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Abstract: Because of its geometry dependence and loss of physical meaning, the incremental crack
resistance curve cannot characterize ductile fractures with large crack extensions and plastic defor‑
mations. Therefore, the energy dissipation rate R is employed to overcome these deficiencies, even
though specimen size effects still exist. In the study, considering the fractal crack path and con‑
comitant plastic dissipation in the fractal domain, a scale‑invariant energy dissipation rate, γp*, is
proposed in the context of renormalization group theory. Some experiments in the literature have
validated this approach. The fitted fractal energy dissipation rate is independent of the specimen size
and initial crack length; moreover, as the specimen size increases, progressive fractality vanishing is
found consistently with geometrical multifractality.

Keywords: fractal; energy dissipation rate; crack growth resistance; ductile fracture

1. Introduction
The crack resistance curve is widely applied to characterize irreversible energy dis‑

sipation. The ductile crack growth resistance curve is generally presented in the form of
fracturemechanics parameters, i.e., path‑independent J‑integral or crack opening displace‑
ment δ versus crack extension ∆a—that is, a crack starts to propagate at J = J0 or δ = δ0, then
grows stably, and eventually reaches its steady‑state value. Typically, the steady‑state
value is much larger than the initiation value, and primarily comprises the additional ir‑
reversible contribution from remote and local plastic energy dissipation in the bulk [1].
Therefore, ductile fracture in metals generally exhibits a rising resistance curve, in contrast
to the flat curve of brittle materials.

Extensive research has focused on this problem. Wittmann et al. [2] argued that pro‑
gressive dilatation of the fracture process zone leads to an increase in crack resistance
during crack growth until a specific value corresponding to the fully developed process
zone is reached. Size effects may be caused by the deviation of the actual stress from the
first singular‑term solution, i.e., Hutchinson–Rice–Rosengren (HRR) solution, at a finite
distance from the crack front. The higher accuracy of stress with higher‑order series ex‑
pansion as well as the first term of the stress solution can capture a better crack initiation
toughness and resistance curve [3–6]. However, for large plastic energy dissipation and
crack extension, the two or three‑parameters fracture parameters cannot describe the ac‑
cumulated energy at a given crack increment and the true “driving force” [7,8]. Despite
these drawbacks, the fracture resistance curve remains the most conventional method for
the ductile fracture toughness characterization. Moreover, the classical fracture mechan‑
ics must suppose that the resistance curve eventually reaches steady values if the cracked
body is relatively large compared with the fully developed process zone at the crack tip.
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Obviously, this postulate does not sufficiently explain some phenomena, particularly re‑
garding crack propagation and its topology.

2. Fractal Aspects and Energy Dissipation Rate in Fracture
Following the pioneering works by Mandelbrot [9,10], the achievements of the frac‑

tal approach in fractures are fruitful and effective, especially regarding crack topologies
and surfaces in a finite range of scales. Williford [11] proposed a power‑law relationship
between the J‑integral and the crack length increment assuming an invasive fractal crack
tip geometry. Gong and Lai [12] further investigated the relationship between the fracture
resistance JR curve and fractal fracture surface in alloys. Especially, the fractality of the
fracture surface, crack path, and related irreversible energy have been widely recognized
in both brittle and ductilematerials [13–24]. Fractal patternswere experimentally observed
by Kleiser and Bocek [13] in metals, where strain localization led to the formation of frac‑
tal slip bands. Pioneering investigations into fractal fracturemechanics were performed by
Mosolov [14], Goldshtein and Mosolov [15], and Yavari [16]. Alves et al. [17] investigated
the stress singularity and path dependence of J‑integral on fractal cracks. The classical
Griffith’s theory for fractal cracks has led to the conclusion that, because of the nondif‑
ferentiable fractal sets, cracking requires infinite surface energy to create an increment of
fractal crack extension regardless of the nominal crack growth length [18]. In engineering,
there exists upper and lower bounds in the scaling range for all fractal structures: the up‑
per bound is represented by the macroscopic size, whereas the lower bound is related to
the internal characteristic length [19–23]. Borodich [24] thus extended Griffith’s criterion
to fractal cracks by a fractal measurement of surface energy per unit, and the generalized
Griffith’s criterion can be stated locally as ∆Ue = ∆Us = 2γ f (D)∆mD, where ∆Ue is the
driving force or the strain energy release rate corresponding to the crack increment ∆a, and
∆Us is the crack growth resistance. The fractal specific surface energy, γf, is a function of
material microstructure ∆mD and fractal dimension D.

