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Abstract: A number of recent reports in the peer-reviewed literature have discussed 

irreproducibility of results in biomedical research. Some of these articles suggest that the 

inability of independent research laboratories to replicate published results has a negative 

impact on the development of, and confidence in, the biomedical research enterprise. To get 

more resilient data and to achieve higher result reproducibility, we present an adaptive and 

learning system reference architecture for smart learning system interface. To get deeper 

inspiration, we focus our attention on mammalian brain neurophysiology. In fact, from a 

neurophysiological point of view, neuroscientist LeDoux finds two preferential amygdala 

pathways in the brain of the laboratory mouse to experience reality. Our operative proposal 

is to map this knowledge into a new flexible and multi-scalable system architecture. Our 

main idea is to use a new input node able to bind known information to the unknown one 

coherently. Then, unknown "environmental noise" or/and local "signal input" information 

can be aggregated to known "system internal control status" information, to provide a 

landscape of attractor points, which either fast or slow and deeper system response can 

computed from. In this way, ideal system interaction levels can be matched exactly to 

practical system modeling interaction styles, with no paradigmatic operational ambiguity 

and minimal information loss. The present paper is a relevant contribution to fourth 

generation adaptive learning and machine intelligence systems to update classic cybernetics 

towards a new post-Bertalanffy General Theory of Systems. 

Keywords: deep learning; cybernetics; social safety and security; computer-brain interface; 

anticipatory system; computational information conservation theory; CICT; post-

Bertalanffy cybernetics; combinatorial optimization. 
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1. Introduction 

Investigations of hypotheses with the aid of models lead to specific predictions that have to be verified 

experimentally. The comparison of model predictions with experimental data can then be used to refine 

the hypotheses and to develop more accurate models, or even models that can shed light on different 

phenomena. Nevertheless, a number of recent reports in the peer-reviewed literature [1-4] have discussed 

irreproducibility of results in biomedical research. Some of these articles suggest that the inability of 

independent research laboratories to replicate published results has a negative impact on the development 

of, and confidence in, the biomedical research enterprise. Furthermore, poor reporting of health research 

is a serious and widespread issue, distorting evidence, limiting its transfer into practice, and providing 

an unreliable basis for clinical decisions and further research. A series of papers published by the Lancet 

[5] in January 2014 highlighted the problems of waste in biomedical research and the myriad of issues 

that can disrupt completion and use of high quality research. The great potential of nano-bio-technology 

is based also on the ability to deal with complex hierarchically structured systems from the macroscale 

to the nanoscale; this requires novel theoretical approaches and the competence to create models able to 

explain system dynamics in multi-scale simulation. In all cases, from a top-down (TD) point-of-view 

(POV), the length scale ranges from the centimeter scale (cm) (macroscale, organs), to the micrometer 

scale (μm) (cells and local connectivity), to the nanometer scale (nm) (cell subcomponents, proteins) till 

to single-molecule scale (nano-picoscale).  

Certainly, statistical and probabilistic theory, applied to all branches of human knowledge under the 

"continuum hypothesis" assumption, have reached highly sophistication level, and a worldwide 

audience. It is the core of classic scientific knowledge; it is the traditional instrument of risk-taking. 

Many "Science 1.0" researchers and scientists up to scientific journals assume it is the ultimate language 

of science. The basic framework of statistics has been virtually unchanged since Fisher, Neyman and 

Pearson introduced it. Later, the application of geometry to statistical theory and practice has produced 

a number of different approaches. As an example, in 1945, by considering the space of probability 

distributions, Indian-born mathematician and statistician Calyampudi Radhakrishna Rao (1920-) 

suggested the differential geometric approach to statistical inference. In this way the so called 

"Information Geometry" (IG) approach was born [6]. So, the modern geometric science of information 

(GSI) emerged from the study of the geometrical structure of a manifold of probability distributions 

under the criterion of invariance [7].  

Sometimes, IG tensorial formulation may become cumbersome and computational difficulties do 

occur: in such problems maximum-likelihood estimators (MLEs) are unsuitable or do not exist. 

Computational information geometry (CIG) use a top-down (TD) point-of-view (POV). All approaches 

using a TD POV allow for starting from an exact solution panorama of global analytic solution families, 

which always offers a shallow downscaling local solution computational precision compromise to real 

specific needs (overall system information from global to local POV is not conserved [8]). Usually it is 

necessary further analysis and validation to get localized computational solution of any practical value. 

To develop resilient and antifragile application, we need stronger biological and physical system 

computational correlates; we need asymptotic exact global solution panoramas combined to deep local 

solution computational coherent precision for information conservation and vice-versa.  
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Early biological concepts based on reductionist inference systemic and classic cybernetic approaches 

have been largely revisited and overshadowed by more recent molecular and pathogenetic findings for 

healthcare security and safety management, creating a brand new cultural approach. Nevertheless, the 

change of paradigm caused by QFT has not yet been completely grasped by many contemporary 

scientific disciplines and current researchers, so that not all the implications of this big change have been 

realized hitherto, even less their related, vital applications. So, the discreteness approach, developed 

under the QT (quantum theory) "discreteness hypothesis" assumption, has been considered in peculiar 

application areas only. It has been further slowly developed by a few specialists and less understood by 

a wider audience.  

Every approach that uses analytical function applies a TD POV implicitly. These functions belong to 

the domain of Infinitesimal Calculus (IC). Unfortunately, from a computational perspective, all 

approaches that use a TD POV allow for starting from an exact global solution panorama of analytic 

solution families, which offers a shallow local solution computational precision to real specific needs 

(in other words, from global to local POV overall system information is not conserved, as misplaced 

precision leads to information dissipation [8]). In fact, usually further analysis and validation (by 

probabilistic and stochastic methods) is necessary to get localized computational solution of any practical 

value, in real application. A local discrete solution is worked out and computationally approximated as 

the last step in their line of reasoning, that started from an overall continuous system approach (from 

continuum to discrete ≡ TD POV). Unfortunately, the IC methods are NOT applicable to discrete 

variable. To deal with discrete variables, we need the Finite Differences Calculus (FDC). FDC deals 

especially with discrete functions, but it may be applied to continuous function too. As a matter of fact, 

it can deal with both discrete and continuous categories conveniently.  

