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Machine learning of pair‑contact 
process with diffusion
Jianmin Shen1, Wei Li1*, Shengfeng Deng2, Dian Xu1, Shiyang Chen1 & Feiyi Liu1,3

The pair‑contact process with diffusion (PCPD), a generalized model of the ordinary pair‑contact 
process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, 
whose nature of phase transition is clearly classified into the directed percolation (DP) universality 
class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, 
there is so far no consensus on whether the phase transition of the PCPD falls into the unknown 
university classes or else conveys a new kind of non‑equilibrium phase transition. In this paper, both 
unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two 
unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. 
Our results show that both methods can cluster the original configurations of the model and provide 
reasonable estimates of thresholds. Therefore, no matter whether the non‑equilibrium lattice model 
is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it 
contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden 
information. Beyond that, supervised learning is also applied to learning the PCPD at different 
diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation 
exponent ν⊥ , which, to a large degree, avoids the uncertainty of data collapses through naked eyes.

Machine learning (ML)  algorithms1 have been widely used in equilibrium phase transitions, to distinguish matter 
phases and detect phase  transitions2–7 in various kinds of systems. Based on whether labels are involved or not, 
ML methods can be categorized into supervised and unsupervised learning. Often, they are also closely related 
to the so-called deep learning in which more elaborate frameworks are  adopted8,9. As is known, supervised 
learning includes regression and classification, which are efficient in predicting certain quantities that appear 
in fields such as  biophysics10,11,  astrophysics12, quantum  physics13, and many more domains in  physics14,15. In 
fields such as statistical  physics16,17 and condensed matter  physics2,4,18,19, supervised learning is employed to 
identify phases or predict phase transitions, as well as speed up  simulations20. For supervised learning of phase 
transitions, we need to have real experimental data ready or generate configuration data through Monte Carlo 
 simulations21, before labeling and training them. By this means, the trained model can recognize and predict 
newly input configurations and obtain the corresponding regression or classification results, from which we can 
also utilize the rescaling method to yield some critical exponents.

In contrast, unsupervised learning does not require labels, which in autoencoder is what we say the input 
itself. Unsupervised learning is powerful for data clustering, compression, dimensionality reduction and visu-
alization, due to its ability to extract essential information from raw data. It is believed that the unsupervised 
learning can learn the hidden information in the input data with a changing trend, which has been intriguing.

In recent years there has been vast progress in supervised and unsupervised learning for equilibrium phase 
 transitions2–7,22 as well as non-equilibrium phase  transitions23–26. As the preprocessing for data training and pre-
diction, unsupervised learning is more appealing. The  article4 is the earliest literature of unsupervised learning 
method being used for studying phase transitions that we can retrieve so far. The author uses principal component 
analysis (PCA) to distinguish the phases and reveal the properties of the classical Ising model, such as order 
parameters and structure factors. In Ref.5, by using PCA, kernel-PCA, autoencoder, and variational autoencoder 
to study the 2-D Ising model and 3-D XY model, it is found that some potential variables could be related to the 
order parameters. According to Ref.6, PCA has been widely applied to comparing critical behaviors of various 
models, including Ising models with square- and triangular-lattice, the Blume-Capel model, a highly degenerate 
biquadratic-exchange spin-one Ising (BSI) model, and the 2-D XY model. It is shown that the quantized principal 
component of PCA can not only detect phases and symmetry breaking but distinguish phase transition types 
and determine critical points. Similar studies of critical phenomena by using unsupervised learning can refer 
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 to3,27,28. In what way can unsupervised learning process the known or generated data to extract essential embed-
ded information, is also very crucial for statistical physics.

Inspired by this, the present study was designed to extrapolate ML techniques to a binary stochastic reaction 
 process29–31 called pair-contact process with diffusion (PCPD)31–34. Two unsupervised learning methods, PCA 
and autoencoder, are used to study this model, respectively.  PCA35,36 is a linear dimensionality reduction method, 
which has a wide range of applications in extracting salient features of complex data. While the  autoencoder37–39 
neural network has the advantage of dealing with nonlinear data in image recognition and data compression. By 
applying PCA and autoencoder, we try to classify different lattice phases and extract the thresholds of the PCPD 
model. The input data is generated by the Monte Carlo simulations of the model.

It should be noted that the directed percolation (DP) process, a classic non-equilibrium phase transition 
 model29,30,40, has been studied by both supervised and unsupervised  learning25. Combining the learning results 
of the DP and the PCPD models, we can immediately appreciate the value of investigating such non-equilibrium 
systems. Among them, the DP is a unitary random reaction process, while the PCPD is a binary one. The results 
show that our PCA and autoencoder can successfully cluster PCPD’s configurations and determine the critical 
points with high accuracy. Equilibrium phase transitions have some similarities with non-equilibrium ones, 
and therefore similar methods are suitable for them. The unique feature of non-equilibrium phase transition is 
the extra dimension, namely time. The states and properties of the system may change with time. If one intends 
to extend the ML algorithms to non-equilibrium phase transitions, the dimension of time has to be dealt with.