Carpinteri and Chiaia [18] suggested an interpretation of crack resistance behavior
in terms of a self‑similar fracture surface. Accordingly, the nominal fracture resistance is
related to the renormalized fracture energy and fractal crack increment. As a result, the
energy dissipation rate of smooth cracks is independent of the crack length and remains
constant, whereas that of fractal cracks increases with crack propagation. Because of the
discrepancy between ideal and natural fractal sets, crack‑size scaling energy dissipation
is a geometrical multifractal. The effect of fractality on the mechanical properties gradu‑
ally vanishes as the scale of the crack size increases. Owing to the fractional measurement
of physical fractal sets, the correspondingmechanical quantities must consider anomalous
physical dimensions to obtain physically universal quantities [19–23]. Currentwork shows
that a physically universal and scale‑independent energy dissipation rate can be obtained
by considering an anomalous physical dimension in the energy dissipation rate, abandon‑
ing the complete similarity of the Euclidean topologies.

Ductile fracture tests following BSI 7448 Part 4 [25] and ASTM E1820 [26] have con‑
firmed that the irreversible energy rate is not only loading configuration–dependent but
also intimately related to the crack and specimen size. The path‑independent J‑integral or
crack tip open displacement thus cannot represent the strain energy release rate and be‑
comes a description of accumulated energy at a given crack extension, deviating from the
true “driving force” for a propagating crack. Several researchers [7,27–30] have suggested
a more plausible characterization of the local separation energy related to the creation of
new surfaces and plastic deformation remote from the crack tip, i.e., the energy dissipation
rate, R, which is defined as the rate of all nonrecoverable energy dissipation with regard
to the crack increment. A stable crack increment, da, must satisfy the energy balance as

dw = dU (1)

where dw is the energy input rate, and dU is the rate of internal energy dissipation from all
causes, including plastic yielding remote from the crack tip. Furthermore, the dissipated
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work rate dU for the cracked body can be divided into the elastic (recoverable) component
wel, Griffith energy, 2γ, and plastic component, wpl [1]:

U = wel + wpl + 2γBda︸ ︷︷ ︸
Udis

(2)

For ductile fractures involving large‑scale yielding, remote and local plasticity both
contribute to wpl, and distinguishing between these two irreversible energies is extremely
difficult. Therefore, the conventional test method that characterizes the ductile fracture
toughness by resistance curves embraces all unrecoverable energy dissipation together,
particularly in ductile tearing and deep notch/crack extension, which coincides with the
definition of hardening cohesive energy, as shown in Figure 1 [31].

Figure 1. Different energy dissipation regions: fracture, local plasticity, and remote plasticity.

For a stable crack extension, the energy dissipation rate is physically meaningful, as
well as more generally, in contrast to the ambiguous driving force in terms of J or δ. Turner
et al. [7,8] proved that R degenerates to G for linear elastic fracture mechanics, to J for
nonlinear fracturemechanics, and to thework absorption rate for the elastoplasticmaterial.
Accordingly, R is defined as [7]

R =
dUdis
Bda

(3)

The dissipationwork,Udis, can be determined from the area under themeasured load–
displacement curve, as indicated in some standards. If the J‑integral is used to measure
the irreversible fracture energy, using Equations (3) and (4), the following formulation is
obtained [32].

