systems. The analysis of these complex systems requires the
collaboration of researchers from different disciplines in the energy, ICT, social, eco-
nomic, and political sectors. Combining such disparate disciplines into a single tool
for modeling and analyzing such a complex environment as a Multi-Energy System
requires tremendous effort. Researchers have overcome this effort by using co-
simulation techniques that give the possibility of integrating existing domain-specific
simulators in a single environment. Co-simulation frameworks, such as Mosaik and
HELICS, have been developed to ease such integration. In this context, an additional
challenge is the different temporal and spatial scales that are involved in the real world
and that must be addressed during co-simulation. In particular, the huge number of
heterogeneous actors populating the system makes it difficult to represent the system
as a whole. In this paper, we propose a comparison of the scalability performance of
two major co-simulation frameworks (i.e. HELICS and Mosaik) and a particular imple-
mentation of a well-known multi-agent systems library (i.e. AIOMAS). After describing a
generic co-simulation framework infrastructure and its related challenges in managing
a distributed co-simulation environment, the three selected frameworks are introduced
and compared with each other to highlight their principal structure. Then, the scal-
ability problem of co-simulation frameworks is introduced presenting four benchmark
configurations to test their ability to scale in terms of a number of running instances.
To carry out this comparison, a simplified multi-model energy scenario was used as
a common testing environment. This work helps to understand which of the three
frameworks and four configurations to select depending on the scenario to analyse.
Experimental results show that a Multi-processing configuration of HELICS reaches the
best performance in terms of KPIs defined to assess the scalability among the co-simu-
lation frameworks.

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

REVIEW

Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53
https://doi.org/10.1186/s42162‑022‑00231‑6

Energy Informatics

*Correspondence:
luca.barbierato@polito.it

1 Interuniversity Department
of Regional and Urban Studies
and Planning, Politecnico di
Torino, Corso Duca degli Abruzzi
24, 10129 Turin, Italy
2 Department of Control
and Computer Engineeing,
Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin,
Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-022-00231-6&domain=pdf

Page 2 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

Keywords: Co-simulation framework, Scalability, Mosaik, HELICS, AIOMAS

Introduction
According to the United Nations Habitat, cities consume about 78% of global energy
demand and generate more than 60% of greenhouse gas emissions primarily through the
consumption of fossil fuels for energy supply and transportation (United Nations 2022).
To reach the ambitious goals of the Glasgow agreement (Authors 2021), a drastic reduc-
tion in carbon emission is needed. To achieve such a reduction, a transition from clas-
sic fossil fuels to Renewable Energy Sources (RES) as well as the adoption of integrated
energy system components, such as micro co-generators, are required. This transition
will completely change the structure of the energy systems from standalone hierarchical
centralised energy systems to cooperative and distributed energy systems, the so-called
Multi-Energy System (MES) vision. Such a transition can not be left to chance and the
development of novel Information and Communication Technology (ICT) tools, plat-
forms, and frameworks for driving this transition are attracting a strong research effort
from the scientific community. In the last decades, researchers have given a great effort
in the development of domain-specific simulation tools designed to simulate with high
efficiency and accuracy the behavior of a particular energy system aspect (Ringkjøb
et al. 2018). In MES context, the simulation of different energy systems will require a
broader vision and, consequently, a larger number of domains from different systems
involved. According to “Smart Grid Architectural Model” (SGAM) (Bruinenberg et al.
2012) and in particular to its extension “General-puprose Architectural Model for Multi
Energy Systems” GAMES (Barbierato et al. 2020) in Fig. 1, domains represents the
overall conversion chain of an energy carrier that are: (i) generation, (ii) transmission,
(iii) distribution, (iv) Distributed Energy Resources (DER), and (v) customer premises.
Moreover, the analysis of complex MES requires the collaboration of researchers from

Fig. 1 General-purpose architectural model for MES engineering application (GAMES)

Page 3 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

different disciplines applying different perspectives in the energy, ICT, social, economic,
and political sectors. Therefore, researchers exploit co-simulation frameworks that must
address (i) different domains for each individual energy system, (ii) different energy sys-
tems together (e.g. power grid, district heating, gas grid), and (iii) different perspectives
of the overall MES (e.g. ICT, energy, economic and social) (Schloegl et al. 2015)

Many works have focused on the co-simulation of smart grids by integrating simula-
tors of power grids with ICT communication aspects, so-called Cyber-Physical Energy
System (CPES) (Georg et al. 2013; Garau et al. 2018; Pan et al. 2016; Barbierato et al.
2020). Co-simulation has been widely applied also to integrate several models in order
to represent and describe the planning of new RES deployment (Reinbold et al. 2019;
Steinbrink et al. 2019; Bottaccioli et al. 2017; Schiera et al. 2019) or to study the effects
of novel control strategies to exploit energy flexibility for demand response applica-
tions (Song et al. 2017; Bhattarai et al. 2016; Abgottspon et al. 2018; Mazzarino et al.
2021). To ease the coupling of simulators, researchers have started defining standards for
co-simulation, such as Functional Mock-up Interface (FMI) (Blochwitz et al. 2011), and
co-simulation frameworks, such as Mosaik (Schütte et al. 2011) and HELICS (Palmintier
et al. 2017). In particular, Mosaik and HELICS are gaining much attention from the
energy research community and were used by several research projects focused on MES.
The coordination of domain-specific simulators through co-simulation frameworks can
help the development of digital twin platforms for MES (Palensky et al. 2021) that can be
used to plan and operate this transition. However, such platforms will require the abil-
ity of domain-specific simulation models and co-simulation frameworks to scale up as
much as possible to best represent the complexity and interdependencies of very large
real systems. For instance, scalability is essential when testing the impact on the power
grid of an innovative heat pump technology on a realistic scenario of one million build-
ings with photovoltaic installations on the rooftops. The present work is indented to
compare the effectiveness of the Mosaik and HELICS co-simulation frameworks and the
AIOMAS Multi-Agent System (MAS) library (Scherfke 2014) in scaling up the number
of entities in a co-simulation environment, evaluating different possible configurations
of their usage for parallelizing a simple Python simulator. The choice of these technolo-
gies depends mainly on their dominant role in energy sectors among other solutions and
their ease of use. In fact, Mosaik and HELICS are popular co-simulation frameworks in
the literature for Smart grids (Mihal et al. 2022) and unlike the other solutions they are
also thought to be extended to MES or general purpose applications [e.g. (Widl et al.
2022; Sergi and Pambour 2022)]. To the best of our knowledge, this is the first work that
tries to benchmark these two co-simulation frameworks (i.e. HELICS and Mosaik) with
respect to their scalability performance.

Moreover, this study includes a particular implementation of AIOMAS as a viable
alternative to build a co-simulation framework. The choice to include AIOMAS in this
study follows the recent trends of coupling co-simulation and MAS concepts (Jung et al.
2018; Paris et al. 2017; Motie et al. 2018; Camus et al. 2016). In particular, from our find-
ings, AIOMAS is the only well-documented and easy-to-use Python library that ena-
bles the deployment of MAS with powerful capabilities regarding agent distribution and
communication infrastructure. AIOMAS incorporates different abstraction layers that
ensure a proper Time Regulation, Synchronization, and Data Exchange Management of

Page 4 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

the MAS setup. These additional layers are very powerful and allow the proposed paral-
lelism between MAS and Co-simulation Framework application. Steinbrink et al. (2018)
present a comparison between Mosaik and implementation of the IEEE 1516 High-Level
Architecture (HLA), which is similar to HELICS implementation. In particular, the
objective was to provide researchers with guidelines to assess which of the two imple-
mentation suits their needs. They compared both the framework architectural concepts
and the accuracy results from a Smart Grid co-simulation study over a representative
power system scenario. The authors conclude that implementing benchmarks and deriv-
ing a comparative performance analysis of the co-simulation frameworks is worth inves-
tigating for future works. In fact, our study fulfills this gap focusing in particular on the
scalability aspect of the three above-mentioned frameworks.

The rest of the paper is organised as follows: “Enabling technologies for co-simulation
environments” section presents Mosaik and HELICS co-simulation frameworks and the
AIOMAS implementation; “Methodology for benchmarking design” section better dis-
cusses the problem of scalability, presenting the different co-simulation framework con-
figurations, and the bench-marking metrics; “Setup of co-simulation scenario” section
presents the simulators involved in the MES scenario to the purpose of the scalability
benchmarking; “Experimental results” section instead presents the experimental results
of the benchmark and a qualitative comparison of the analysed frameworks in imple-
menting a co-simulation scenario; finally, “Conclusion” section provides our concluding
remarks.