The overall structure of the study takes the forms of three chapters, including this introductory one. In the 
second section, we briefly introduce the model of PCPD, the two unsupervised learning methods, the data sets 
and ML results of PCPD. Here, we successfully cluster the configurations and obtain reasonable thresholds. 
By using supervised learning, we also obtain some critical exponents. In addition, numerical calculations are 
implemented to determine correlation exponents. The third section is a summary of this paper.

Machine learning of the PCPD
The model of PCPD. Before understanding the PCPD, we will briefly introduce its prototype, the pair-con-
tact process (PCP) in which no diffusion is considered. Figure 1 displays a configuration generated by the PCP. 
PCP, proposed by  Jensen41, is a random reaction process without particle diffusion and can produce a continu-
ous phase transition. In the d-dimensional lattice, sites are either occupied or empty. Under the sequential updat-
ing mechanism, processes of proliferation and annihilation compete with each other until the system reaches 
a steady-state or an absorbing phase. When L → ∞ , the particle system has an infinite number of absorbing 
states. Different from the DP, the order parameter of the PCP is given by the pair-particle density. Nevertheless, 
the PCP has been proven to have the same critical exponents as the DP, which means that the PCP belongs to 
the DP universality class.

Different from the DP, the PCPD is a simple binary random reaction  process42. When the diffusion rate D is 
0, the classical model, PCP, is restored. Henceforth the PCPD can be regarded as a generalization of the PCP. In 

Figure 1.  (1+1)-dimensional PCP and PCPD starting with a fully occupied lattice at criticality. The system size 
is L = 500 , and the time step is 500.
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the PCPD, a reaction is triggered by the forming of a pair-particle. The PCPD’ reaction-diffusion mechanism 
is given by,

where A means a single particle, and ∅ an empty site.
The PCPD demonstrates a continuous phase transition from the fluctuating active phase to the absorbing 

phase, whose evolution is governed by the following rules,

where p ∈ [0, 1] represents the pair annihilation probability, and D ∈ [0, 1] the diffusion rate. When the system 
is in the active phase p < pc , the proliferation process plays a dominant role. After a sufficiently long time, the 
system will reach a steady-state, at which point the particle density ρs > 0 . On the contrary, the annihilation 
process dominates the p > pc system in the absorbing phase, and the particle density decreases rapidly until the 
system reaches the absorbing phase. In the thermodynamics, if the diffusion rate D is 0, the space-time trajectory 
of a single particle will always be a straight line (see left panel of Fig. 1). Once reactions are not longer possible 
due to adjacent pairs being depleted, each single particle leaves behind a long stripe. In the inactive phase, since 
there are infinite combinations for the locations of these stripes, the process without diffusion will result in the 
generation of an infinite number of absorbing states. If diffusion rate D > 0 , a single particle is allowed to diffuse, 
leaving a random-walk like trajectory until it collide with another particle and trigger a reaction event. Even if 
there are just two particles in the lattice, when the two diffusing particles meet, the offspring of them may still 
meet again after a long period of time, resulting in a certain degree of randomness in the trajectory of the dif-
fusing particles, and the visual appearance are generally not straight lines. If the value of p is fixed, the particle 
density of the system decays with the increase of the diffusion rate D.

In MC with periodic boundary conditions, sequential update mechanism is employed to generate configura-
tions of the PCPD. We first select a particle and a direction randomly. Then a particle in the selected direction 
moves to its nearest neighboured site with probability D; the nearest neighbour in the selected direction anni-
hilates with probability p(1− D) , and creates a new particle at the next nearest neighbourhood with probability 
(1− p)(1− D) . For a block of sites with indices h, i, j, k, l, we can characterize the dynamic rules of the PCPD 
model by Eq. (3), where si(t) represents the state of node i at time t, and z ∈ (0, 1) is a random number generated 
from a uniform distribution.

Like many non-equilibrium models, the PCPD is easy to simulate on computers, but hard to implement with 
experiments. Moreover, the exact analytical solution of the PCPD is not yet available. It does not have rapid time 
inversion symmetry. Analogous to many non-equilibrium models, the PCPD is described by four independent 
critical exponents ( β , β ′ , ν⊥ , and ν‖ ). However, its universality class category has become one of the unsolved 
and controversial problems of non-equilibrium critical  phenomena31,33, which has received considerable amount 
of attention.

Take (1+1)-dimensional lattice as an example, the PCP has infinite number of absorbing states, whereas the 
PCPD can only have at most two absorbing states, including the one with all empty sites and the one with a 
single diffusion particle. The particle annihilation of the PCPD at absorbing phases shows an algebraic decay vs 
time, which is a piece of evidence that the PCPD may not belong to the DP universality class. In Monte Carlo 
 simulations32,34,43, usually we set the sum of diffusion, annihilation and proliferation probability of a single particle 
in the PCPD to be 1. In addition, numerical simulations indicate that the upper critical dimension of the PCPD is 
dc = 2 , and that of the DP is dc = 4 . It is worth noting that for numerical results, some variables (such as particle 
density and pair density) do not obey exact power-law distributions. This could be one of the factors that pc and 
critical exponents of the PCPD are dependent on diffusion rates. In general, the critical behaviors of the PCPD 
still need to be unveiled, with higher measurement accuracy, which is exactly one of the motivations of this work.