R = (W − a)
dJpl

da
(4)

where B is the specimen thickness, b0 is the ligament length, and η is the plastic factor [26].
Although the energy dissipation rate R for ductile fracture is more physical than the clas‑
sical fracture resistance, the geometrical dependency, i.e., in‑plane constraint caused by
the crack length and loading configuration, still exists [32,33]. Therefore, it is essential
to identify geometry‑invariant material parameters from R. To obtain a geometrically in‑
dependent material fracture property, Brocks et al. [32] proposed a four‑parameter expo‑
nential function to fit the R–∆a curve to explore the transferability of different values of
geometric specimen fracture toughness, where the constraint effects on the JR curves have
to be parameterized by four fitting parameters. Therefore, the theoretical background of
the energy dissipation rate requires further study.
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3. Fracture Resistance and Energy Dissipation Rate in Ductile Crack Extension
Carpinteri and Chiaia [18] established the relationship between the structural behav‑

ior and crack growth resistance curve using the energy brittleness number, where the
ductile‑to‑brittle transition resulting from size effects can be characterized by the modified
J resistance curve. Consequently, a plausible description of the topology of the fracture
domain is essential for stable crack growth resistance behaviors. It is assumed that the non‑
integer fractal dimensions are a proper description of the fracture domains. Owing to the
fractional measurability of fractal sets, the mechanical quantities defined in these domains
must take non‑integer physical dimensions. Meanwhile, unlike the complete similarity in
the Euclidean domain, the incomplete similarity can be used to capture the geometry in the
fractal domains, i.e., to characterize the energy dissipation rate using the fractal approach.
Therefore, a fractal model was developed to calculate the rugged crack length based on the
Voss equation [17], where the crack is compared with a self‑affine noise in time as follows:

∆a∗ = ∆a

√
1 +

(
l0
∆a

)2H−2
(5)

where ∆a* is the increment in the rugged crack length, ∆a is its horizontal projection, l0 is
the unit length or scaling factor, andH is theHurst exponent, which is usually smaller than
one and related to the fractal dimension D through H = I − D (i = 2 or 3). In the present
work, it is assumed that ∆a* and ∆a are the geometrical descriptions of the crack path and
its accompanying plastic wake in the fractal and Euclidean domains, respectively.

Considering energy equivalence and fractal crack, the path‑independent J‑integral
can be modified in fractal domains as

J = − dΠ

da∗
da∗

da
(6)

where Π is the potential energy of an elastic body. Incorporating Equation (6) into Equa‑
tion (7), the fractal crack resistance JR per unit thickness is:

JR =
dUγ

da∗
da∗

da
=

(
2γe + γp

)da∗

da
=

(
2γe + γp

)1 + (2 − H)( l0
∆a )

2H−2[
1 + ( l0

∆a )
2H−2

] 1
2

(7)

Furthermore, Equation (8) can be divided into elastic and plastic (or irreversible) com‑
ponents.

JR = 2γe
1 + (2 − H)( l0

∆a )
2H−2[

1 + ( l0
∆a )

2H−2
] 1

2

︸ ︷︷ ︸
Elastic Je

+ γp
1 + (2 − H)( l0

∆a )
2H−2[

1 + ( l0
∆a )

2H−2
] 1

2

︸ ︷︷ ︸
Plastic Jpl

(8)

JR = 2γe

1 + (2 − H)
(

l0
∆a

)2H−2

[
1 +

(
l0
∆a

)2H−2
] 1

2
+ γp

1 + (2 − H)
(

l0
∆a

)2H−2

[
1 +

(
l0
∆a

)2H−2
] 1

2
(9)

When ∆a >> l0, Equation (9) can be simplified as

JR =
(
2γe + γp

)
(2 − H)(

l0
∆a

)
H−1
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and the plastic (or irreversible) component can be obtained as

Jpl = γp(2 − H)(
l0
∆a

)
H−1

(10)

A similar resultwas obtained byCarpinteri andChiaia for crack‑resistance curves [18].
Based on Equations (5) and (9), the energy dissipation rate, R, can be obtained in the
fractal form:

R =
dUdis
Bda

= (W − a)
dJpl

da
= (W − a)

[
γp

d2a∗

da2

]
(11)

Here, W is the characteristic reference size of the specimen, i.e., the height of beam.
Using Equation (10), and in the self‑similar limit a* >> a, we obtain:

R =
γp

η
(W − ∆a)(2 − H)(1 − H)(∆a)−H(l0)

H−1= (W − ∆a)(2 − H)(1 − H)(∆a)−H
[

γp

η
(l0)

H−1
]

(12)

Because the fractal set is defined in a limit sense corresponding to the observation
scale n at approximately zero, Equation (12) can be rewritten as Equation (13) to obtain the
scale‑independent value of R*:

R∗ = (W − ∆a)(2 − H)(1 − H)(∆a)−H lim
n→∞

[
γp

η
(l0)

H−1
]

(13)

The expression in the square brackets is indeterminate in classicalmeaning because, at
the infinitesimal scale of observation (n→∞), γp(l0)H−1 tends to be nondifferentiable (l0→0,
γp→0) in the form 0× ∞. More specifically, when the scale of observation tending to zero,
we can assume that the length l0 is a atomdiameter, and γp is the energy to break an atomic
bond, and it is worth noting thatH is theHurst’s exponent and less than 1 so than γp(l0)H−1

is mathematically non‑soluble. The key to this procedure is to solve the limit in Equation
(13) by invoking renormalization group theory, which makes it possible to define finite
renormalized physical quantities as the fixed points of the scaling transformations at the
cost of abandoning canonical dimensions [18]. Therefore, the nondifferentiable expression
in the square brackets of Equation (13) can be reformulated in the fractal domain as

lim
∆a0→0

[
γp(l0)

H−1

η

]
= γ∗

p (14)

and the energy dissipation rate is

R∗ = γp
∗(W − ∆a)(2 − H)(1 − H)(∆a)−H (15)

where γp
* is referred to as the “fractal energy dissipation rate”, whose anomalous non‑ in‑

teger physical dimensions [Newton][Length]−(2−H) imply that the classical fracture energy
dissipation is intermediate between a Euclidean surface and a volume one [18]. The scale‑
invariant material constant, γp

*, is a renormalized physical quantity that characterizes the
irreversible process related only to the microstructure. Consistent with Borodich [24] as
discussed previously, γp

* is a function of thematerial property γp and fractal measure l0 of
the process zone. Experiments on specimens of different sizes show that the monofractal
dimension is strictly valid only within a limited scale range, where the fractal dimensions
of the supporting domains can be considered constants [19–23]. The monofractal scaling
behavior does not adequately reproduce the experimental results. Moreover, the topol‑
ogy of the fracture surfaces appears experimentally multifractal because the presence of
an internal microstructural scale l0 and an external macrostructural size results in a pro‑
gressively decreasing influence of disorder when the scale of observation increases. This
geometrical trend implies that the effect of microstructural disorder on the mechanical
properties of the material becomes progressively less important for larger specimens. As
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the specimen size increases, geometrical multifractality connects with the self‑affine frac‑
tals and progressively vanishes. Because the microstructure of a material is independent
of the macroscopic size, the effects of disorder on the mechanical properties are essentially
dominated by the ratio between the characteristic material length (grain size and external
size) and initial ligament size. The transition between a fractal domain and a homogeneous
regime can therefore be emphasized in the scaling power‑law exponents of the energy dis‑
sipation rate, as verified by subsequent experiments.

4. Experimental Validation
The proposed fractal energy dissipation rate was validated against the relevant ex‑

perimental data in the literature. The nonlinear best‑fitting algorithm of Levenberg and
Marquardt [34] was adopted to obtain parameters H and γp

*. The experimental load–
displacement curves fromZhuand Joyce [35]were reinterpretedusing the fractal approach,
where the load–loading‑line displacement curves are available. The material used for the
tests was HY80 steel available in a 27‑mm‑thick plate. The tensile test results showed that
the 0.2% offset yield stress was 630 MPa, and the ultimate tensile stress was 735 MPa. The
specimens were subjected to single‑edge notched bending, as recommended by ASTM
E1820‑01 [26], with different initial crack lengths a0. The geometric parameters of the
beam were L = 203 mm, W = 50.75 mm, B = 25.375 mm, and slenderness λ = 4:1. The
initial crack‑length ratios were a0/W = 0.19, 0.40, 0.55, and 0.60. Details are presented in Ta‑
ble 1. Because the calculation of the R–∆a curve requires the correlation between the load
and crack extension, the instantaneous crack extensionwas then determined directly using
the normalization method suggested in ASTM E1820‑01 Annex 15 [26]. Another series of
compact tension tests were performed byAnuschewski et al. [36], where thematerial was a
20MnMoNi55 steel alloy with different thicknesses. The geometric details are presented in
Table 1. In Figure 2, the experimental results for theR–∆a curve from a previous report [36]
as well as the fitting curves obtained using Equation (15) are plotted. The determined pa‑
rameters H and γp

* are listed in Table 1. The domain dimension of energy dissipation is
denoted by D = 3 − H.