Enabling technologies for co‑simulation environments
The co-simulation approach is effective when dealing with multi-domain complex sys-
tems in which analytical assessment is no longer feasible considering their complexity.
Co-simulation is often related to Cyber-Physical Systems (CPS) (Palensky et al. 2017)
and, in particular, Cyber-Physical Energy Systems (CPES) (Zhang et al. 2020), of which
the most prominent example can be found in the Smart Grid concept. General notions
about co-simulation are thoroughly reported in Gomes et al. (2018) and Schweiger et al.
(2019). In these literature definitions, co-simulation allows integrating together hetero-
geneous domain-specific Simulators creating a shared simulation environment. There-
fore, this paradigm allows decomposing a complex system in a System-of-System (SoS)
structure by applying system engineering. Each of the identified sub-systems deals with
a well-defined problem while interacting with each other. From this perspective rises our
parallelism with MAS. In literature, some integration of MAS simulators in Co-simu-
lation frameworks can be found, but by abstracting a little more the concept of MAS it
is possible to see a co-simulation framework as a system in which really complex and
different agents (e.g. the simulators) interact among each other. Agents are thought of
as software components that perform computations and virtually mimic the actions
and interactions of real-world systems. Usually MAS agents are considered intelligent
components, but abstracting from this definition the main characteristics are autonomy,
responsiveness and proactivity (Coelho et al. 2017). These characteristics, despite the
level of human-like intelligence, could be applied to the subsystems operating in com-
plex macro-system environments, such as Smart Grids or MESs.

Page 5 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

Besides the different co-simulation frameworks such as Mosaik and HELICS, which
have different functions and implementations, a shared general architecture can be
highlighted.

The main components required to build a co-simulation framework are depicted in
Fig. 2a: (i) the Scenario, (ii) the Orchestrator, (iii) the Simulator, and (iv) the Model
Instance. This figure offers a general overview of the interacting components in a
co-simulation framework, while Fig. 2b–d represent the specific implementations of
these components inside the three main framework analysed: Mosaik, HELICS and
AIOMAS.

The Scenario is a representation of the simulated environment that contains the
formal knowledge of the entire CPES. It is not an actual physical component of the
co-simulation framework. In fact, it represents the configuration offered by the co-
simulation framework that manages the startup of the Orchestrator, the initialization
of the Simulators, and states the relationships that occur between Model Instances.
The Orchestrator is the main component of a co-simulation framework and manages
the exchange of data from the Simulators and their time regulation and synchroni-
zation. Simulators instead contain a specific Model Instance class and have different
functionalities (e.g. solvers) to perform their domain-specific computations. Simula-
tors instantiate their Models multiple times and govern the resulting collection by
acting as a communication adapter with the Orchestrator. In fact, Simulators trans-
mit inputs received by their peers via the Orchestrator and the Orchestrator com-
mands to their Model Instance collection. In return, Simulators receive outputs from
Model Instances that are sent to the Orchestrator. Finally, Model Instances are repre-
sentations of multiple homogeneous physical entities. They contain a physical model

Fig. 2 Component relational schema of a general co-simulation framework (a) and its declination for Mosaik
(b), HELICS (c), and AIOMAS (d)

Page 6 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

that could belong to different mathematical types, ranging from pure algebraic equa-
tions to differential equations, as well as finite element methods or behavioural mod-
els (Palensky et al. 2017).

In addition, the arrangement of the components addresses three main tasks, which
are (i) the Initialization, (ii) the Time Regulation and Synchronization, and (iii) the Data
Exchange Management. The Initialization task is performed by the Scenario that initi-
ates the Simulators with the proper parameters setting (e.g. time step duration and start
date) and communicates the number of Model Instances that compose their collection.
The Initialization process finally sets up the co-simulation environment by establishing
all the relationships and connections among Model Instances of all Simulators involved
in the co-simulation environment. The Time Regulation and Synchronization task
instead manages and regulates the time step progression of each individual Simulator.
In fact, co-simulation can be classified according to its time regulation paradigms (Sch-
weiger et al. 2019), which are: (i) Discrete Event (DE) or event-based regulation, and
(ii) Continuous Time (CT) or time-stepped regulation. The DE paradigm proceeds in
time by exploiting events that trigger an evolution of the dynamics of the co-simulated
environment. Thus, Model Instances communicate via Simulators with each other using
events that might change their internal state or trigger other events. Conversely, the
CT paradigm determines the evolution of the time step with a constant time interval in
which the Simulators evolve their internal states by exchanging inputs and forwarding
outputs at the end of each time step. Some co-simulation frameworks are able to handle
both paradigms, resulting in a hybrid regulation paradigm. This case requires a complex
time regulation algorithm where the synchronization task becomes even more critical.
Finally, the Data Exchange Management task handles the communication among Model
Instances, Simulators, and the Orchestrator by implementing telecommunication pro-
tocols that are usually the most effective solution for this task. In data exchange man-
agement, the main issue is related to the communication latency that usually affects
telecommunication protocols. More specifically, communication latency in co-simula-
tion frameworks refers to the amount of time elapsed from the forwarding of the out-
put variables of one Model Instance to the reception of the variable as input by another
Model Instance. Large latency can compromise the overall co-simulation environment
when dealing with strict time constraints of a particular Simulator that could internally
trigger a time step overflow. In conclusion, the Initialization, Time Regulation and Syn-
chronization, and Data Exchange Management represent the most important challenges
in ensuring a reliable, accurate, and stable co-simulation framework.

As previously mentioned the MAS concept could be studied along with co-simulation,
indeed we have exploited AIOMAS as follows:

(a) we have used AIOMAS as a modelling library for a MAS simulator that has
been integrated into a co-simulation framework. In this case, the co-simulation
framework (whichever it is) encapsulates a MAS simulator. We will refer to this con-
cept as ’MAS as a simulator’. (b) We have also used AIOMAS as a tool to build up a
co-simulation framework in which the integration of simulators is done through the
agent concept. In particular, agents (understood as intelligent entities that commu-
nicate with each other and the environment) are designed as wrappers for real exter-
nal simulators (e.g., building thermal simulators, photovoltaic panel simulator). In

Page 7 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

this way, the replication of simulators is done through the spreading and spawning of
agents. We will refer to this case as ’MAS as co-simulation’. This type of architecture
reflects the possibility of decoupling the agent envelope from the simulator, i.e. the
intelligence (e.g., control algorithm, management system) and the physical model
respectively. The agent could model explicitly any intelligent control and encapsu-
late an interchangeable physical simulator (which models the physical behaviour as
it is) on which to test intelligent strategies. Indeed, several studies implement co-
simulation alike environments exploiting MAS tools (Pipattanasomporn et al. 2009;
Roche et al. 2010; Mazzarino et al. 2021; Nunna and Doolla 2012; Jung et al. 2018).
The concept of Agents in MAS applications can easily comply with the definition of
SoS covering the needs of a co-simulation framework and, in particular, its required
components.

The aim of this paper is the scalability analysis of Mosaik and HELICS, two of the
most widely adopted co-simulation frameworks in literature. The analysis is per-
formed by applying a comprehensive benchmark of the possible configurations that
each framework could implement. In addition, a similar benchmark is introduced
for the integration of the AIOMAS library, presenting both MAS as a simulator and
MAS as a co-simulation framework [as in Mazzarino et al. (2021)]. In the following
sections, the details and peculiarities of these three frameworks are addressed.

Mosaik

Mosaik is a Python co-simulation framework developed to couple existing Simula-
tors in the Smart Grid field. Its general architecture does not preclude other domain
applications. Mosaik provides different Application Program Interfaces (APIs) and
components for the main functionalities of a co-simulation framework. Firstly, the
Python Scenario API allows creating a Python script Scenario in which instantiates
and establishes input/output relationships between Model Instances and Simula-
tors. The High-level Simulators API instead provides an abstract class with commu-
nication, time regulation, and synchronization features already implemented. They
are language agnostic, thus allowing the integration of different programming lan-
guages (i.e. Python, C++, and JAVA) and Simulator software (e.g. MATLAB). The
Low-level API instead offers the possibility to establish a plain network socket for
exchanging serialized JSON data to extend Mosaik Simulators integration capabili-
ties. The implementation of this API requires a meta description of the Simulator
that states its parameters and the exchanged variables.