Methods of unsupervised ML. PCA. As one of the most commonly used dimensionality  reduction44–46 
and visualization techniques,  PCA44 transforms a set of potentially linearly correlated data into a set of linearly 
unrelated variables. The first principal component is the data with the highest variance after transformation, and 
the second principal component is the data with the second-highest variance, and so on and so forth. There are 
two feasible methods to achieve PCA dimensionality reduction. The first one is on the strength of the eigenvalue 
decomposition of the covariance matrix, and the second one is on the strength of the singular value decomposi-
tion (SVD) of the original matrix. These two methods are intrinsically related, and please refer to Appendix A 
for details.

(1)
fission : 2A −→ 3A,

annihilation : 2A −→ ∅,

(2)





AA∅ −→ AAA ; with rate (1− p)(1− D)/2
∅AA −→ AAA ; with rate (1− p)(1− D)/2
AA −→ ∅∅ ; with rate p(1− D)
A∅ ←→ ∅A ; with rate D,

(3)





sj(t + 1) = 0 sk(t + 1) = 1 if sj(t) = 1 and sk(t) = 0 and z < D/2,
sj(t + 1) = 0 si(t + 1) = 1 if sj(t) = 1 and si(t) = 0 and z < D/2,
sj(t + 1) = 0 sk(t + 1) = 0 if sj(t) = 1 and sk(t) = 1 and z < p(1− D),

sl(t + 1) = 1 if sj(t) = 1 and sk(t) = 1 and sl(t) = 0 and z < (1− p)(1− D)/2,
sh(t + 1) = 1 if si(t) = 1 and sj(t) = 1 and sh(t) = 0 and otherwise,
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Autoencoder. PCA is a linear dimensionality reduction algorithm, which eliminates redundancy by reducing 
the spatial dimension, and uses fewer features to describe data information as completely as possible. Autoen-
coder has advantages in feature extraction of linear data, nonlinear data denoising, image recognition, image 
compression, visual dimensionality reduction, and feature learning. In this paper, we focus on the latter two 
points.

We can refer to  article47 for recent advances of autoencoders,  and48,49 for systematic reviews of autoencoder 
and its variants. For example, sparse autoencoder is usually used to implement classification tasks, while denois-
ing autoencoder can extract the most important features of data and learn their robust representation. Variational 
autoencoder is a generation system, which has similar functions as generative adversarial networks(GAN). 
Fully connected autoencoder generally ignores the spatial structure of the image. In this paper, we used the 
convolutional  autoencoder50. Please refer to Appendix B for an introduction to the principle including the loss 
function of autoencoder.

To prevent over-fitting9, we add the L2-norm ( �/(2N)
∑
i
w2
i  ) to the loss function. The AdamOptimizer is 

used to speed up our neural networks. Our ML is implemented based on TensorFlow 1.15.

Data sets and results. Before building an adaptable model, we first need to explicitly define an ML 
 problem51. It includes data point selection, its features and labels, hypothesis space, and loss function. For 
(1+1)-dimensional PCPD, its data points can be regarded as a configuration with all time steps being generated 
from a single annihilation probability, as shown in Fig. 1. It is characterized by the number of lattice sites con-
tained in the configuration, including“1”(occupied site) and“0”(empty site). In unsupervised learning, including 
PCA and autoencoder studies, we do not need to label the configuration, but instead extract some information 
directly from the original data. In supervised learning, however, we have to label the configuration generated 
by MC simulations, only in this way can we train a special and reasonable model or hypothesis space. In the 
neural networks of this paper, our loss function is the mean cross-entropy between the label vector yl and the 
output layer vector y. In autoencoder neural networks, the label can be regarded as the original configuration 
itself. The main task of unsupervised learning’s applying to phase transitions is to reduce the dimensionality of 
original high-dimensional data to extract critical points. In this paper, the main purpose of supervised learning 
is to make a binary classification for (1+1)-dimensional PCPD configurations, which are percolating and non-
percolating phases. Depending on the binary classification output, we can also calculate some critical exponents 
by rescaling of the data collapse. Obtaining critical points and critical exponents is the fundamental motivation 
for us to study phase transition problems.

As explained  in25, for (1+1)-dimensional bond DP, the paper chooses the generated configuration with a fully 
occupied lattice as the initial condition. And this paper will deal with the data form in the same way. We employ 
Monte Carlo simulations to generate the raw input data(see Supplementary Section “PCPD’s data sets for train-
ing and test”) needed for ML. It is clear that for non-equilibrium lattice models, the characteristic time tc ∼ Lz 
is much larger than the lattice size because of the extra time dimension. Therefore, for the sake of calculation, 
we will truncate the original data for ML. For example, in many cases, we will take T = L . This operation can 
reduce the amount of computation and the impact of fluctuations in some cases. Of course, such processing does 
not lower the accuracy of the results of ML and is therefore considered feasible.