In other words, if we want to achieve an overall system information conservation approach, we have 

to look for a convenient bottom-up (BU) POV (from discrete to continuum view ≡ BU POV) to start 

from first, and NOT the other way around! Then, a TD POV can be applied, if needed. Deep epistemic 

limitations reside in some parts of the areas covered in probability and risk analysis and decision making 

applied to real problems [9]. As a matter of fact, to grasp a more reliable representation of reality, 

researchers and scientists need two intelligently articulated hands: both stochastic and combinatorial 

approach synergic ally articulated by natural coupling [9]; let’s say we need a fresh "Science 2.0" 

approach. We just have to remember the Relativity’s father inspiration quote: "We cannot solve our 

problems with the same thinking we used when we created them." The current paper can give a relevant 

contribute to that perspective to achieve practical operative results quite quickly. Section 2. offers a brief 

review about most successful recent deep learning systems. Section 3. Focus on major differences 

between biological neural net vs. artificial neural net. Section 4. Offers new updating on learning from 

neuroscience. The new computational information conservation (CICT) approach is presented in Section 

5. In Section 6. ODR approach is proposed as a cybernetics update. Section 7. gives an full operative 

example by CICT recurrence sequence representation. In Section 8. a final post-Bertalanffy cybernetics 

update is presented and discussed. To show the full flexibility of our approach even at multidisciplinary 

arbitrary scale modeling, in Section 9. a simple example of advanced management architecture for HRO 

is given. Last Section 10. sums up our findings from a top level point of view. 

2. Deep Learning Brief Overview 
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Deep learning (DL) is part of a broader family of machine learning (ML) methods based on learning 

representations of data (DLR). Some representations make it easier to learn tasks from examples. Or 

instance, one of the promises of deep learning is replacing handcrafted features with efficient algorithms 

for unsupervised or semi-supervised feature learning and hierarchical feature extraction [10]. Recently, 

DL is making important strides in natural language processing, especially statistical machine translation 

[11],[12],[13]. Interestingly, one of the key factors that enabled this major progress has been the advent 

of Graphics Processing Units (GPUs), with speed-ups on the order of 10 to 30-fold, starting with [14], 

and similar improvements with distributed training [15],[16]. Various DL architectures such as deep 

neural networks (DNNs), convolutional deep neural networks (CNNs), deep belief networks or dynamic 

Bayesian networks (DBNs) and recurrent neural networks (RNNs) have been applied to fields like 

computer vision, automatic speech recognition, natural language processing, audio recognition and 

bioinformatics where they have been shown to produce state-of-the-art results on various tasks. DNN 

have substantially pushed the state-of-the-art in a wide range of tasks, especially in speech recognition 

[17],[18] and computer vision, notably object recognition from images [19],[20]. DNN have achieved 

state-of-the-art results in a wide range of tasks, with the best results obtained with large training sets and 

large models. CNN [21],[22] have become the method of choice for object recognition [23]. They have 

proved to be successful at a variety of benchmark problems including, but not limited to, natural image 

classification [24],[25] handwritten digit recognition [26], traffic sign recognition [27], house number 

recognition [28], as well as for speech recognition [29-32]. Furthermore, video imaging tasks like image 

caption generation [33],[34], video description generation [35] and object localization/detection [36] 

have been found to be extremely benefitted by image representations from CNNs trained to recognize 

objects on a large set of more than one million images [20],[37]. Learning generative models of 

sequences is a long-standing ML challenge and historically the domain of DBNs such as hidden Markov 

models (HMMs) and Kalman filters. The dominance of DBN-based approaches has been recently 

overturned by a resurgence of interest in RNN based approaches. An RNN is a special type of neural 

network that is able to handle both variable-length input and output. By training an RNN to predict the 

next output in a sequence, given all previous outputs, it can be used to model joint probability distribution 

over sequences. Unfortunately, for most DL algorithms training is notoriously time consuming. Since 

most of the computation in training neural networks is typically spent on floating point multiplications, 

latest research is focused to investigate different approaches to training that eliminates the need for most 

of these, like in [38]. Indeed, the ability to train larger models on more data has enabled the kind of 

breakthroughs observed in the last few years. In the past, GPUs enabled these breakthroughs because of 

their greater computational speed. Today, researchers and developers designing new deep learning 

algorithms and applications often find themselves limited by computational capability. This along, with 

the drive to put deep learning systems on low-power devices (unlike GPUs) is greatly increasing the 

interest in research and development of specialized hardware for deep networks [39-41]. In the future, 

faster computation at both training and test time is likely to be crucial for further progress and for 

consumer applications on low-power devices. As a result, there is much interest in research and 

development of dedicated hardware for DL.  

Most of current DLR are stochastically based and some of ML representations for artificial neural 

networks (ANNs) are inspired by advances in neuroscience. They are loosely based on interpretation of 

information processing and communication patterns in a nervous system or biological neural networks 
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(BNNs), such as neural coding with still a reductionist interpretation (Science 1.0). For instance, many 

attempts to define a relationship between the stimulus and the neuronal responses to arrive to the 

relationship among the electrical activity of the neurons in the brain, according to neuroscience research 

and knowledge till the 1980s [42]. Understanding the human neural coding and brain remains a major 

challenge of the 21st century [43]. Many groups worldwide are tackling the challenge of accelerating our 

understanding of the human brain through large-scale data management, mining, knowledge 

management, collaboration, modeling and simulation. We know that stiff and nonlinear dynamical 

systems are inefficient on a digital computer. A simple example is the IBM Blue Gene project with 4096 

CPUs and 1000 Terabytes RAM, which, to simulate the mouse cortex uses 8 x 106 neurons, 2 x 1010 

synapses, 109 Hz clock, 40 Kilowatts on digital support. The brain uses 1010 neurons, 1014 synapses, 10 

Hz clock, and 20 watts [44] on biological support. Biological information processing systems operate 

on completely different principles from those with which most engineers are familiar [45]. For many 

problems, particularly those in which the input data are ill-conditioned and the computation can be 

specified in a relative manner, biological solutions are many orders of magnitude more effective than 

those we have been able to implement using traditional digital methods. This advantage can be attributed 

principally to the use of elementary physical phenomena as computational primitives, and to the 

representation of information by the relative values of analog signals, rather than by the absolute values 

of digital signals. This approach requires adaptive techniques to mitigate the effects of component 

differences. This kind of adaptation leads naturally to systems that learn about their environment. 

Shortly, major current DL approaches limitations are: 

1- Need for best architecture selection for a specific task; 

2- Computational intensive requirement for best result; 

3- Stochastic based clustering only; 

4- Time Consuming Training. 

To minimize or overcome previous major system limitations and to arrive much closer to fourth 

generation adaptive learning and real machine intelligence systems, in this paper, we propose the 

adoption of a new input information aggregation system block, called "recursive interactor" (ReInt).  