Figure 2b depicts the relational entities in Mosaik architecture. The Orchestrator
role is fulfilled by two components: the SimManager and the Scheduler. These two
components respectively share the tasks of Data Exchange Management and Time
Regulation and Synchronization. The SimManager starts the Simulators that gov-
ern their Model Instance collection and, subsequently, handles their data exchange.
Mosaik manages multiple Simulators that can create Model Instance collection by
instantiating their Models. The Scheduler instead synchronizes the Simulators time
regulation and could manage both CT and DE paradigms (only in Mosaik version 3.0
which has integrated the support to DE and allows specification of simulators type).

Page 8 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

HELICS

Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) is a co-
simulation framework based on IEEE High-Level Architecture (HLA) standards (IEEE
Standard for Modeling and Simulation 2010a, b). It integrates Simulators from different
programming languages (i.e. Python, C++, JAVA, Nim) and simulation software (e.g.
MATLAB) in a scalable and distributed environment.

The HELICS architecture and its relational entities are presented in Fig. 2c. The Sce-
nario in this framework consists of a JSON configuration file in which all the necessary
links and parameters for the instances are made explicit. HELICS introduces a differ-
ent terminology with respect to Fig. 2a. It retains the concept of Simulators, which in
this case, are generic executables that can instantiate a multitude of Federates. Federates
represent specific entities defined in the Scenario that executes their respective physi-
cal models. HELICS architecture is distributed so each Federate can communicate with
others through a publish/subscribe approach (Eugster et al. 2003) via Cores. Cores are
components embedded in Simulators that allow their Federates to join Federations and
enable communication with the HELICS architecture. The Data Exchange Manage-
ment task among Federation is guaranteed by the Broker component that coordinates
the exchange among different Federations. A Broker could also communicate with other
Brokers, and consequently with other Federations, enabling the possibility of deploying
a hierarchical architecture. Finally, the Orchestrator is managed by the Run-Time Infra-
structure (RTI), a component inherited by HLA standard, to ensure a proper Time Regu-
lation and Synchronization of the overall co-simulation environment in both CT and DE
paradigms.

AIOMAS

AIOMAS is a Python library to implement MAS. It has been chosen to present paral-
lelism between MAS and co-simulation frameworks. At an higher level of abstraction,
AIOMAS provides four main classes: (i) the Container, (ii) the Agent , (iii) the Remote
Procedure Call (RPC) along with the Clock and (iv) the Object Oriented Programming
(OOP) Scenario.

Figure 2d shows AIOMAS relational entities following the generic co-simulation infra-
structure described above. The OOP Scenario component in this configuration does
not have a specific implementation. In fact, its design and development are completely
up to the end user who can decide to create a specific general Python script or distrib-
ute Agents linking inside their Python classes (i.e. OOP Scenario). The tasks required
to establish the co-simulated environment are similar to the aforementioned frame-
works and are: (i) the Container creation, (ii) the Agent collection generation, (iii) and
the distributed orchestration infrastructure start-up (i.e. Clocks/RPC). Agents incor-
porate specific models of the physical entities they describe and execute their behav-
iour. Containers, on the other hand, host Agents and communicate with them via RPC
servers that handle the Data Exchange Management task. In a Container, Agents imple-
ment RPC clients that manage remote communication, using the Container as a gate-
way to reach Agents that belong to other Containers. Each Container implements the
task of Time Regulation and Synchronization through the implementation of a shared

Page 9 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

distributed Clock. The time evolution of the co-simulation environments could follow
the CT or DE paradigms, depending on the user’s implementation choice. This peculi-
arity addresses one of the main challenges of co-simulation, which is the complex time
regulation when it comes to hybrid simulation; with AIOMAS, it is possible to distribute
the time regulation and customize it at the expense of more implementation effort.

Methodology for benchmarking design
The most complicated and debated issue in co-simulation applications is scalability
which is defined as the property of a co-simulation framework to handle an increasing
amount of heterogeneous Simulators and their model instances, considering the com-
posite relationships that interconnect them together to run a large-scale complex sys-
tem, such as a Multi-Energy System (MES). From an Information and Communication
Technology (ICT) perspective, scalability is measured typically with three indicators
known as scalability dimensions: (i) size, (ii) geographical, and (iii) administrative scala-
bility. Size scalability represents the issues in growing the dimension of the co-simulated
system and what are the possible solutions to manage the high number of Simulators
and Model Instances to run a huge complex Scenario and its orchestration. Geographi-
cal scalability, on the other hand, is the representation of the complexity of managing
an increasing number of geographically distributed computational nodes (e.g., different
laboratories) to implement a co-simulation Scenario. Finally, administrative scalability
represents the difficulties in managing a co-simulation framework when dealing with
increasing both previous scalability dimensions, thus the engineering effort required
to avoid the complex setup of the co-simulation framework, the orchestrator, and the
distribution of Simulators and their Model Instances among network nodes, and their
interconnections.

Fig. 3 Vertical and horizontal scaling

Page 10 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

The two main scaling directions of a co-simulation framework are (i) vertical scaling
and (ii) horizontal scaling, as illustrated in Fig. 3. Vertical scaling takes advantage of
the parallel capabilities of a single node to distribute the co-simulated Scenario across
multiple processes, each of which runs a certain Simulator. Depending on the Simula-
tors, their Model Instances, and their relationships defined by the Scenario, vertical
scaling could be applied with different methods and strategies. It is worth noting that
this scaling direction commonly results in limited scaling of the size of the complex
system. Conversely, horizontal scaling exploits the distribution of the co-simulation
Scenario over multiple network nodes, joining them by means of telecommunication
protocols. In this view, different Simulators are distributed over different network
nodes that manage their Model Instances. Also, in this case, there are different solu-
tions depending on the relationships between the Model Instances of each involved
Simulator. This approach requires a distributed co-simulation Orchestrator that can
act as a load balancer that distributes tasks and manages data exchange and synchro-
nization of all working nodes. The above two directions of scalability are not mutu-
ally exclusive and, instead, are typically used in a jointed configuration to improve the
scalability of a co-simulation framework. Merging Vertical and Horizontal scalability
is an advantage when dealing with particular simulation software and/or hardware
needed to simulate a specific component of a complex system. For instance, a Digital
Real-Time Simulator (DRTS) is required in some specific MES Scenarios to perform
an Electromagnetic Transient (EMT) analysis of a power grid (Barbierato et al. 2022).
This particular hardware acts as a vertical scaling component of the jointed scaling
vision to enable fast real-time simulation of the power grid model. Then, the DRTS
will be interconnected with a distributed co-simulation environment running other
MES models. This distributed configuration participates in the hybrid scaling vision
of implementing horizontal scaling.

Fig. 4 The proposed co-simulation benchmark configurations: (a) Classic Co-simulation, (b) Multi-process
Co-simulation, (c) Multi-Agent System as Co-simulation framework, and (d) Classic Co-simulation
configuration with encapsulated multi-process Multi-Agent System

Page 11 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

For the purpose of evaluating the scalability of the co-simulation frameworks pre-
sented in “Enabling technologies for co-simulation environments” section, a hybrid scal-
ing approach has been chosen among the three possible options to assess what could be
the impact of scaling up and scaling out a generic MES Scenario on a distributed cluster
of nodes. The benchmark configurations in Fig. 4 are described in the following.

(a) The Classic Co-simulation configuration (see Fig. 4a) is the common configuration
of co-simulation frameworks (i.e. Mosaik and HELICS) where Simulators are run by dif-
ferent cluster nodes handled by the Orchestrator master node that manages their data
exchange and synchronization. Each Simulator node manages iteratively its M Model
Instances in a single process. By implementing a distributed deployment of Simulator,
this configuration will enhance the simulation capabilities with respect to standalone
simulation. However, performances are expected to be low because each cluster node
runs the assigned simulator and its instances in a single iterative process. It is worth
noting the significant impact of the information exchange among Simulators and the
Orchestrator.

(b) The Multi-process Co-simulation configuration (see Fig. 4b) evolves the classic con-
figuration by enabling a multi-process division of a Simulator node (e.g. Simulator A),
replicating it in N Simulator processes (e.g. Simulator A1, ...,AN). Considering M Model
Instances, each Simulator process manages M/N Model Instances. With respect to Clas-
sic Co-simulation configuration, it enables a multi-process execution of the assigned
simulator and its instances for each cluster node. This configuration considerably raises
the performance of each simulator time step execution. However, the setup of the multi-
process execution may take longer and could be a drawback that reduces the configura-
tion performances. The information exchange among Simulators and the Orchestrator
instead is identical to the previous configuration.