In autoencoder, our configuration data is divided into a training set, a validation set, and a test set. We use 
the validation set to adjust the hyper-parameters so that the model is optimal.

Unsupervised ML of the PCP and the PCPD via PCA. First, we perform PCA dimensionality reduction for 
(1+1)-dimensional PCPD. For this binary random reaction process, we learn the case of D = 0.1 . We use Monte 
Carlo simulations to generate configurations corresponding to different annihilation probabilities p. Here, we set 
the lattice size L = 40 and the time step T = 40 . We select 31 annihilation probabilities with an interval of 0.01 
between 0 to 0.3, and each of them generates 100 samples. That is, the raw data matrix is X3100×1600 . It is obvious 
that in Fig. 2(a), there is only one dominant principal component whose corresponding explained variance ratio 
is the largest.

Figure 2(b) presents the relationship between the first principal component and particle density. As can 
be seen from Fig. 2(b), the corresponding configurations of the same annihilation probability are arranged in 
close proximity. Simultaneously, the configurations within the range of p = 0 ∼ 0.3 are approximately arranged 
in a straight line. We conclude that the first principal component and particle density are proportional to one 
another. This means that such a correlation makes the particle density a physics quantity that can be related to 
the first principal component.

The relationship between the first principal component and the annihilation probability, is shown in Fig. 2(c). 
To achieve high accuracy, we generated 1000 samples for each annihilation probability to perform an ensemble 
average for the first principal component. By observing Fig. 2(c), we can see that the jumping location is the 
transition point. Figure 2(d) is the result of mapping the first principal component and the second principal 
component onto a plane. This approach also has a good clustering effect for (1+1)-dimensional PCPD.

The  article52 illustrates that using more principal components can capture and retain the most crucial informa-
tion from the original data. Actually, in this paper, for the purpose of clustering or phase classification (extracting 
critical points), only one or two principal components are needed.

In addition, we also implemented PCA dimensionality reduction and visualization for (1+1)-dimensional 
PCP, as shown in Fig. 3. In this case, the particle does not diffuse. We can conclude that, although the particle 
diffusion rate has changed, the unsupervised learning method PCA can promptly make an excellent clustering 
representation of (1+1)-dimensional PCPD and capture the critical point.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19728  | https://doi.org/10.1038/s41598-022-23350-2

www.nature.com/scientificreports/

Unsupervised ML of PCP and PCPD via autoencoder. Before employing the autoencoder learning of PCP, we 
need to pre-process the raw configurations. In phase transitions, the order parameter is the key quantity that 
separates the two different phases at the critical point. For PCP model, the density of pair particles, is one of two 
order parameters (the other one is density of single particles). Henceforth, feature engineering, for separating 
single and pair particles, is needed to deal with original configurations thereinbefore. Fig. 4(a) and (b) represent 
the raw configuration and the one where only pair particles are left, of the PCP model, respectively. After the 
preparations, we carry out autoencoder learning for these two configurations, and show the results at the bot-
tom panels of Fig. 4, left and right. To determine the critical point, we perform a non-linear fitting in the form 
of the hyperbolic tangent function a× tanh[b(p− pc)] + c (the blue lines of the bottom panels of Fig. 4 are the 
fitting curves), and the location pc is the critical point we are looking for. The fitting technology we used is the 
NonlinearModelFit function of Mathematica, with which the Levenberg-Marquardt algorithm had been used 
with at least 10 iterations to minimize the sums of squares. We find that the predicted pc ≃ 0.0809 of Fig. 4(d) is 
very close to that given by Monte Carlo simulations, where pc ≃ 0.0771 . Thus, we conclude that the pair-particle 
density can characterize the phase transition of the PCP in a good manner. The following learning results of the 
PCP are then all based on the configurations of pair particles only.

Figure 5 shows the autoencoder learning results of (1+1)-dimensional PCP. The lattice size is L = 40 , and the 
time step is T = 40 . Figure 5(a) and (b) represent two types of clustering, with configurations being generated 
by 11 and 31 different annihilation probabilities, respectively. As is known, the diffusion rate of PCP is D = 0 . 
Figure 5(a) displays the clustering of the cases with 11 different annihilation probabilities p, and for each p, 100 
samples of the configuration are generated. The number of potential neurons in the autoencoder network being 
set to 2, the eleven categories collapse onto a straight line. In Fig. 5(b), 31 annihilation probabilities, between 0 to 
0.3 and with an interval of 0.01, are selected. Clustering results indicate that data points corresponding to smaller 
p appear on the lower left (blue), while those corresponding to larger p appear on the upper right (red). The mid-
dle segment is more scattered than the two ends, which by our speculation may belong to the critical regions.

In order to determine the critical probability pc , the number of potential neurons of the convolutional autoen-
coder neural network is set to be 1. After the neural network is trained, we got the latent variable shown in 
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Figure 2.  PCA results of (1+1)-dimensional PCPD, where D = 0.1 . (a) The explained variance ratio �̃ℓ from 
first ten principal components. (b) p1 versus density, each annihilation probability corresponding to 100 
samples. (c) < p1 > ( ensemble averages of 1000 runs) versus p. System sizes L = 40, 80, 120, 160 are represented 
by different colors, respectively. (d) The clustering over 31 annihilation probabilities.
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Fig. 5(c) and (d) where single potential variables are plotted as functions of p. The hyperbolic tangent function 
fitting yields pc = 0.081(1) and pc = 0.082(1) that are very close to the theoretical value of pc = 0.077092(1)31.