3. Biological Neural Net vs. Artificial Neural Net 

There is a myth that the nervous system is slow, is built out of slimy stuff, uses ions instead of 

electrons, and is therefore ineffective. As a matter of fact, there are about 1016 synapses in the human 

brain. A nerve pulse arrives at each synapse about ten times/s, on average. So in rough numbers, the 

brain accomplishes 1016 complex operations/s. The power dissipation of the brain is a few watts, so each 

operation costs only 10-16 J. The brain is at least a factor of 1 billion more efficient than our present 

digital technology, and a factor of 10 million more efficient than the best digital technology that we can 

imagine. From the first integrated circuit in 1959 until today, the cost of computation has improved by 

a factor about 1 million. We can count on an additional factor of 100 before fundamental limitations are 

encountered. At that point, a state-of-the-art digital system will still require 10 MW to process 

information at the rate that it is processed by a single human brain (about 20 W requirement). The 
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unavoidable conclusion is that we have something fundamental to learn from the brain about a new and 

much more effective form of computation. The disparity between the efficiency of computation and 

learning in the nervous system (BNNs) and that in a computer (ANNs) is primarily attributable not to 

the individual device requirements, but rather to the way the devices are used in the system. The fact 

that we can build devices that implement the same basic operations as those the nervous system uses 

leads to the inevitable conclusion that we should be able to build entire systems based on the organizing 

principles used by the nervous system. We need to integrate our current neural coding reductionist 

interpretation with new neuroscience insights [46],[47]. We will refer to these new systems generically 

as neuromorphic anticipatory learning system (ALS) [48]. Then, we can think of a DL ANN general 

architecture for DL and recognition, based on a network of ReInts that can replace the ubiquitous 

convolution+pooling layer of the usual deep CNN. ReInt, as basic block for ALS, allows to develop 

even multiple dynamic network self-rewiring strategies to strengthen emerging computational results 

with minimal computational burden. ReInt allows to match exactly ideal system interaction levels to 

practical system modeling interaction styles, with no paradigmatic operational ambiguity and minimal 

information loss [49]. ReInt concept is a relevant contribute to update classic cybernetics knowledge 

towards a new post-Bertalanffy General Theory of Systems, where systemic concepts like self-

organization, distributed (self-)control, i.e. bottom-up self-regulating system, self-governance, etc. are 

at work [49]. That is the main reason why this approach can look quite unusual to ML community, with 

no apparently significant concept by classic DL point of view (we have to learn to use new eyes and to 

update our DL understanding). There is nothing that is done in the nervous system that we cannot 

emulate with electronics if we understand the principles of neural information processing right. What 

kind of computation primitives are implemented by the device physics we have available in nervous 

tissue or in a silicon integrated circuit? We have to remember, to rediscover or to invent a convenient 

representation that takes advantage of the inherent capabilities of the medium, such as the abilities to 

generate exponentials, to do integration with respect to time, and to implement a zero-cost addition using 

Kirchhoff’s law [44],[45]. Therefore, in order to get better results, current computational neuroscience 

modeling has to face and to overcome two orders of issues at least, immediately: 

1- To minimize the traditional limitation of current digital computational resources that are unable to 

capture and to manage even the full information content of a single Rational Number Q leading to 

information dissipation and opacity [50],[51].  

2- To develop stronger, more effective and reliable neural correlates by the correct arbitrary multi-

scale (AMS) modeling approach for complex system [45],[49],[52]; 

ReInt with ODR approach [8], from computational information conservation (CICT) [53], can give a 

sound answer to both issues and to achieve greater operating flexibility in multi-scale learning and 

modeling, with much less computational requirement than current systems. We describe ReInt basic 

computational properties and give operative examples. 

4. Learning from Neuroscience 

To get deeper inspiration towards a strong solution to our problem, we focus our attention on 

mammalian brain neurophysiology. In fact, from a neurophysiological point of view, neuroscientist 
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Joseph E. LeDoux finds two amygdala pathways in the brain of the laboratory mouse by the use of fear 

conditioning and lesion study [46],[47]. Although most of the research on the neural basis of conditioned 

fear has been conducted on animals, fear conditioning procedures can be used in identical ways in 

humans, according to LeDoux [46]. Information about external stimuli reaches the amygdala by way of 

direct pathways from the thalamus (the "low road") as well as by way of pathways from the thalamus to 

the cortex to the amygdala (the "high road"). The direct thalamo-amygdala is a shorter and thus a faster 

transmission route than the pathway from the thalamus through the cortex to the amygdala. However, 

because the direct pathway bypasses the cortex, it is unable to benefit from cortical processing. As a 

result, it can only provide the amygdala with a crude representation of the stimulus. It is thus a quick 

and dirty processing pathway. The direct pathway allows us to begin to respond to potentially dangerous 

stimuli before we fully know what the stimulus is. This can be very useful in dangerous situations. 

However, its utility requires that the cortical pathway be able to override the direct pathway. It is possible 

that the direct pathway is responsible for the control of emotional responses that we do not understand. 

The time saved by the amygdala in acting on the thalamic information, rather than waiting for the cortical 

input, may be the difference between life and death. It is better to have treated a stick as a snake than not 

to have responded to a possible snake. Most of what we know about these pathways has actually been 

learned by studies of the auditory as opposed to the visual system, but the same organizational principles 

seem to apply. The low road (Fig.1, path A) is a pathway which is able to transmit a signal from a 

stimulus to the thalamus, and then to the amygdala, which then activates a fear-response in the body. 

This sequence works without a conscious experience of what comprises the stimulus, and it is the fast 

way to a bodily response (a more primitive mechanism of defence). The high road (Fig.1, path B) is 

activated simultaneously. This is a slower road which also includes the cortical parts of the brain, thus 

creating a conscious impression of what the stimulus is (a more sophisticated mechanism of defence). 

"Amygdala hijack" is a term coined by psychologist D. Goleman [54]. Drawing on the work of Joseph 

E. LeDoux, Goleman uses the term to describe emotional responses from people which are immediate 

and overwhelming, and out of measure with the actual stimulus because it has triggered a much more 

significant emotional threat.  

 

 
Figure 1. Information about external stimuli reaches the amygdala by way of direct pathways from the 

thalamus (the "low road", A) as well as by way of pathways from the thalamus to the cortex to the 

amygdala (the "high road", B) [46],[47],[54]. 