(c) The Multi-Agent System as Co-simulation configuration (see Fig. 4c) is the typical
configuration of the AIOMAS framework in which agents are represented as simula-
tors. When dealing with a small number of Agents, AIOMAS exploits the Main Con-
tainer for each Agent class that is spread on one of the available cluster nodes. Each
Main Container manages (i) the data exchange with its fellow and its Agents through the
RPC protocol and (ii) the distributed synchronization through its internal Clock. Like-
wise Model Instances, Agents (Simulators) are replicated in a single process by apply-
ing a concurrent multi-threading. When dealing with a high number M of Agents, a
Main Container (e.g. Main Container A) could delegate to N spawned Containers (e.g.
Container A1, ...,AN) the Agent management, resulting in M/N Agents assigned to each
child Container. This configuration avoids the required information exchange for Time
Regulation, Synchronization, and Data Exchange Management of the Classic and Multi-
process Configurations. In fact, the Time Synchronization and Regulation is distributed
among the Main Container via the Clock/RPC. Moreover, each Agent directly commu-
nicates its output (i.e. events) with other Agents interested in receiving it. This approach
enhances the performances with respect to having a centralized Data Exchange Manage-
ment with an Orchestrator. The drawback of this configuration is related to the setup of
the N spawned Containers when dealing with a high number of Agents.

(d) The Classic Co-simulation configuration with encapsulated multi-process Multi-
Agent Systems (see Fig. 4d) manages a hybrid configuration of the Classic Co-simulation

Page 12 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

configuration where each Simulator is a MAS simulator. They are built with AIOMAS
Main Containers that spawn N child Container in different sub-processes. Each of the
child Containers manages M/N Agents, enhancing the scalability of a Classic Co-simu-
lation configuration by integrating MAS simulators that manage several physical entities
exploiting multi-process and multi-threading AIOMAS capabilities. This configuration
exploits the capabilities of spawning Containers of the Multi-Agent System as Co-sim-
ulation configuration without incurring typical drawbacks of the Multi-Process Co-
simulation configuration, raising the performance of this configuration. However, this
configuration could suffer from the typical information exchange drawback of the Clas-
sic Co-simulation configuration due to the central Data Exchange Management of the
Orchestrator.

Benchmark key performance index (KPI)

The KPI is defined over a time interval of the main contributions that compose the Total
Execution Time of a co-simulated Scenario. These processes are depicted in Fig. 5 and
are: (i) the Scenario Setup Process, in which the co-simulation framework starts the
Orchestrator, initializes Simulators with their Model Instances, and, finally, links all the
Model Instances to deploy the co-simulated Scenario; (ii) the Co-simulation Process that
is an iterative process in which the co-simulated Scenario evolves its state each Time
Step (i.e. its fundamental unit); (iii) the Termination Process in which the co-simulation
framework stops the Orchestrator, releases Model Instances and terminates Simulators
execution. Each Time Step is a complex routine in which each Simulator retrieves the
input dependencies for its Model Instance collection, iteratively executes each Model
Instance calculation updating its state, and, finally, collects Model Instance collection
outputs to forward them to other Simulators. Simulators operate in parallel as depicted

Fig. 5 Decomposition of the Total Execution Time in its main contribution: (i) the Scenario Setup, (ii) the
Co-simulation, and (iii) the Termination Processes. The former Co-simulation Process could be decomposed
into its main time interval units, the Time Steps

Page 13 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

in Fig. 5 where the execution of the four Simulators is highlighted for the Time-Step 4.
This parallel execution impacts the accuracy of the co-simulated solution with a finite
time step latency related to Simulator input/output dependencies that causes negligi-
ble inaccuracies of the solution with respect to a standalone simulation (Steinbrink
et al. 2018). Each Time Step duration could vary depending on the input/output Data
Exchange Management, the communication latencies, and from the particular computa-
tional condition of each cluster node.

Three main time-based KPIs have been employed to evaluate the scalability of each
benchmark configuration and its Scenario implementation:

• the Setup Execution Time which is the time interval in which the co-simulation
framework executes the Scenario operations;

• the Average Time Step Duration µT that is estimated as the maximum of the means
of the time duration T of the S co-simulative time steps of each Simulator Simi
involved in the co-simulation environment I;

• the Total Execution Time that includes all the contributions of the Scenario Setup,
the Co-simulation, and the Termination Processes.

The main objective of this paper is to understand which of the proposed benchmark
setups performs better in terms of simulation time when it comes to increase the size
of the simulated environment. The chosen KPIs are general and reflect the main simu-
lation times, so they are useful for making comparisons on the scalability of different
frameworks.

Setup of co‑simulation scenario
In order to test the benchmark presented in “Methodology for benchmarking design”
section, a common realistic scenario has been prepared. The chosen simulators and
related physical models are heterogeneous ranging from very simple to more complex.
Only the simplest interactions and data exchanges have been included (same time loop,
feedback exchanges, or control actions have been excluded) in order to keep the simula-
tion workflow as simple and linear as possible. The motivation behind this choice is to
be able to fully relate simulation time performances to the increase of running instances,
ignoring any other possible slowing down aspect.

A high-level representation of the multi-model energetic scenario is presented in
Fig. 6, while Fig. 7 depicts the declination of the benchmark setup to the specific case
study. The energetic Scenario includes four typical actors of a networked urban envi-
ronment. The four Simulators (or Containers in the AIOMAS perspective) are: (i) the
Meteo Simulator, (ii) the PV Simulator, (iii) the Building Simulator, and (iv) the Power
Grid Simulator. Furthermore, still looking at Fig. 6 the simple input/output interactions
between Simulators are presented. Specifically, both the PV and the Building Simula-
tors take weather data from the Meteo Simulator as inputs to perform their calculations.
Their outputs are sent to the Power Grid Simulator which uses them to calculate the

(1)µT = max
i∈I

µ
i
T where µ

i
T =

S

n=1 T
i
n

S
, I = {Sim1, ..., SimM}

Page 14 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

power flow of the power grid. The time resolution of the simulators is configurable and
could differ from one simulator to another. All of these simulators have really short wall-
clock times for executing a single step thus the simulation time-step could range from
seconds to hours. Nevertheless, the time resolution choice must take into consideration
the physical significance and constraints of the involved model, so for the Building simu-
lators, the chosen simulation time-step was 1 h. In contrast, mainly to show the possibil-
ity of mismatched time resolution, photovoltaic simulators update their state every 15
min. Each Simulator is presented in the following sections.

Fig. 6 Simulator of the analyzed physical MES Scenario

Fig. 7 Different implementations of the co-simulation framework benchmark configurations: (a) Classic
Co-simulation, (b) Multi-process co-simulation, (c) MAS as co-simulation, and (d) Classic Co-simulation with
encapsulated MAS

Page 15 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

The meteo simulator

The Meteo Simulator is a stateless Simulator and acts as a weather file reader (.epw for-
mat), obtaining measurements about the weather (i.e. temperature, solar irradiance, and
humidity) for each simulation time step. It forwards these outputs to both PV and Build-
ing Simulators.

The PV simulator

The PV Simulator is a stateless Simulator that uses the estimate PV energy service of the
model in Bottaccioli et al. (2017). It estimates the hourly energy production of PV solar
panels for each simulation time step. The given model receives weather conditions and
information about the surface area of each panel and uses them to perform its calcula-
tions. It also estimates the cell temperature using the so-called NOCT method (Brihmat
and Mekhtoub 2014) when wind speed is not available as input and, on the other hand, it
uses the Mattei method (Mattei et al. 2006) when wind speed is available. The output of
this simulator is the generating power for the given time step, which is forwarded to the
Power Grid Simulator.

The building simulator

The building simulator is a stateful Simulator that exploits the model presented in Maz-
zarino et al. (2021) to simulate a building equipped with a heat pump system. Within the
model, the thermal behaviour of the envelope is treated with a Resistance-Capacitance
model (Massano et al. 2019) and a fine-grained model of the heat pump with all subsys-
tems (e.g., emission, distribution, and generation) is provided. The model calculates the
hourly heating demand of the building considering also the heat contributions gener-
ated from human occupancy and appliances through archetypes patterns. The heat load
is then converted to the heat pump power request. To conclude, the former model has
four main functionalities that calculate: (i) the real-time heat pump power demand, (ii)
the heat pump power demand forecasting, (iii) the heat pump energy flexibility, and (iv)
the actuation commands of the heat pump control strategy. The proposed Scenario only
uses the heat pump’s real-time power demand as output for the Power Grid Simulator.
The Building Simulator is stateful because it keeps track of the previous indoor air tem-
perature condition when calculating the heat pump demand for a new time step. The
inputs for this simulator are the weather information sent by the Meteo Simulator, while
the output is the heat-pump demand load for the given time step, which is forwarded to
the Power Grid Simulator.