Analogous to the PCP model, the configurations of the PCPD model for autoencoder learning are selectively 
chosen. Three different configurations of the PCPD are shown in the top panel of Fig. 6, and their corresponding 
autoencoder learning results are given in the bottom panel of the same figure, respectively. It is found that only 
the learning based on the original configurations agrees well with the Monte Carlo simulations. Therefore, for the 
PCPD model, we choose the original configurations for autoencoder learning. Theoretically, the order parameter 
of the PCPD model is expressed by the sum of the densities of pair particles and single particles.

In the PCPD model, it includes not only the pairwise reaction between particles but also the diffusion motion 
of particles. First, we investigate the autoencoder learning results when D = 0.05 . Figure 7(a) represents the 
scatter plot of hidden variables extracted from configurations of 10 different p’s, and Fig. 7(b) represents the 
counterpart of 41 different p’s. For each of p, 100 samples are generated. From these two panels, we can see that 
the configurations corresponding to the same p are clustered in the proximity of one another. And all the clustered 
zones are well ordered according to the values of p. This allows for the conclusion that for (1+1)-dimensional 
PCPD, autoencoder can accurately cluster its configurations.

Furthermore, we hope to be able to obtain the threshold pc by limiting the number of potential neurons. Let 
the number of potential neurons in the autoencoder network be 1, the plot of Latent variable versus p is shown 
in Fig. 8. In order to achieve higher accuracy, a finite-size scaling is undertaken for the (1+1)-dimensional PCPD 
system at D = 0.05 , where L = 32, 48, 64, 80, 96 . And the critical point is estimated to be 0.105844, quite close 
to pc = 0.10439(1) as given  in32.

As seen, the diffusion effect of D = 0.05 is not that significant. To study the cases when the diffusion rate is 
accelerated, we need to increase the value of D. Interestingly, the particle annihilation rate increases with the 
increase of D and consequently, the number of occupied lattices drops rapidly. As D increases up to a certain 
value, it seems that our autoencoder neural network cannot effectively detect the hidden structure of the sys-
tem. We conjecture that larger D could lead to a rapid decay of particle number in the system so that the neural 
network may not learn anything useful. That is to say, the input information to the neural network will be very 
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Figure 3.  PCA results of (1+1)-dimensional PCP. (a) The explained variance ratio �̃ℓ from first ten principal 
components. (b) p1 versus density, each annihilation probability corresponding to 100 samples. (c) < p1 > 
(ensemble averages of 1000 runs) versus p. System sizes L = 40, 80, 120, 160 are represented by different colors, 
respectively. (d) The clustering over 31 annihilation probabilities.
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limited, and the training is not effective without sufficient feeds. Our extensive studies indicate that the capture 
of the PCPD critical point by autoencoder neural network is more feasible when D ≤ 0.5 is satisfied.

Supervised learning of the PCP and the PCPD. Unsupervised learning can detect the transition points of critical 
systems, whereas supervised learning can yield some critical exponents by rescaling or the so-called data col-
lapse. There are two correlation exponents in non-equilibrium phase transitions, called spatial and temporal cor-
relation exponents, respectively. Here we focus primarily on the former, spatial correlation exponent. Through 
the dynamical exponent z = ν�/ν⊥ , the temporal correlation exponent can be indirectly measured.

Here in supervised learning, we employ the fully connected network (FCN) to identify phases of the PCPD. 
The basic architecture of FCN used in this paper can be found in one of our previous  articles25. The hyper-param-
eters we use are as follows: the learning rate is 0.0001, the batch size is 1024 and the regularization parameter 
is 0.01. The mean cross-entropy between the label vector yl and the output layer vector y used in our FCN also 
contains a L2-norm mentioned above to prevent over-fitting. Our FCN contains 100 neurons in the hidden layer, 
and two in the output layer. Input configurations are labelled by “0”for probabilities of annihilation less than 
the critical threshold, and“1”for rest probabilities. After the neural network is trained and fine tuned, we obtain 
the learning results of the PCP and the PCPD, shown in Fig. 9. The first column of Fig. 9 represents the output 
results of two neurons of five different system sizes, and the intersections are the transition points predicted by 

Figure 4.  The top panels are configurations of (1+1)-dimensional PCP, where (a) is the raw configuration with 
lattice size N = 40 and time step t = 40 . (b) represents the configuration of pair-particle of the lattice defined in 
(a). (c) and (d) autoencoder results of (1+1)-dimensional PCP. (c) gives the learning of configurations defined in 
(a). (d) Gives the learning of configurations defined in (b).
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the learning. Obviously, these predictions are consistent with the theoretical thresholds, and the details of the 
learning procedure can refer  to25.