Table 1. Specimen geometries and fitted results.

Material
Type

Specimen
Number

W
[mm] Tn [mm] a0/W [mm] H D∆a γp*

HY80
SE(B)‑A 50.75 25.4 0.40 0.3258 2.6472 40.1
SE(B)‑B 50.75 25.4 0.55 0.4166 2.5834 48.2
SE(B)‑C 50.75 25.4 0.60 0.4528 2.5472 45.9

20MnMoNi55
Group A

C(T)‑0.5T 25.00 8.0 0.67 0.2823 2.7177 104.5
C(T)‑1T 50.00 8.0 0.61 0.3749 2.6251 164.5
C(T)‑4T 200.00 8.0 0.60 0.3837 2.6163 98.3

20MnMoNi55
Group B

C(T)‑0.5T 25.00 4.0 0.62 0.2163 2.7837 105.6
C(T)‑1T 50.00 4.0 0.61 0.3215 2.6785 104.0
C(T)‑4T 200.00 4.0 0.60 0.3590 2.6410 119.8
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Figure 2. Fitting results of R(∆a)‑curve by the proposed theory for (a) HY80, (b) 20MnMoNi55 Group
A, and (c) 20MnMoNi55 Group B.

5. Discussion
During ductile crack growth, massive plastic flow occurs in the vicinity of the crack

tip, and the wake is governed by dislocation–dislocation interactions in crystalline ma‑
terials. Although the actual cell structures depend on various extrinsic and intrinsic pa‑
rameters, dislocation patterning and its relation to work hardening are common among
various materials. Thus, the dislocation pattern plays a critical role in energy dissipation,
which can be directly characterized by transmission electron microscopy [37] and indi‑
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rectly by acoustic emission (AE). Because AE can represent the rapid release of energy
from localized sources within materials, e.g., dislocation avalanches and microcrack gen‑
eration and propagation, AE also provides direct information regarding the existence and
location of pressure wave energy emissions [38–41]. AE results for single ice crystals un‑
der plastic deformation showed that the probability density function of signal intensity
follows a power‑law distribution with an exponent (fractal dimension) in the range of 1.6–
2.0 [42]. Dislocation avalanches were also observed spatially with a self‑similarity dimen‑
sion D = 2.5 ± 0.1 [43]. Furthermore, the fractal dimensions D in Table 1 range from 2.5 to
2.8, which is consistentwith the experimental results [42,43]. Here, the fractal dimension of
the plastic energy dissipation is always greater than 2.5. For ductile fracture, it is believed
that the energy dissipated is proportional to the area slipped by dislocation loops with
different orientations, i.e., the cellular pattern, the fractal dimension of which is generally
greater than 2.5 [42]. This is higher than the fracture surface observation by Carpinteri [20–
23] wherein the limit fractal scaling exponents are equal to 0.5. In this study, the defect size
distribution was a power law with a negative exponent D = 2b, which can be interpreted
as a fractal dimension of the damage domain. By linking the b‑value to the damage fractal
dimensionD, the evolution of the power‑law exponent is captured immediately. In the ini‑
tial phase, criticality D = 3.0, whereas, when final failure is imminent, the exponent tends
to 2.0.

6. Conclusions
The peculiar crack resistance behavior ofmetallicmaterialswas reinterpreted in terms

of the energy dissipation rate and self‑similar topology of the fracture domains. The scale‑
independent fractal energy dissipation rate, γp*, was derived based on renormalization
group theory, which provides a novel approach for characterizing ductile fractures. Dif‑
ferent specimen geometries in terms of the initial crack ratio and self‑similar size were con‑
sidered using experimental data from the literature, and the obtained γp

* remained almost
constant for the same material, independent of the specimen size and crack length. The
fractal energy dissipation rate, γp*, can be considered as a material parameter to character‑
ize the ductile fracture energy dissipation rate, although more experiments are necessary
for further validation.
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