 

From the thalamus, a part of the stimulus goes directly to the amygdala (low road) while another part 

is sent (high road) to the neocortex (the "thinking brain"). If the amygdala perceives a match to the 

stimulus, i.e., if the record of experiences in the hippocampus tells the amygdala that it is a fight, flight 

or freeze situation, then the Amygdala triggers the HPA (Hypothalamic-Pituitary-Adrenal) axis and 
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hijacks the rational brain. This emotional brain activity processes information milliseconds earlier than 

the rational brain, so in case of a match, the amygdala acts before any possible direction from the neo-

cortex can be received. If, however, the amygdala does not find any match to the stimulus received with 

its recorded threatening situations, then it acts according to the directions received from the neo-cortex. 

When the amygdala perceives a threat, it can lead that person to react irrationally and destructively. 

Taking into consideration the neurophysiological findings by LeDoux, differently from the past, it is 

much better to consider ontological uncertainty [52] as an emergent phenomenon out of a complex 

system, arriving to the basic schema for Ontological Uncertainty Management (OUM) System [52]. 

Then, our dynamic ontological perspective can be thought as an emergent, natural trans-disciplinary 

reality level (TRL) [55] out of, at least, a dichotomy of two fundamental coupled irreducible 

complementary ideal asymptotic concepts: A) reliable unpredictability and B) reliable predictability 

[52]. From TD management perspective, the reliable unpredictability concept can be associated to 

system proactive approach (lead subsystem, Open Logic, to survive and grow, Fig.2) and strategic 

management techniques. The reliable predictability concept can be referred to traditional system reactive 

approach (lag subsystem, Closed Logic, to learn and prosper, Fig.2) and operative management 

techniques. To achieve our final goal, overall system must be provided with smart sensing interface 

which allow reliable real-time interaction with its environment [56]. To behave realistically, system must 

guarantee both Logical Aperture (to survive and grow) and Logical Closure (to learn and prosper), both 

fed by environmental "noise" (better… from what human beings call "noise") [8].  

 

 
 

Figure 2. Basic schema for Ontological Uncertainty Management (OUM) System. Operating Point can 

emerge as a new Trans-disciplinary Reality Level (TRL) [55] from the mutual interaction of Two 

Complementary Irreducible Management Subsystems with their common environment (see text) [48]. 

 

So, according to previous considerations, at brain level, it is possible to refer to LeDoux circuit (Fig.2 

path A, "low road", Logical Aperture) for emotional behaviour (i.e. fear, emotional intelligence, etc.) 

and to Papez circuit (Fig.2 path B, "high road", Logical Closure) for structured behaviour (i.e. rational 

thinking, knowledge extraction, etc.…) as from Fig.2 [46,47]. Emotional Intelligence (EI) and Emotional 
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Creativity (EC) [54] coexist at the same time with Rational Thinking in human mind, sharing the same 

input environment information [56]. Therefore, the mathematical method we are looking for, must 

possess even anticipatory properties, at design level, needed to the realization of system capable to 

interact with its environment in real time (leading property) [57]. The notion of anticipation is coming 

to the foreground as an emerging field of study. The future plays an active way in how we think and act 

in the present. The traditional understanding, that past events are the primary drivers that influence how 

we understand the present, is undermined. Both the past and the future are forces that simultaneously 

and actively influence the present. By interpreting the present as the time where the forces of the past 

and future meet, our understanding of the present changes from a "thin" (the present as a boundary 

without any extension between past and future) to a "thick present" (the present as the collection of 

contemporaneous events). Moreover, by giving the future scientific legitimacy, a novel vision of science 

arises where a fully scientific (i.e., not allusive, metaphorical or mystical) treatment of "final" causation 

(= anticipation) is included and not rejected (Science 2.0) as is the case in the traditional scientific 

paradigm (Science 1.0). An in-depth understanding of the work of theoretical biologist, Robert Rosen 

(1934–1998), holds important insights for how anticipatory systems can be modeled [57]. Rosen’s 

insight that "science is the art of establishing modelling relations between the natural world and the 

world of our formalisms" challenges traditional modeling strategies that mainly form simulations of 

reality, but do not explain causal relations. According to Rosen, the modeling relation (or the main task 

of "theoretical science") consisted of establishing congruences between "causal relations in the external 

world, and implicative relations between propositions describing that world." Essentially the mapping 

relation points to the process we carry out when we "do science" and exposes this process as one in 

which there can be no biggest model of the world, but only snap-shots thereof. The study of complexity 

and anticipation can be linked to the modeling relation [57]. The acknowledgement of complexity lays 

bare the dilemma that there remains a gap between our models and the reality they intend to describe. 

An irreducible difference exists between the nature of complex reality and our descriptions thereof. By 

acknowledging that all knowledge of complex, anticipatory systems will always prove to be partial 

knowledge, one is confronted with the unavoidability of the limitations of human understanding. This 

recognition opens up a space where the conceptual implications of complexity surpasses epistemological 

concerns and exposes the normativity that lies in all our modeling strategies. This ethical imperative 

challenges scholars to engage with the question of re-thinking what it means to be human and calls upon 

us to proceed differently in this world. Anticipation can be used to proceed differently in the process of 

"working" with the future when corporate businesses or governments have to come to terms with 

complexity, risk and uncertainty. Horizon scanning and scenario planning offer the current best futures 

studies tools for making sense of how one could anticipate the future and make better decisions. Because 

we cannot have a biggest or best model of the future, it means that futurists cannot predict the future. 

Instead, their task is to rather help find ways to understand the critical driving forces and uncertainties 

in the (business) environment and to use this almost BU information to make strategic decisions. By a 

systemic POV, the logical answer is to design and to use distributed (self-)control, i.e. bottom-up self-

regulating systems. Cybernetics (i.e. advanced control theory) and complexity theory tell us that it is 

actually feasible to create resilient social and economic order by means of self-organization, self-

regulation, and self-governance [58],[59]. Scenario planning can be used as a tool for exploring system 

sustainability transitions. Through anticipatory scenario planning strategies, a more positive vision of 
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what system interaction evolution could look like, can be developed. Possible change should be scoped 

out so as to be better prepared to respond to change and surprise and to help influence and drive change 

along more desirable trajectories, as well as avoid undesirable trajectories.  