The power grid simulator

The power grid simulator is a stateless Simulator that emulates a power grid model with
different connected loads. The power grid is based on the model presented in Esteb-
sari et al. (2021) and takes advantage of the Python electrical system analysis tool pan-
dapower (Thurner et al. 2018). This model contains a representation of the network
topology and its main components (e.g. buses, lines, transformers) along with their
nominal parameters. It is easily configurable and allows the integration of loads, genera-
tors, and storage. This Simulator collects the hourly data coming from the PV Simulator
and the Building Simulator (i.e. the PV power generation and the Building power load)

Page 16 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

to solve the power flow analysis of the grid network. In this simulation, it is actually used
as a discrete event simulator that is triggered by the reception of both building and PV
data.

Benchmark configuration

The benchmark design will consider the general Scenario depicted above. The scalabil-
ity problem is addressed by rising up the M number of Model Instances (i.e. Agents for
AIOMAS framework) of the PV and Building Simulators. The benchmark will run on an
Internet distributed computing system, which is composed by a cluster of 4 nodes with a
master node serving as Orchestrator when needed. The implementations of the Scenario
for each configuration and its cluster deployment are described in Fig. 7 and are:

(a) The Classic Co-simulation implementation (see Fig. 7a) that uses the master node
as Orchestrator and the four cluster nodes, one for each of the above-mentioned Simula-
tors. Two cluster nodes manage respectively the Meteo Simulator and the Power Grid
Simulator, each one handling its single Model Instance. The remaining nodes manage
respectively the PV Simulator and the Building Simulator. Finally, each Simulator itera-
tively runs M Model Instances in its process;

(b) The Multi-process Co-simulation implementation (see Fig. 7b) that uses the same
implementation of the previous case (a). However, the cluster nodes, assigned to PV and
Building Simulators, replicate on N processes each individual Simulator, equally distrib-
uting in each process the M Model Instances. For instance, each of the PV Simulator
processes A1, ...,AN manages M/N Model Instances;

(c) The Multi-Agent System as co-simulation implementation (see Fig. 7c) that uses the
four cluster nodes without the master node. Two cluster nodes implement a simple Con-
tainer structure that handles respectively the Meteo Agent and the Power Grid Agent.
The other two cluster nodes manage respectively the Main PV Container and Main
Building Container, each one handling M Agents. Each Main Container spawns N child
Containers that handle M/N Agents. For instance, the Main PV Container spawns child
Containers A1, ...,AN each one managing M/N equally distributed Agents;

(d) The Classic Co-simulation implementation with encapsulated Multi-Process Multi-
Agent Systems (see Fig. 7d) that uses the same implementation of the Classic Co-simula-
tion case. However, the PV and Building Simulators processes on the two cluster nodes
encapsulate the Main Container class that manages the spawning of N child Containers
in different sub-processes. Each of the child Container manages M/N Agents like in the
Classic Multi-Agent System implementation of Main PV/Building Containers;

Finally, the analysis was conducted on seven different co-simulation configurations.
For each configuration, the M number of Model Instances (PVs and buildings) was
scaled from 1, 100, 10k, 100k, to 1M with the exception of configurations involving
Mosaik. In fact, Mosaik has a design limitation on the maximum size of data exchanged
that did not allow scaling beyond 10k of Model Instances. It is correct to point out that
this limitation could be overcome by applying some modifications to the inner SimPy
(python library) methods used in the Mosaik source code. However, since these modifi-
cations are not user-friendly and are not included in Mosaik’s API implementation, this
framework was used as is, with this scaling limitation. The proposed configurations are:
(i) two configurations of the Classic Co-simulation (Fig. 7a) for HELICS and Mosaik; (ii)

Page 17 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

two configurations of the Multi-process Co-simulation (Figure 7b) for HELICS multi-
process and Mosaik multi-process; (iii) one configuration of MAS as a Co-simulation
framework (Fig. 7c) for AIOMAS; (iv) two configurations of the Classic Co-simulation
with encapsulated MAS (Fig. 7d) for HELICS-AIOMAS and Mosaik-AIOMAS. To con-
clude and easily interpret the analysis of experimental results, in the next section, a sum-
mary of all the tested configurations is presented in Table 1.

Experimental results
The co-simulation benchmark has been deployed in a Virtual Machines environment
based upon OpenStack cluster with the specification illustrated in Table 2.

To test the scalability of the different implementations presented in Fig. 7, the Multi-
model energetic Scenario has been used as a baseline for the seven proposed configu-
rations in “Benchmark configuration” section. The co-simulated environment has been
run for seven winter days with configurable time resolutions for each simulator (1 h for
buildings and power grid, 15 min for PVs and meteo). Model Instances of Building and
PV Simulators were scaled up. In the next sections, the time-based KPIs mentioned in
“Benchmark key performance index (KPI)” section are presented to evaluate the com-
parison among the different co-simulation framework configurations.

Setup execution time

The setup execution time considers the time duration of the Scenario configuration
operations. In a nutshell, these operations are related to the Initialization task of a gen-
eral co-simulation framework. In Fig. 8, the setup execution time performances of the
different configurations are presented. Classic Mosaik keeps the setup time nearly con-
stant around 7s but it cannot handle more than 10k instances due to its design limita-
tions. This result highlights that Classic Mosaik is a really well-designed and efficient

Table 1 Summary of the tested configurations

Tested configurations description

Mosaik Classic Mosaik

HELICS Classic HELICS

AIOMAS Co-simulation framework implemented through AIOMAS library

Mosaik multi-process Mosaik implementation parallelized through multiprocessing

HELICS multi-process HELICS implementation parallelized through multiprocessing

Mosaik-AIOMAS Mosaik co-simulation with encapsulated MAS simulator (AIOMAS)

HELICS-AIOMAS HELICS co-simulation with encapsulated MAS simulator (AIOMAS)

Table 2 Summary of the computational nodes used in the simulations

Node name Core RAM Storage OS Role

Cloud Master 16 64 Gb 128 Gb Ubuntu server 20.04.2 LTS Orchestrator (when needed)

Cloud 1 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Building Simulators

Cloud 2 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS PV Simulators

Cloud 3 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Meteo Simulator

Cloud 4 32 128 Gb 256 Gb Ubuntu server 20.04.2 LTS Power Grid Simulator

Page 18 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

framework when dealing with limited-size co-simulation environments. Mosaik multi-
process instead presents the most time-consuming initialization phase among the
benchmarked frameworks. In fact, Mosaik multi-process experiences a big setup time
duration difference when rising from 1 instance (i.e. 1 process) to 100 instances (i.e. mul-
tiple processes), going from around 6s to 62s. Then, the trend flattens out because the
same number of parallel processes have been launched. In this graph HELICS, HELICS
multi-process, and HELICS-AIOMAS do not differ much in performance, but an inter-
esting aspect of multi-process HELICS is that it slightly reduces its computation time
when going from 100 to 10k model instances, saturating the available cores. Classic
HELICS suffers a drastic increase in the setup time from around 7s to 66s only when the
instance number passes from 100k to 1M. The best performing configuration is HELICS
multi-process framework which is stable at around 5s from 1 to 100k instances. It is
worth noting that this framework drastically reduces the time increase of classic HELICS
when going from 100k to 1M instances by distributing the computational power for any
Simulator over multiple cores, resulting in a setup time of 19s. For the Mosaik-AIOMAS
framework, results are similar to the Mosaik multi-process framework with the main
difference that the major time increment occurs when going from 10s for 100 instances
to 61s for 10k instances. This is due to the threshold used to decide when AIOMAS
starts the creation of the multi-process containers. In our case, this threshold is above
100 Model instances. This behaviour does not occur when coupling HELICS and AIO-
MAS because launching multi-processes and container creation is handled by HELICS
with less computational overhead, following the same HELICS multi-process trend.