The second column of Fig. 9 displays the data collapses in which the horizontal co-ordinates have been 
rescaled by a factor related to the spatial correlation exponent ν⊥ . Both PCP and PCPD are binary reaction dif-
fusion processes, and the PCP belongs to the universality class of the DP, whereas the university class of PCPD 
remains vague. The spatial correlation exponent given by Fig. 9(b) is ν⊥ ≃ 1.13(1) , which approaches the theoreti-
cal one ν⊥ ≃ 1.09 . For the PCPD its critical threshold pc(D) may depend on the diffusion rate. ν⊥ is also found 
to be dependent on D, the diffusion rate, as give in Table 1. Especially ν⊥ decreases as D increases. Compared 
with the results obtained by Monte Carlo simulations in Refs.32,43,54, the measurements of ν⊥ are accompanied 
by certain amount of uncertainties, caused by various factors.

Although our measurements show that ν⊥ may vary with the diffusion rate, we have to be very cautious 
in drawing such a conclusion, due to the fact that ML so far only works with small systems. Because there are 
finite-size effects, as well as fluctuations driven by diffusion. Therefore, the dependence of ν⊥ on D might be an 
artifact caused by the combination of finite-size effects and diffusion-driven fluctuations.

Generally speaking, ML of phase transitions has been very well adapted to small-sized systems. For compari-
son, MC simulations are also performed for (1+1)-dimensional PCPD of same sizes that have been set for ML. 
The critical exponents ν⊥ for different diffusion rates are given in Table 1, obtained from ML, MC small systems 
and MC literatures, respectively. According to the method  in32, we need to know β and β/ν⊥ to get ν⊥ . Dealing 
with the effective β exponent, we refer to formula

where ρ(∞, ǫi) means steady state densities, ǫi = pc − pi . We choose five different diffusion rates to calculate 
effective β exponents. In this part of MC simulations, the model parameters selected are as follows. The lattice size 
of the PCPD system is L = 80 , the total time step is t = 6400 , and the number of ensemble average is 1000000 
for each annihilation probability. And we find that almost all the extrapolation values of βeff  are larger than those 

(4)βeff =
ln(ρ(∞, ǫi))− ln(ρ(∞, ǫi−1))

ln(ǫi)− ln(ǫi−1)
,

Figure 5.  Autoencoder results of (1+1)-dimensional PCP. (a) and (b) encoding of the raw PCP configurations 
onto the plane of the two hidden neuron activations (h1, h2) . (c) and (d) Encoding of the raw PCP 
configurations, using a single hidden neuron activation Latent as a function of the annihilation probability. As 
seen, the critical threshold approximates the estimate by Monte Carlo simulations.
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 in32. This is most likely due to strong finite-size effects or the uncertainties of p-values used. In calculating β , we 
use logarithmic correction methods like  in32, defined as

For calculating β/ν⊥ , we refer to the quasi-steady state density (averaged over surviving samples)

where the lattice size is L = 16, 32, 48, 64, 80 , the total time step is t = Lz
′(we choose z′ = 2 ), and the number 

of ensemble average is 1000000 for each annihilation probability. Since the critical annihilation probability pc 
of the small-sized PCPD system fluctuates greatly, we obtain a critical value pc = 0.102(3) with diffusion rate 

(5)ρ(∞, ǫ) = [ǫ/(a+ b ln(ǫ))]β .

(6)ρs(∞, pc , L) ∝ L−β/ν⊥ ,

Figure 6.  The top panels are configurations of (1+1)-dimensional PCPD, where diffusion rate D = 0.05 , 
lattice size N = 40 and time step t = 40 . (a–c) Represent raw, pair-particle and single-particle configurations, 
respectively. (d–f) Autoencoder learning results of (1+1)-dimensional PCPD. (d) Corresponds the learning 
of raw configurations. (e) the learning of pair-particle configurations. (f) The learning of single-particle 
configurations.
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Figure 7.  Autoencoder learning results of (1+1)-dimensional PCPD, where D = 0.05.
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D = 0.1 in the L = 80 system. In our simulations, something interesting happens. If we choose an accurate critical 
value pc = 0.1068832 obtained from large size ( L = 105 ), βeff  is inaccurate but β/ν⊥ is relatively reasonable. On 
the contrary, if we choose the effective critical value pc = 0.102 estimated from small size ( L = 80 ), β/ν⊥ is not 
correct but βeff  is relatively reasonable. In short, the choice of both pc values will result in a large deviation for 
calculating ν⊥ in a small-sized system. In our work, pc = 0.1068832 is taken in calculating ν⊥.

Unsurprisingly, the MC simulations of small-sized systems showed larger deviations compared to the coun-
terparts of large-sized systems. These deviations are caused partly by the randomness of diffusion, and partly 
by the finite sizes. But supervised ML results are revealed to be relatively stable and much less affected by the 
finite sizes. We believe that supervised ML to calculate the critical exponents can provide some reference for 
the study of the PCPD. Of course, our algorithm and computation scale can still be improved, which will be the 
work of the future.