5. CICT Approach 

Recently, CICT (computational information conservation theory) has shown that, by Shannon entropy 

approach only, even the current, most sophisticated instrumentation system is completely unable to 

reliably discriminate so called "random noise" (RN) from any combinatorically optimized encoded 

message, which CICT called "deterministic noise" (DN) [8]. Stochastic vs. Combinatorically Optimized 

Noise generation ambiguity emphasises the major "information double-bind" (IDB) problem in current 

most advanced research laboratory and instrumentation system, just at the inner core of human 

knowledge extraction by experimentation in current science [8]. CICT is a natural framework for 

arbitrary multi-scale biomedical engineering, computer science and systems biology computational 

modeling in the current landscape of modern QFT [53]. CICT new awareness of a discrete HG 

(hyperbolic geometry) subspace (reciprocal space) of coded heterogeneous hyperbolic structures [8], 

underlying the familiar Q Euclidean (direct space) surface representation can open the way to 

"holographic information geometry" (HIG) [50],[53]. CICT emerged from the study of the geometrical 

structure of a discrete manifold of ordered hyperbolic substructures, coded by formal power series, under 

the criterion of evolutive structural invariance at arbitrary precision [50],[53]. CICT interprets natural 

rational "OpeRational" (OR, [50] for definition) representation sequences as a language of languages of 

phased directed number systems quite easily. In fact, we can take the concepts of modular magnitude 

and direction as basic, and introduce the concept of vector as the basic kind of directed number, with an 

associated phasing relation. Directed numbers are defined implicitly by specifying rules for adding and 

multiplying vectors. Furthermore, they can be related uniquely to their remainder sequences to identify 

"quantum support field" sequences, which subspace inner phased generators can be computed from [60]. 

Traditional elementary arithmetic long division remainder sequences can be interpreted as OECS 

(Optimally Encoded Cyclic Sequence) for hyperbolic structures [8], as points on a discrete Riemannian 

manifold, under HG metric, indistinguishable from traditional random noise sources by classical 

Shannon entropy, and current most advanced instrumentation approach. CICT defines an arbitrary 

scaling discrete Riemannian manifold uniquely, under HG metric, that, for arbitrary finite point accuracy 

level L going to infinity (exact solution theoretically), is isomorphic (even better homeomorphic) to 

traditional IG Riemannian manifold. In other words, HG can describe a projective relativistic geometry 

directly hardwired into elementary arithmetic long division remainder sequences, offering many 

competitive computational advantages over traditional Euclidean approach. It turns out that, while free 

generator exponentially growing sequences can be divergent or convergent, their closures can be defined 

in terms of polynomials. Furthermore, combinatorically OECS have strong connection even to classic 

DFT algorithmic structure for discrete data, Number-Theoretic Transform (NTT), Laplace and Mellin 

Transforms [8]. In this way, even simple scalar moduli can emerge out from sequences of phased 

generators. CICT can help to reach a unified vision to many current biophysics and physics problems 

and to find their optimized solutions quite easily [52]. CICT approach combined to Geometric Algebra 

and Geometric Calculus [61] unified mathematical language can offer an effective and convenient 
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"Science 2.0" universal modeling framework, by considering information not only on the statistical 

manifold of model states but also on the combinatorial manifold of low-level discrete, phased generators 

and empirical measures of noise sources, related to experimental high-level overall perturbation [52]. 

Furthermore, due to its intrinsic self-scaling properties, this system approach can be applied at any 

system scale: from single quantum system application development to full system governance strategic 

assessment policies and beyond [49],[51]. This approach allows you even to develop more antifragile 

"anticipatory learning system" (ALS), for more reliable, safe and secure medical application and system 

(cybersafety) [49]. CICT framework is quite flexible and can be used under a few operational 

representations. The major CICT representations used are two: formal power series and recurrence 

sequence.  

6. ODR Cybernetics Update 

In the past five decades, trend in Systems Theory, in specialized research area, has shifted from classic 

single domain information channel transfer function approach (Shannon's noisy channel, Fig.3 top 

diagram) to the more structured ODR Functional Sub-domain Transfer Function Approach (Observation, 

Description and Representation, Fig.3 middle diagram), according to CICT Infocentric Worldview 

model (theoretically, virtually noise-free data) [8]. In this way, system resilience and antifragility can be 

developed quite easily [8].  

 

 
 

Figure 3. Top Diagram: Traditional Single Domain Channel (SDC) Transfer Function. Middle Diagram: 

Decomposition of SDC Transfer Function into more structured ODR Functional Sub-domain Transfer 

Function (Observation, Description and Representation Functional Blocks). Bottom Diagram: ODR 

Information Channel Co-domain Diagram for System Information Conservation [8]. 

 

From an application realization point of view, Canadian ecologist Crawford Stanley (Buzz) Holling 

(1930-) introduced important ideas in the application of ecology and evolution, including resilience, 

adaptive management, the adaptive cycle, and panarchy [56],[61]. Shortly, the ODR approach allows 

for fitting theoretical system design consideration to practical implementation needs much better 
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(according to information "Input, Processing, Output" paradigm, respectively) than classic single domain 

channel approach. Thanks to the ODR approach, a deeper awareness about information acquisition and 

generation limitations by classical experimental observation process has been grown. In fact, CICT 

showed that classic Shannon entropy is completely unable to reliably discriminate so called 

computational "random noise" from any combinatorically optimized encoded message by OECS, called 

"deterministic noise" in [8]. To cope with ontological uncertainty effectively at system level, we must 

use two asymptotic coupled complementary irreducible information management subsystems, based on 

the following ideal dichotomy: A) Information Reliable Unpredictability and B) Information Reliable 

Predictability. In this way, to behave realistically, overall system can guarantee both Logical Aperture 

(LA) and Logical Closure (LC), both fed by "Environmental Noise." So, a reliable operating point can 

always emerge as a new trans-disciplinary reality level, out of the interaction of two asymptotic coupled 

complementary irreducible information management subsystems [8]. As a simple example, the former 

subsystem has to be an ODR f extension (ODR Co-domain) able to capture as much as possible useful 

information from the open interaction of two related entities and their environment, and the latter one is 

the ODR Representation function f . 

7. Operative Example 

In a continuously changing operational environment, even if operational parameters cannot be closely 

pre-defined at system design level, we need to be able to design reliable self-organizing, self-regulating 

and self-adapting system quite easily anyway. In present paper, we like to give and to discuss an 

operative example based on CICT Recurrence Sequence Representation. We already know about "self-

reference" in mathematics as a statement that refers to itself, for example, as a set that contains itself. 

Traditionally, such statements lead to paradox, a form of inconsistency. In the informal fallacies self-

referential statements are considered poor form. That is true in mathematics and arithmetics when you 

use a continuous support approach and do not take advantage from the finiteness limitations of your real 

computational resources [50]. According to our Section 4. discussion, to cope with ontological 

uncertainty effectively at system level, we must use two asymptotic coupled complementary irreducible 

information management subsystems. So, a reliable operating point can always emerge as a new trans-

disciplinary reality level, out of the mutual interaction of two complementary irreducible management 

subsystems with their common environment. In short, it is necessary to find a mathematical method to 

aggregate the external information coming from environment with system internal information in a 

efficient and fast way that is both immune from computational polynomial mirroring and classic noise 

effect by design [48],[62]. Furthermore, the mathematical method would possess anticipatory properties 

needed to the realization of system able to interact with its environment in real time (leading property) 

[57].  