Average time step duration

The average time step duration reports the execution time of a complete time step that
is estimated as the maximum among the mean time step duration of every single Sim-
ulator. Figure 9 reports this KPI for all the benchmarked co-simulation frameworks.
The average time step duration differences among the co-simulation frameworks are
really small up to 10k instances, except for Mosaik-AIOMAS and AIOMAS due to the
overhead introduced by the message exchange between Agents. Indeed, Mosaik-AIO-
MAS takes 0.78s at 10k instances and AIOMAS takes 0.76s, while all the others take
around 0.1s. As already mentioned, a comparison with Mosaik is only possible below
10k Model Instances. Up to this point, the benefits of a multi-processing approach are

Fig. 8 Setup time duration of the different co-simulation frameworks and their configurations

Page 19 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

not significant compared to the respective classic solutions. The limitations of both clas-
sic and the AIOMAS frameworks are clearly visible when dealing with more than 10k
Model Instances. In fact, classic HELICS takes about 16 times longer than its multi-pro-
cess version with 1M Model Instances. Instead, solutions incorporating AIOMAS even
though they perform better than pure HELICS are outperformed by HELICS multi-pro-
cess. Overall, the configuration with multi-process HELICS performs the best, particu-
larly with paramount performance on the largest scaling Scenario.

Total execution time

Total execution time represents the time duration of the entire co-simulation process
from Initialization to the end of all the tasks. Figure 10 presents trend similarities
with the average time step duration KPI in Fig. 9.

In fact, this KPI is a composition of the setup execution time and the sum of the
duration of the time steps required to fulfil the co-simulation of the Scenario. When
dealing with short simulations, the effect of the setup execution time on the total exe-
cution time is larger. Instead, with longer simulations, this effect could be negligi-
ble. The KPI trends of the total execution time in Fig. 10 consolidate the performance
considerations made in “Average time step duration” section, showing the HELICS
multi-process as the best performing framework.

Fig. 9 Average time step duration of the different co-simulation frameworks and their configurations

Fig. 10 Total execution time of the proposed Scenario for the different co-simulation frameworks and their
configurations

Page 20 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

Figure 11 is an enlarged representation of Fig. 10, that focuses on the first 10k Model
Instances so as to fairly compare the execution times of all proposed solutions. By ana-
lyzing this graph, it can be seen that Mosaik and Mosaik-AIOMAS diverge about 80s
while Mosaik multi-process by about 50s from the best performing solutions. This is due
to the higher setup execution time of these configurations and greater variability of the
average time step execution.

Qualitative comparison

Table 3 presents a qualitative comparison among the benchmarked co-simulation solu-
tions. This comparison is done considering the only multi-process versions of HELICS
and Mosaik frameworks because their classic versions, as well as the hybrid configura-
tions (HELICS-AIOMAS and Mosaik-AIOMAS), do not bring any KPI improvements.
In addition, also AIOMAS is included in this comparison, it is not a co-simulation

Fig. 11 Zoom on the first 10,000 instances for the Total execution time

Table 3 Qualitative comparison among Mosaik, HELICS, and AIOMAS

Co-simulation frameworks Mosaik HELICS AIOMAS

Scenario Configuration Programmatic
(scripting)

JSON Programmatic (Agent-
based/ scripting)

Complexity Low Low High

Orchestrator Synchronization Scheduler (SimPy) Scheduler (RTI) Custom (Distributed
clocks)

Communication
paradigm

Request/ Response Publish/ Subscribe Request/ Response

Data Exchange TCP ZeroMQ TCP/RPC

Tipology Time-stepped/
Event-based

Time-stepped/
Event-based

Time-stepped/ Event-
based

Simulator Integra-
tion

Programming lan-
guages / Simulator
Software

Python MATLAB Java
C++

Python MATLAB
Java C++ Nim

Python

Integration Com-
plexity

Low Low High

Scalability Horizontal Distributed Distributed Distributed

Vertical Multi-process
(Manual)

Multi-process (Auto-
matic)

Concurrent Multi-
threading (Automatic)
Multi-processing
(Manual)

Performance Low High Medium

Page 21 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

framework but, as in our case, it could be used as a viable alternative to build one from
scratch. The qualitative comparison among the benchmarked co-simulation solutions
presented in Table 3 points out different characteristics of the frameworks that can help
in choosing the right solution depending on the Scenario under analysis. Concerning
the Scenario component (see Scenario in Table 3), a first consideration could be made
on how the configuration is performed and what effort is required to fulfill the Sce-
nario implementation. Mosaik needs a Python script in which the end user must start
the Simulators, instantiate their Models and link them through connectors. This process
requires low effort since it is well documented and standardized. HELICS instead uses a
JSON file to set up all the required configurations and, thus, has a really low implemen-
tation complexity. However, this process could suffer from errors in deploying the cor-
rect connection among Model Instances. Finally, AIOMAS requires more effort in the
initialization due to the absence of predefined Scenario standards. Linking and instan-
tiating the Models can occur within the Agent definitions or in separate scripts, and is
completely up to the end user design. This results in a more complex but freer imple-
mentation process.

Simulation management, which is the primary responsibility of the Orchestrator, has
different characteristics among the three frameworks (see Orchestrator in Table 3);
specifically with respect to communications and synchronization. Mosaik handles
synchronization via its Scheduler, limiting or making cumbersome custom intra-step
operations. Vice versa, HELICS offers an RTI to manage the time regulation and syn-
chronization, allowing greater freedom of development than the Mosaik Scheduler.
In contrast, AIOMAS does not offer a synchronization orchestrator, thus time regula-
tion must be autonomously implemented by exploiting distributed external clocks and
designing the wrapping agents properly. This means that the end user must take into
account this task in a programmatic way encapsulating time management into Agents
or creating an external agent as an orchestrator. The communication approach is based
on Request/Response for both Mosaik and AIOMAS that exploit respectively TCP and
RPC over TCP for communication purposes. HELICS instead uses a Publish/Subscribe
approach that could enhance the performance but can lead to wasting resources in data
polling requests. To conclude, the three frameworks implement both event-based and
time-based simulation paradigms.

Another important aspect is Simulator Integration (see Simulator Integration in
Table 3). While HELICS and Mosaik allow the integration of a wide range of Simulators
based on different programming languages and simulation software, AIOMAS has no
particular API for integrating other programming languages than Python and, if neces-
sary, this must be implemented ad-hoc by the end user. Therefore, the integration of the
Simulators in Mosaik and HELICS results in a low-effort task. AIOMAS instead is more
complex.

Looking at Scalability (see Scalability in Table 3), the three frameworks can deploy
Simulators or Containers horizontally by distributing them on different cluster nodes
for their management. However, they differ in the possible implementation of vertical
scaling. For instance, Mosaik allows multi-processing but its implementation has to be
done manually. HELICS multi-processing instead is handled automatically by the co-
simulation framework. AIOMAS provides an automatic concurrent multi-threading

Page 22 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

of Containers. Conversely, AIOMAS multi-processing requires a manual implemen-
tation. Finally, the above features and proposed results allow for a comparison of the
overall scalability performance. Mosaik performed the worst scalability mainly due to
the intrinsic limitation that does not allow to scale up beyond 10k Model Instances.
AIOMAS performed medium scalability limited by the overhead increment when deal-
ing with a rise of Agents. HELICS returned the best scalability, showing that its multi-
process management of Simulators is capable of reaching 1M instances with paramount
performances.

Discussion on experimental results

The experimental results presented in previous Sections allows to determine the proper
selection among the presented co-simulation frameworks and configurations depending
on the MES scenario dimension:

(a) Mosaik with a Classic configuration offers easy implementation of a MES scenario
and is a well-documented framework. It works well with small to medium scenarios but
has limited scalability when going over large scenarios. Furthermore, when dealing with
complex relationships and data exchange among simulators it is not as efficient as other
solutions.

(b) HELICS with a Classic configuration also offers extensive documentation and an
easy implementation, a little less intuitive with respect to Mosaik. It easily scales over
a million instances, being an optimal choice for small to large scenarios. Thanks to its
publish/subscribe paradigm (Eugster et al. 2003), complex interactions among simula-
tors are easier to implement.

(c) AIOMAS can be used to implement a co-simulation framework, but, being a
Generic Python library for MAS, the implementation is up to the user. Thus, the docu-
mentation of AIOMAS is not oriented to this kind of usage resulting in a lack of sup-
port. Depending on these reasons it must require much more effort and could not be
suitable for inexperienced programmers. On the other side, it gives a lot of freedom
when designing interactions among agents or complex data exchange workflows. It is
suitable for highly customized scenarios such as event-based Simulators that behave in
a sequential workflow. It can scale from small to large scenarios but with significantly
lower performances with respect to HELICS due to the high overhead of the Agent Data
Exchange Management.