Due to its strong correction to scaling, the PCPD is notoriously known for its extremely slow crossover behav-
ior to the scaling region, rendering the estimations of both its critical point and the critical exponents hard (see 
e.g. the extensive  review33). Therefore, even though several studies, such as a bosonic variant of the  PCPD55 and 
the refined mean-field phase portrait  analysis56, suggested that the PCPD constitutes a novel universality class 
different from the DP or the PCP, most Monte Carlo simulation studies have yet defied this conclusion. Most 
notably, many elaborate simulations reveal that its critical properties seem to depend on the considered diffusion 
 rate43,54,57. Nevertheless, by sophisticatedly taking into account the effects of correction to scaling, a more recent 
 study58 was able to obtain a diffusion-independent decay exponent that is markedly distinct from the DP value. 
Given the rather limit system size and simulation time we used in the ML scheme, such large-scale, long-time 
behaviors as in Ref.58 of course can not be observed, but as in Refs.43,54,57, one should expect to observe a diffusion-
dependent measurement for the spatial correlation exponent ν⊥ as opposed to other phase transition models.

Very little can be traced in the literature on how to estimate critical exponents from data collapse. Mostly the 
procedure relies on the eyes, without any solid foundation or reliable criterion. Here, we propose a more reli-
able means to determine ν⊥ , combining the Euclidean distance. Take as an example the case where the diffusion 
rate is 0.1. We choose the two results of the output layers corresponding to L = 32 and L = 80 , respectively. For 
binary classification neural networks, usually, the outputs obey sigmoid functions. After rescaling the abscissa, 
we perform sigmoid function fitting for the two curves. Assume Y = F1(x) and Z = F2(x) , then the Euclidean 
distance is EuclideanDistance =

√∑
n

i=1(Yi − Zi)
2  . When calculating the Euclidean distance, we uniformly 

select all X’s in the range of [−0.5, 0.5] with an interval of 0.02. The Euclidean distances are provided in Table 2, 
and the data collapse results for three different ν⊥ ’s are plotted in Fig. 10. Starting with ν⊥ = 0.91 , with the 
increase of ν⊥ , the Euclidean distance first decreases until ν⊥ = 1.11 , and then increases after that. ν⊥ = 1.11 is 
the value that we are looking for, which corresponds to the optimal fitting. This method successfully avoids the 
instability of naked eyes, and therefore might be served as a methodology for data collapse.

Discussion. Since the parameters built in the autoencoder are obtained by minimizing the cost function at 
certain training samples, it’s necessary to check its prediction ability. Here, we implement the cross-entropy as 
the cost function, and compare its values at the last training epoch in training set to those in validation set. The 

Figure 8.  Autoencoder results of (1+1)-dimensional PCPD ( D = 0.05 ). (a–e) Encoding of the raw PCPD 
configurations, using a single hidden neuron activation Latent which is a function of the annihilation 
probability. (f) Finite-size scaling, where L = 32, 48, 64, 80, 96.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19728  | https://doi.org/10.1038/s41598-022-23350-2

www.nature.com/scientificreports/

Figure 9.  Supervised learning results of (1+1)-dimensional PCP and PCPD by FCN. (a) The output layer, 
averaged over a test set, as a function of the bond probability p. (b) Data collapse of the average output layer as 
a function of (p− pc(D))L

1/ν⊥ . System sizes of L = 16 , 32, 48, 64 and 80 are represented by different colors, 
respectively. (a) and (b) are the results of PCP, (c d, e f) and (g, h) correspond to the results when the diffusion 
rate D of PCPD is 0.1, 0.2, and 0.5, respectively.
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values of different system sizes are displayed in Table 3. It can be found that for most sizes the two losses, namely 
train loss and validation loss, are quite close to each other, and the peak of their difference, around 5% , appears 
at L = 32 . Therefore, the trained network is believed to be applicable for all configurations.

Now that the training loss reveals reconstruction ability of the autoencoder, it’s still interesting to discuss the 
relation between training loss and lattice size. Firstly, the training loss raises its value from L = 16 to L = 48 . 
This is because the relation between sites of configurations gets augmented as the lattice size increases, but it’s 
insufficient for autoencoder to generate an appropriate encoder-decoder chain. Once L is larger than 64, the loss 
begins to fall, which implies that a larger lattice size is needed to reduce training loss. This upward and downward 
trend should be able to demonstrate the finite-size effect of the system.

Note that the current ML is only feasible for systems of small sizes, which certainly brings up finite-size effects. 
Additionally, PCPD itself is a very special non-equilibrium phase transition model, in which there is diffusion 
of particles which is also affected by the system size. From the perspective of ML, in order to reduce errors to 
a greater extent, what we can do is to optimize various parameters of the neural network, expand the training 
scale and increase the number of test samples. We hope this could help improve the computational accuracy.

We hope to find an available benchmark or a baseline level for the desired predictive accuracy. Here, we cal-
culate the critical value of small-sized PCPD by MC simulations, and the MC results of critical values are shown 
in Table 4. It can be seen from Fig. 11 that in the (1+1)-dimensional PCPD with lattice size L = 80 , it seems 
difficult to find a clear power-law density decay curve near the critical regime. Then we find that the predictions 
of small-size systems of ML are slightly less accurate than those of large-size systems of  MC32, although the 
deviation is not that large. Therefore, we believe that ML can provide some reference for critical value predic-
tion of the PCPD model.