7.1. System Input Information Aggregation  

Following Holling’s approach (Section 6.) [56],[61], our main idea is to introduce an input node able 

to bind known information to the unknown one in a coherent way. Then, unknown "environmental noise" 

or/and local "signal input" information can be aggregated to known "system internal control status" 

information, to provide a self-structuring synthetic attractor point and functional closure. In this way, a 
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self-organizing landscape of self structuring attractor points can be achieved, and overall system can 

guarantee both Logical Aperture (LA) and Logical Closure (LC), both fed by "Environmental Noise," 

to behave realistically (Fig.4).  

 

 
Figure 4. Operative representation of control status k and operative representation of input u are 

aggregated coherently by recursive subsequence of order m. 

 

A mathematical method that meets these requirements (articulated information aggregation with 

system information anticipation and no computational polynomial mirroring and noise effect) is a simple 

recurrence relation, quite well known in mathematics, since long time! In fact, in his book "Liber abaci", 

for the first time Fibonacci (1170-1250) introduced the concept of recurrence sequence to the Western 

culture, with the famous sequence: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.89, 144, (1)

in which each term is the sum of the two preceding ones and the numerical sequence composition law 

can be written as: 

Fn = Fn-1  + Fn-2     with F0 = 0 and F1 = 1  , (2)

and in general as: 

Fn = k1* Fn-1  + k2* Fn-2 , (3)

where k1, k2 = 0,1,2,…∞, k1, k2 ∈ N, for Generalized Fibonacci Sequences. For original Fibonacci 

sequence k1= k2 = 1. Like every sequence defined by a linear recurrence with constant coefficients, the 

Fibonacci numbers have a closed-form solution. It has become known as Binet's formula, even though 

it was already known by Abraham de Moivre: 

5

ψϕ
ψϕ
ψϕ nnnn

nF
−=

−
−=  (4)

where 

...6180339887.1
2

51 ≈+=ϕ  (5)

is the golden ratio (τ), discovered by Johannes Kepler (1571–1630) [63], and: 
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In fact, Kepler observed that the ratio of consecutive Fibonacci numbers converges, according to the 

relation: 

( )

( )
ϕ=+

∞→ F

F

n

n

n

1lim , (7)

providing us with recurrence relation asymptotical functional closure. This convergence holds regardless 

of the starting values, excluding F0 = 0 and F1 = 0. Another consequence is that the limit of the ratio of 

two Fibonacci numbers offset by a particular finite deviation in index corresponds to the golden ratio 

raised by that deviation. Or, in other words: 

( )

( )
ϕ αα =+

∞→ F

F

n

n

n
lim . (8)

The generating function of the Fibonacci sequence is the following power series: 

xFxs n
n n= ∞

= 0)( , (9)

that converges for 
ϕ
1<x , and its sum has the following  simple closed-form: 
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x
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21
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If x is the reciprocal of an integer k that is greater than 1, the closed form of the series becomes: 

1
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== ∞

=
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k

k

Fks n

n

n
. (11)

Therefore, as a starting point, the relation (1) can be thought as the aggregation of external input 

information [F0, F1] ≡ [u1, u2] to internal system status information control vector k ≡ [k1, k2] (Fig.4). 

Please note that recursive sequence information aggregation does not suffer from the computational 

polynomial mirroring effect (compare eq.(10) to eq.(11)).  

7.2. Reliable Unpredictability Information Subsystem 

Recurrence sequence asymptotic convergence properties computed by the ratio of successive terms 

provides us with a recurrence relation asymptotic functional closure ηk, identical for all input vectors 

[F0, F1] ≡ [u1, u2] as a function of control vector k. For different values of control vector k ≡ [k1, k2], we 

obtain a self-organizing 2-D attractor space as from Fig.5. 

 

 



 15 

 

 

 
Figure 5. An example of the 2-Dimensional Solution Space of Asymptotic Attractor Points 

(Convergence Rates) System Functional Closure. 

 

As a matter of fact ηk becomes an attractor point for all input sequences [F0, F1] ≡ [u1, u2] structured by 

the same 2-D control vector k ≡ [k1, k2]. In general n-D space is generated by a corresponding n-

components control vector. This property allows the creation of a self-structuring system's behavioral 

space similar, in computational behavior, to the living organism's homeostasis (i.e. the automatic 

selection of environment's minimum perturbation level that allows optimal interaction between external 

information from environment (u) and system internal status information (k), as evidenced by Holling 

[56],[61].  

 

 
 

Figure 6. Control vector k allows to arrange external inputs u into symbolic string information with 

different convergence rate approximation around their convergence rate asymptotic value (World 

Cloud). For different k values, a landscape of world clouds can start self-organizing as a Baire Space. 

Control vector k selects recurrence series asymptotic convergence rate (Attractor Point), which 

different input u approximated rates are self-arranging  modularly (World Cloud) around.  

 

System "ecologic interface" allows to reach an operative point in homeostatic equilibrium with its 

external environment perturbation. In this way, we can allow for articulated information aggregation 

even in a networking environment and computing their related asymptotic functional closures 

immediately. Therefore, it is possible to compute recursively further numerical sequences asymptotically 

converging to irrational limits or completely diverging as function of external information input. In this 

way system can search automatically for a minimum environmental perturbation level (system internal 

status) useful to insure sequence asymptotical convergence to get vital information from system 
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environment (self-regulation and learning as quest for the difference that makes the difference, probing 

by probing...). Then, homeostatic operating equilibria can emerge out of a self-organizing landscape of 

self-structuring attractor points with their "World Cloud" (Fig.6). Control vector k allows to arrange 

external inputs u into symbolic string information with different convergence rate approximation around 

their convergence rate asymptotic value (World Cloud). For different k values, a landscape of world 

clouds can start self-organizing as a Baire Space. Control vector k selects recurrence sequence 

asymptotic convergence rate (Attractor Point), which different input u approximated rates are self-

arranging modularly (World Cloud) around (Fig.6).  

Irrational numeric limit families, identified by converging recursive numeric sequences allow the 

structuring of a mathematical Baire’s Space. A Baire space consists of countably infinite sequences with 

a metric defined in terms of the longest common prefix: the longer the common prefix, the closer a pair 

of sequences. What is of interest to us here is this longest common prefix metric, which we call the 

"Baire distance", which is an ultrametric distance [64-66]. Baire’s Space allows to manage numeric 

information in a way useful to synthetize quick and raw system primary response "to survive and grow." 