(d) Mosaik with a Multi-processing configuration is thought to speed up the Mosaik
Classic configuration. The implementation requires some manual workarounds that are
not embedded into the Mosaik framework as it is. It can only manage small/medium
scenarios because it suffers from the same limitations of the classic version, but it brings
some benefits in terms of timing performance. Then choosing this configuration will
depend on a personal trade-off between implementation efforts and slightly better tim-
ing performances. As a last consideration it could be useful when dealing with simula-
tors running on different machines.

(e) HELICS with a Multi-processing configuration is the best performing solution in
terms of scalability. It can support above the million Model Instances with stunning tim-
ing performances. Thus it is suitable for very large scenarios, or very complex systems
populated by lots of modelled components to be. The multi-processing configuration is

Page 23 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

well described and embedded in the HELICS documentation. From the point of view of
Simulators interactions have the same qualities of classic HELICS.

(f) Mosaik with encapsulated AIOMAS configuration integrates the MAS simulator
inside the Mosaik framework. The implementation of this configuration is not straight-
forward but some examples in Mosaik documentation are present. By looking at the
timing performance when scaling up it does not bring any benefits with respect to the
Mosaik or AIOMAS classic solutions, and it suffers from the same model instance limit
of Mosaik. Thus, it is suitable for small/medium scenarios. In addition, it allows encap-
sulation of a MAS ecosystem inside a co-simulation framework. This can be useful when
dealing with complex systems having a high number of interactions that we want to con-
tain inside the MAS environment.

(g) HELICS with encapsulated AIOMAS configuration integrates the MAS simula-
tor inside the HELICS framework. No documentation for this configuration is present,
making its implementation require more effort. In a very large scenario, it performs
slightly better than HELICS with Classic configuration but it cannot be compared with
the performances of multi-processing HELICS. The last consideration is that the reason-
ing on interactions above mentioned for Mosaik-AIOMAS still holds for this configura-
tion, making HELICS-AIOMAS the best choice among the solutions with encapsulated
AIOMAS.

In conclusion, up to 100 Model Instances for each Simulator, Mosaik with a Multi-pro-
cessing configuration, HELICS with a Classic configuration, and HELICS with encap-
sulated AIOMAS configuration are the best performing solutions. The choice could
be dictated by the needs of the analysis: Mosaik has a very simple implementation, but
places some constraints on interactions between simulators, HELICS offers more free-
dom on interactions, and AIOMAS offers much more freedom, but with a greater imple-
mentation effort. By increasing the number of instances, especially from 10 k, the best
solution in terms of time performance and with the same features is the HELICS with a
Multi-processing configuration.

Conclusion
This paper compared the scalability performance of two popular co-simulation frame-
works and a MAS library used to build a co-simulation framework. Mosaik, HELICS,
and AIOMAS were tested on a simple multi-model energy scenario in order to under-
stand their ability to increase the number of co-simulation instances. The increase
in model instances, which might be excessive for the given scenario, was used as a
way to understand the response of these solutions when dealing with larger scenarios,
from the perspective of simulating entire cities or regions. The co-simulation scenario
consisted of a weather simulator, a photovoltaic simulator, a building heating/cool-
ing simulator, and a power grid simulator. The complexity of the models involved was
heterogeneous, but the interactions between them were kept simple. The reason for
this choice was to be able to easily increase the number of model instances for the PV
and Building simulators and to focus the study on the increasing size of the problem.
The results show that Mosaik has a limitation in the number of connected entities
that stopped at 10k model instances of PV and buildings. On the other hand, HELICS
demonstrated the ability to scale up to 1M model instances. AIOMAS demonstrated

Page 24 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

the same ability to scale as HELICS with respect to the number of instances. How-
ever, HELICS outperforms AIOMAS in terms of simulation time if the simulators are
run in multiprocess. To draw some conclusions, it is possible to say that Mosaik is
a very useful framework when dealing with small/medium size environments, offer-
ing good quality results and ease of implementation. AIOMAS allows implementing
co-simulation for very large scenarios, but it does not scale perfectly because of its
exponential increase in overhead. Finally, HELICS outperforms all other solutions in
terms of scalability while retaining all the advantages of a well-structured framework
like Mosaik. HELICS, in particular when implemented in its multi-processing con-
figuration, gives the best scalability performance allowing to be suitable for any sce-
nario size, furthermore, it is easy to be implemented and allows more freedom on
the interactions design due to its publish subscribe paradigm, on the overall this con-
figuration proved to be the most flexible and performing above all the tested ones.
This work is intended to test and compare the co-simulation frameworks in different
configurations on their basic ability to scale up a generic MES scenario. So, the time-
based KPIs are still related to the kind of MES scenario and simulators involved. Thus,
a future works will be the standardization of benchmarking standards for co-simu-
lation framework taking into consideration the different kinds of simulators charac-
teristics (e.g. DE vs. CT, real-time vs. non real-time). Moreover, the development of
co-simulation scenarios in cluster computing systems by integrating simulators and
co-simulation frameworks in containers, such as Dockers managed by a Kubernetes
orchestrator, is part of our future work to study the scalability of large co-simulation
setups.

Abbreviations
DE Discrete event
DER Distributed energy resources
DRTS Digital real-time simulator
EMT Electromagnetic transient
FMI Functional mock-up interface
HLA High-level architecture
ICT Information communication & technology
KPI Key performance indicator
MAS Multi-agent system
MES Multi-energy system
OOP Object oriented programming
PV Photovoltaic
RES Renewable energy source
RPC Remote procedure call
RTI Run-time infrastructure
SoS System of systems

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of Energy Informatics Volume5 Supplement 4, 2022: Proceedings of the Energy
Informatics. Academy Conference 2022 (EI.A 2022). The full contents of the supplement are available online at https:// energ
yinfo rmati cs. sprin gerop en. com/ artic les/ suppl ements/ volume- 5- suppl ement-4.

Author contributions
LB: Methodology, Supervision, Writing; PRM: Simulation models, Writing; MM: Software development; EP: Methodology,
Supervision, writing; LB: Conceptualization, Supervision, Methodology, Writing. All authors read and approved the final
manuscript.

Funding
This paper is funded by the authors. Affiliation: Politecnico di Torino.

https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-4
https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-4

Page 25 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 21 December 2022

References
Abgottspon H, Schumann R, Epiney L, Werlen K (2018) Scaling: managing a large number of distributed battery energy

storage systems. Energy Inf 1(1):55–71
Authors U (2021) Glasgow Climate Pact. Accessed 26 Jun 2022. Available from: https:// unfccc. int/ docum ents/ 310475
Barbierato L, Estebsari A, Bottaccioli L, Macii E, Patti E (2020) A distributed multimodel cosimulation platform to assess

general purpose services in smart grids. IEEE Trans Ind Appl 56(5):5613–5624
Barbierato L, Schiera DS, Patti E, Macii E, Pons E, Bompard EF, et al (2020) GAMES: a general-purpose architectural model

for multi-energy system engineering applications. In: 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC); p. 1405–1410

Barbierato L, Pons E, Mazza A, Bompard E, Subramaniam Rajkumar V, Palensky P et al (2022) Stability and accuracy analy-
sis of a distributed digital real-time co-simulation infrastructure. IEEE Transactions on Industry Applications. p. 1–1

Bhattarai BP, Lévesque M, Bak-Jensen B, Pillai JR, Maier M, Tipper D et al (2016) Design and cosimulation of hierarchical
architecture for demand response control and coordination. IEEE Trans Industr Inf 13(4):1806–1816

Blochwitz T, Otter M, Arnold M, Bausch C, Clauß C, Elmqvist H, et al (2011) The functional mockup interface for tool inde-
pendent exchange of simulation models. In: Proceedings of the 8th international Modelica conference. Linköping
University Press; p. 105–114

Bottaccioli L, Estebsari A, Pons E, Bompard E, Macii E, Patti E et al (2017) A flexible distributed infrastructure for real-time
co-simulations in smart grids. IEEE Trans Industr Inf 13(6):3265–3274

Bottaccioli L, Patti E, Macii E, Acquaviva A (2017) GIS-based software infrastructure to model PV generation in fine-
grained spatio-temporal domain. IEEE Syst J 12(3):2832–2841