Furthermore, in this way system can even automatically self-organize and structure numeric families 

with different numerical closure to conserve overall system information (Generalized Fibonacci 

Systems, and information conservation by irreducible complementary system) [8]. From the simple 2-

term recurrence case, the recurrence aggregation law can be easily extended to 3-term case, by three 

consecutive terms (starting by trinomial 0,0,1, third order relation, m=3), to 4-term case, by four 

successive terms (starting by quadrinomial 0,0,0,1, fourth order relation , m=4), m-term case (by m-

nomial formed by j zeroes, plus one 1, (j+1)th order relation, (m=j+1), and in general we can write, in 

compact form, recurrence relation as function of three parameters, an = a(m, k, u), as specified 

previously, where m is the recurrence relation order. Figure 7. and Figure 8. give two examples of 

computational system functional closure for two different values of 2-D control vector k with parameter 

m going from 0 to ∞.  

 

 
Figure 7. System Functional Closures for k ≡ [1, 1] with parameter m going from 0 to ∞. The 

dynamic and deterministic recognizable numeric behavior, both horizontally and vertically, allows the 

simple definition of two coordinates for reliable computational bounds to each operating point. 
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Figure 8. System Functional Closures for k ≡ [2, 2] with parameter m going from 0 to ∞. The 

dynamic and deterministic recognizable numeric behavior, both horizontally and vertically, allows the 

simple definition of two coordinates for reliable computational bounds to each operating point. 

 

7.3. System Output Information Anticipation 

Rational recurrence sequence represents a convenient mathematical method that holds anticipatory 

proprieties, because it is possible to implement the anticipatory computation of any recursive sequence’s 

term. Taking arbitrarily any current positional index, it is possible to describe not only the next term but 

also terms at a certain distance from the current one in an anticipatory way, compared with the current 

positional index, by implementing its primary relation recursion conveniently. Specifically, starting from 

the recursive rule that indicates the next term to the current one, it is possible to structure a set of rules 

that allows to obtain recursive sequence’s terms at different distance, defining a set of registers that, 

working in parallel, are able to provide values with the desired anticipation level immediately. For 

example, considering second order (m = 2) recurrence relations an = a(2, k, u), where k and u are 2-D 

vectors [k1, k2] and [u1, u2] respectively, and where the (n + 1)-th to the current n-th term is obtained by 

the following recurrence relation: 

an+1 = k1 * an + k2 * an-1 , (12) 

where an-1 = u1 = 0 and an = u2 = 1, k1= k2 = 1, for the Fibonacci sequence. Then, we can specify recursion 

derived relations to compute appropriate terms at any arbitrary distance from the current position n. As 

an example, we define the following relations that are valid for computing terms to the distance n+5 

from the current one, depending, for instance, on control vector k ≡ [k1, k2] = [1, 1] and [k1, k2] = [2, 2]. 

These recurrence relations can be used in parallel, respectively, to provide the terms of sequence in an 

anticipatory way simultaneously. So in the case of [k1, k2] = [1, 1], recurrence rules are as follows: 

an+2 =  2 * an + 1* an-1 

an+3 =  3 * an + 2 * an-1 

an+4 = 5 * an + 3 * an-1 

an+5 = 8 * an + 5 * an-1 

…                                        . 

 

(13) 

In the case of values [k1, k2] = [2, 2] we obtain the following recurrence rules: 
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an+2 =       6 * an + 4 * an-1 

an+3 =    16 * an + 12* an-1 

an+4 =   44 * an + 32 * an-1 

an+5 = 120 * an + 88 *an-1 

...                                          . 

(14) 

In general for any control vector k ≡ [k1, k2] and for any order m, it is always possible to formulate 

rules associated to their primary recurrence relation: these rules allow the parallel anticipatory 

computation of recurrence sequence’s term at any distance from the current term position n.  

7.4. Reliable Predictability Information Subsystem 

To synthetize more organized and articulated, but slower, system response "to learn and prosper", it 

is necessary to structure recursive information into an "ordered polynomial reference", by "polynomial 

weighing" mapping, to obtain system "coherent perception" [67]. Polynomial weighing is key numeric 

operation to map recurrence sequence information representation into polynomial format corresponding 

to combinatorically OECS, folded into rational number operative representation (Fig.9) [8],[53].  

 

 
Figure 9. Polynomial Weighing allows the modular mapping of each 2-D approximated algebraic 

irrational World Cloud into a corresponding Rational Word Family. Denominator D identifies Rational 

Word Family. Numerator N identifies each algebraic rational approximation of irrational values 

(attractor points) as component inside that Family. 

 

 

Polynomial Weighing allows the modular mapping of each 2-D approximated algebraic irrational 

World Cloud into a corresponding Rational Word Family. Denominator D identifies Rational Word 

Family. Numerator N identifies each algebraic rational approximation of irrational values (attractor 

points) as component inside that Family. So, we get a sequence of different structuring operations to get 

external information more and more coherently formatted to system internal status to arrive to a system 
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"coherent perception" of external information. In this way, a natural balanced "Operating Point" can 

emerge, as a new Transdisciplinary Reality Level, from the mutual interaction of two coupled 

complementary irreducible information management subsystems, immersed within their environment.   

8. Post-Bertalanffy Cybernetics Update 

As you already guessed, the previous defined overall adaptive and learning system reference 

architecture is quite flexible. In fact we can use it to develop Anticipatory Learning System (ALS) to get 

realistic modeling of system natural behavior to be used in High Reliable Organization (HRO) 

application development. We can even use the same nonlinear logic approach to guess a convenient 

basic architecture to design anticipatory smart system interface (Interaction Interface System, IIS) as 

depicted in Fig.10. The simple recursive information aggregation method can be used even for advanced 

ISS (Inner Safety System) in advanced biomedical and healthcare system development application, from 

neuroperception to organ level modeling, from bio-transduction functions to anything-you-like, etc. 

[48],[62]. 

 

 

 
 

Figure 10. Interaction Interface System (IIS) Reference Architecture [48],[62]: Apprehension 

(Open Logic Subsystem); Organization (Closed Logic Subsystem).  