Brihmat F, Mekhtoub S (2014) PV cell temperature/PV power output relationships homer methodology calculation.
In: Conférence Internationale des Energies Renouvelables” CIER’13”/International Journal of Scientific Research &
Engineering Technology. vol. 1. International Publisher &C. O. p. 0–0

Bruinenberg J, Colton L, Darmois E, Dorn J, Doyle J, Elloumi O et al (2012) CEN CENELEC ETSI Smart Grid Coordination
Group on Smart Grid Reference Architecture. CEN CENELEC ETSI Technical Report. p. 98–107

Camus B, Paris T, Vaubourg J, Presse Y, Bourjot C, Ciarletta L et al (2016) MECSYCO: a Multi-agent DEVS Wrapping Platform
for the Co-simulation of Complex Systems. Accessed 26 Jun 2022

Coelho VN, Cohen MW, Coelho IM, Liu N, Guimarães FG (2017) Multi-agent systems applied for energy systems integra-
tion: state-of-the-art applications and trends in microgrids. Appl Energy 187:820–832

Estebsari A, Mazzarino PR, Bottaccioli L, Patti E (2021) IoT-enabled real-time management of smart grids with demand
response aggregators. IEEE Trans Ind Appl 58(1):102–112

Eugster PT, Felber PA, Guerraoui R, Kermarrec AM (2003) The many faces of publish/subscribe. ACM Comput Surveys
(CSUR) 35(2):114–131

Garau M, Ghiani E, Celli G, Pilo F, Corti S (2018) Co-simulation of smart distribution network fault management and recon-
figuration with lte communication. Energies 11(6):1332

Georg H, Müller SC, Dorsch N, Rehtanz C, Wietfeld C (2013) INSPIRE: integrated co-simulation of power and ICT systems
for real-time evaluation. In: 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm);
p. 576–581

Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2018) Co-simulation: a survey. ACM Comput Surveys (CSUR)
51(3):1–33

IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture (HLA)—Object Model Template (OMT)
Specification. IEEE Std 15162-2010 (Revision of IEEE Std 15162-2000). 2010;p. 1–110

IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture (HLA)—Object Model Template (OMT)
Specification—Redline. IEEE Std 15162-2010 (Revision of IEEE Std 15162-2000) - Redline. (2010);p. 1–112

Jung T, Shah P, Weyrich M (2018) Dynamic co-simulation of internet-of-things-components using a multi-agent-system.
Procedia CIRP 72:874–879

Massano M, Macii E, Patti E, Acquaviva A, Bottaccioli L (2019) A grey-box model based on unscented Kalman filter to
estimate thermal dynamics in buildings. In: 2019 IEEE International Conference on Environment and Electrical Engi-
neering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I &CPS Europe). IEEE. p. 1–6

Mattei M, Notton G, Cristofari C, Muselli M, Poggi P (2006) Calculation of the polycrystalline PV module temperature
using a simple method of energy balance. Renewable Energy 31(4):553–567

https://unfccc.int/documents/310475

Page 26 of 26Barbierato et al. Energy Informatics 2022, 5(Suppl 4):53

Mazzarino PR, De Vizia C, Macii E, Patti E, Bottaccioli L (2021) An agent-based framework for smart grid balancing exploit-
ing thermal flexibility of residential buildings. In: 2021 IEEE International Conference on Environment and Electrical
Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe); p. 1–6

Mihal P, Schvarcbacher M, Rossi B, Pitner T (2022) Smart grids co-simulations: survey & research directions. Sustain Com-
put Inf Syst 35:100726

Motie Y, Belghache E, Nketsa A, Georgé JP (2018) Interoperability based dynamic data mediation using adaptive multi-
agent systems for co-simulation. In: 2018 International Conference on High Performance Computing & Simulation
(HPCS). IEEE. p. 235–241

Nunna HK, Doolla S (2012) Multiagent-based distributed-energy-resource management for intelligent microgrids. IEEE
Trans Industr Electron 60(4):1678–1687

Palensky P, Van Der Meer AA, Lopez CD, Joseph A, Pan K (2017) Cosimulation of intelligent power systems: fundamentals,
software architecture, numerics, and coupling. IEEE Ind Electron Mag 11(1):34–50

Palensky P, Cvetkovic M, Gusain D, Joseph A (2021) Digital twins and their use in future power systems. Digital Twin 1(4):4
Palmintier B, Krishnamurthy D, Top P, Smith S, Daily J, Fuller J (2017) Design of the HELICS high-performance transmission-

distribution-communication-market co-simulation framework. In: 2017 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES); p. 1–6

Pan Z, Xu Q, Chen C, Guan X (2016) NS3-MATLAB co-simulator for cyber-physical systems in smart grid. In: 2016 35th
Chinese control conference (CCC). IEEE 2016:9831–9836

Paris T, Ciarletta L, Chevrier V (2017) Designing co-simulation with multi-agent tools: a case study with NetLogo. In: Multi-
Agent Systems and Agreement Technologies. Springer. p. 253–267

Pipattanasomporn M, Feroze H, Rahman S (2009) Multi-agent systems in a distributed smart grid: design and implemen-
tation. In: 2009 IEEE/PES Power Systems Conference and Exposition. IEEE. 1–8

Reinbold V, Protopapadaki C, Tavella JP, Saelens D (2019) Assessing scalability of a low-voltage distribution grid co-
simulation through functional mock-up interface. J Build Perform Simul. p. 1–13

Ringkjøb HK, Haugan PM, Solbrekke IM (2018) A review of modelling tools for energy and electricity systems with large
shares of variable renewables. Renew Sustain Energy Rev 96:440–459

Roche R, Blunier B, Miraoui A, Hilaire V, Koukam A (2010) Multi-agent systems for grid energy management: a short
review. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. IEEE. p. 3341–3346

Scherfke S (2014) aiomas Documentation. Accessed 26 Jun 2022
Schiera DS, Minuto FD, Bottaccioli L, Borchiellini R, Lanzini A (2019) Analysis of rooftop photovoltaics diffusion in energy

community buildings by a novel Gis-and agent-based modeling co-simulation platform. IEEE Access 7:93404–93432
Schloegl F, Rohjans S, Lehnhoff S, Velasquez J, Steinbrink C, Palensky P (2015) Towards a classification scheme for co-

simulation approaches in energy systems. In: 2015 International symposium on smart electric distribution systems
and technologies (EDST). IEEE. 516–521

Schütte S, Scherfke S, Tröschel M (2011) Mosaik: a framework for modular simulation of active components in smart
grids. In: 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS). IEEE. 55–60

Schweiger G, Gomes C, Engel G, Hafner I, Schoeggl J, Posch A et al (2019) An empirical survey on co-simulation: promis-
ing standards, challenges and research needs. Simul Model Pract Theory 95:148–163

Sergi B, Pambour K (2022) An evaluation of co-simulation for modeling coupled natural gas and electricity networks.
Energies 15(14):5277

Song J, Jiang S, Zhang P, Zhou J (2017) Real-time digital co-simulation method of smart grid for integrating large-scale
demand response resources. CIRED-Open Access Proc J 2017(1):1949–1953

Steinbrink C, van der Meer AA, Cvetkovic M, Babazadeh D, Rohjans S, Palensky P et al (2018) Smart grid co-simulation
with MOSAIK and HLA: a comparison study. Comput Sci-Res Dev 33(1):135–143

Steinbrink C, Blank-Babazadeh M, El-Ama A, Holly S, Lüers B, Nebel-Wenner M et al (2019) CPES testing with Mosaik: co-
simulation planning, execution and analysis. Appl Sci 9(5):923

Thurner L, Scheidler A, Schäfer F, Menke J, Dollichon J, Meier F et al (2018) pandapower—an open-source python tool for
convenient modeling, analysis, and optimization of electric power systems. IEEE Trans Power Syst 33(6):6510–6521

United Nations (2022) Energy, UN-Habitat. Accessed 26 Jun 2022. Available from: https:// unhab itat. org/ urban- themes/
energy/

Widl E, Wild C, Heussen K, Rikos E, Hoang TT (2022) Comparison of two approaches for modeling the thermal domain of
multi-energy networks. In: 2022 Open Source Modelling and Simulation of Energy Systems (OSMSES). IEEE. 1–6

Zhang J, Daily J, Mast RA, Palmintier B, Krishnamurthy D, Elgindy T et al (2020) Development of HELICS-based high-
performance cyber-physical co-simulation framework for distributed energy resources applications. In: 2020 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm). p. 1–5

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://unhabitat.org/urban-themes/energy/
https://unhabitat.org/urban-themes/energy/