 

Due to its intrinsic self-organizing and self-scaling properties, this system approach can be applied at 

any system scale: from single health application development to full healthcare system governance 

strategic simulation and assessment application [48]. It can allow both quick and raw system response 

(Open Logic response, to survive and grow) and slow and accurate information unfolding for future 

response strategic organization (Closed Logic response, to learn, to adapt and prosper) by coherently 

formatted operating point [67]. Now, according to previous discussion, it is possible, at systemic level, 

to envisage a post-Bertalanffy Systemics Framework, with multiscaling properties, able to deal with 

problems of different complexity in a generalized way when interdisciplinary consists, for instance, of a 

disciplinary reformulation of problems, like from biological to chemical, from clinical research to 

healthcare, etc., and transdisciplinary is related to the study of such reformulations and their properties. 

As shown in Fig.4, our innovative system interaction modality, called "Recursive Interactor," (ReInt for 

short), corresponds to fourth order biomedical cybernetics in Fig.11. Now, new advanced systemic 

application can successfully and reliably manage a higher system complexity than current ones, to 

develop competitive system, with a minimum of design constraints specification and less system final 

operative environment knowledge at system design level. 
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Figure 11. Our final post-Bertalanffy Systemics Framework [50]. 

 

For instance, according to Fig.10, at brain level, it is possible to refer to LeDoux circuit (Logical 

Aperture) for emotional behavior (i.e. fear, emotional intelligence, etc.) and to Papez circuit (Logical 

Closure) for structured behavior (i.e. rational thinking, knowledge extraction, etc.…) [46]. Emotional 

Intelligence (EI) and Emotional Creativity (EC) [47] coexist at the same time with Rational Thinking in 

human mind, sharing the same input environment information. Then, operating point can emerge as a 

transdisciplinary reality level from the interaction of two complementary irreducible, asymptotic ideal 

coupled subsystems. To behave realistically, overall system must guarantee both Logical Aperture (to 

get EI and EC, to survive and grow) and Logical Closure (to get Rational Thinking, to learn and prosper), 

both fed by environmental "noise" (better… from what human beings call "noise") [8]. In fact, natural 

living organism does perturb its environment, but only up to the level it is perturbed in turn by its own 

environment both to survive and grow, no more [56]. Due to its intrinsic scaling properties, this system 

approach can be applied at any system scale: from single quantum system application development to 

full system governance strategic assessment policies and beyond [62]. Expected impacts are multifarious 

and quite articulated at different system levels: at theoretic level, major one is that, for the first time, 

Biomedical Engineering ideal system categorization levels can be matched exactly to practical system 

modeling interaction styles (Fig.11), with no paradigmatic operational ambiguity and information loss, 

even for living organism application.  

9. Multidisciplinary Approach Arbitrary Scale Modeling 

ALS, IIS and ISS are three pivotal concepts to develop safer, more adequate, effective and efficient 

solutions for competitive safety systems and human wellbeing. As a matter of fact their basic operational 

concepts can be conveniently and successfully extended to many advanced Business and HRO 

application areas, with no performance or economic penalty, to develop more and more competitive 

application. For instance, at a higher level of abstraction, environmental noise input information to be 

aggregated to system internal status information can provide a structured homeostatic synthetic operating 

point as a reference for further inquiry. Then, System Interaction by internal and external information 
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aggregation can allow both quick and raw response (Open Logic response, to grow and survive) and 

slow and accurate information for future response strategic organization (Closed Logic response, to 

adapt and prosper) by coherently formatted operating point information. As an example of simple 

advanced management architecture for HRO, for closed logic Reactive Management system, we can 

choose from different documented operational alternatives offered by literature, like Deming’s PDCA 

Cycle [68], Discovery-Driven Planning [69], etc., while for open logic Proactive Management system, 

we can choose from Boyd OODA Cycle (1987) [70], Theory-Focused Planning [71], etc.  

 

 
Figure 12. Final Architecture for Advanced Sfety and Security Systemic Governance Framework 

for HRO [72],[73]. 

 

As a simple example, PDCA’s cycle (Reactive Management) and OODA’s cycle (Proactive 

Management) can be selected to represent two corresponding complementary irreducible sub-systems 

for advanced integrated strategic management. Then, our final operative reference architecture, for 

Safety and Effectiveness Health Systemic Governance, is given as from Fig.12. Specifically, advanced 

wellbeing applications (AWA), high reliability organization (HRO), mission critical project (MCP) 

system, very low technological risk (VLTR) and crisis management (CM) system will be highly 

benefited mostly by CICT newer approach and related techniques.  
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10. Conclusion 

CICT general relationships to compute information coherent functional closure for any computational 

system from low-level multiplicative noise source generators, related to experimental high-level overall 

perturbation were presented and discussed. CICT brings classical and quantum information theory 

together in a single framework, by considering information not only on the statistical manifold of model 

states but also from empirical measures of low-level multiplicative noise source generators, related to 

experimental high-level overall perturbation. Traditional elementary arithmetic long division remainder 

sequences can be interpreted as combinatorically optimized exponential cyclic sequences (OECS) for 

hyperbolic structures, as points on a discrete Riemannian manifold, under HG metric, indistinguishable 

from traditional random noise sources by classical Shannon entropy, and current most advanced 

instrumentation approach [8]. CICT defines an arbitrary-scaling discrete Riemannian manifold uniquely, 

under HG metric, that, for arbitrary finite point accuracy L going to infinity (exact solution theoretically), 

is isomorphic (even better homeomorphic) to traditional information geometry Riemannian manifold 

[53]. In other words, HG can describe a projective relativistic geometry directly hardwired into 

elementary arithmetic long division remainder sequences, offering many competitive computational 

advantages over traditional Euclidean approach. It turns out that, while free generator exponentially 

growing sequences (OECS) can be divergent or convergent, their coherent functional closures can be 

defined in terms of complete homogeneous polynomial structures. Associated OECS co-domain 

polynomial information structure can be used to evaluate any computed result, and to compensate for 

achieving computational information conservation for any computational system in any polynomial 

base. Due to its intrinsic self-scaling properties, this system approach can be applied at any system scale: 

from single quantum system application development to full system governance strategic assessment 

policies and beyond. In this way, we can minimize or overcome previous major system limitations 

(Section 2.) to arrive much closer to fourth generation adaptive learning and real machine intelligence 

systems. This approach allows you even to develop more antifragile anticipatory learning system (ALS), 

for more reliable, safe and secure medical application and system (cybersafety). Specifically, high 

reliability organization (HRO) [72],[73], mission critical project (MCP) system, very low technological 

risk (VLTR) and crisis management (CM) system will be highly benefitted mostly by these new 

techniques. The present paper is a relevant contribution towards a new post-Bertalanffy General Theory 

of Systems to show how homeostatic equilibria can emerge out of a self-organizing landscape of self-

structuring attractor points. 
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