Table 1.  ML and MC simulation results of spatial correlation exponent ν⊥ with the diffusion rate D.

D 0 0.05 0.1 0.2 0.5 0.7

ν⊥(ML) 1.13(1) 1.12(1) 1.11(1) 1.07(1) 1.02(1) 0.99(1)

ν⊥(MC(L = 80)) 0.561(16) 0.361(4) 1.245(10) 1.102(15) 1.415(14) 1.409(10)

ν⊥(MC32,53) 1.092(7) 0.775(10) 0.830(7) 0.873(8) 1.009(16) 1.02(2)

Table 2.  The Euclidean distance between two sigmoid curves varies with the spatial correlation exponent ν⊥.

ν⊥ 0.91 0.96 1.01 1.06 1.09 1.10 1.11

Euclidean Distance 0.1320 0.1186 0.0982 0.0746 0.0634 0.0611 0.0599

ν⊥ 1.31 1.26 1.21 1.16 1.13 1.12

Euclidean Distance 0.1980 0.1529 0.1090 0.0732 0.0615 0.0601

Figure 10.  (a) and (c) are results of data collapse with different ν⊥ in the PCPD, where diffusion rate is D = 0.1.

Table 3.  The training and validation loss of autoencoder for (1+1)-dimensional PCPD with the diffusion rate 
0.1, where each annihilation probability in training and validation sets corresponds to a sample number of 
2000 and 200.

Lattice size L 16 32 48 64 80

Training loss 0.5564 0.6564 0.6636 0.6397 0.6182

Validation loss 0.5404 0.6237 0.6568 0.6076 0.6240
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Conclusion
In this paper, we apply unsupervised learning methods (PCA and autoencoder) and supervised learning to the 
binary process PCPD of non-equilibrium phase transition models. The main conclusions are as follows.

First, using PCA, the linear dimensionality reduction method, we can cluster different configurations and 
visually reduce the dimension of the PCPD. In addition, the first principal component after PCA dimensional-
ity reduction can represent the order parameter of the model, that is, particle density. Via p1 versus p, we can 
estimate the threshold of the model, which is consistent with the theoretical value.

Second, by using the convolutional autoencoder neural network, we can extract the feature information 
of original configurations of the PCPD through the compressed representation of hidden neurons. When the 
number of hidden neurons is 2, we can have a prominent clustering representation. When the number is limited 
to 1, the neuron can be treated as the order parameter of the model, that is, the particle density.

Third, the spatial correlation exponents are obtained by supervised learning of pair-contact process with dif-
ferent diffusion rates. The results alone, however, are not sufficient to indicate that the critical exponents ν⊥ of 
the PCPD are dependent on the diffusion rate D. Given the limitations of ML, there is no enough evidence that 
the PCPD conveys a new kind of absorbing phase transition. In addition, we propose a numerical method to 
obtain the correlation exponent with higher accuracy, by calculating the Euclidean distance between two fittings.

The present findings confirm that for the random reaction process of non-equilibrium lattice models, even if 
the model contains diffusion motion, as long as the evolution process of the particle configurations has a trend 
of change, PCA and the autoencoder neural network can extract or capture this feature so that we can quantify 
it and describe it.

So far, we have known that ML is applicable to the DP and PCPD models. There are still many unanswered 
models in the field of non-equilibrium lattice systems. ML can provide available help in understanding these 
models. In future investigations, ML techniques might be possible to reveal more information in studying sta-
tistical physics problems.

Data availability
All data and ML algorithms related to this study is provided in supplementary file. The detailed algorithms of 
how to generate raw data and implement machine learning are shown in supplementary material, or refer to the 
code in the GitHub link https://github.com/ChuckShen/PCPD-code.

Appendix A: Principal component analysis
For convenience, let’s assume that the original data matrix Xm×n is decentralized. We want to get the reduced 
dimension representation, or the principal component representation, by the linear transformation Y = XW . 
W = (w1,w2, . . . ,wn) is a new set of uncorrelated basis vectors we are looking for, and wℓ is the weight vector of 
the principal component. We can write it in the following form

Table 4.  For (1+1)-dimensional PCPD, the comparison of critical point pc on the diffusion rate D = 0.1 
between ML and MC simulations with different lattice sizes. The theoretical value is pc = 0.10439(1)32.

Lattice size 32 48 64 80 96

pc(MC) 0.090(10) 0.095(5) 0.099(4) 0.102(3) 0.102(2)

L 80

5 10 50 100 500 1000 5000

0.1

0.2

0.5

t

Figure 11.  (1+1)-dimensional PCPD Monte Carlo simulations, where the lattice size is L = 80 , the total time 
step is t = 6400 , and the number of ensemble average is 1000000, for different annihilation probabilities of 
p = 0.092, 0.100, 0.101, 0.102, 0.103, 0.104, 0.105, 0.106, 0.111 , respectively.
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The eigenvalues corresponding to the weight vector wℓ are sorted in descending order, with �ℓ ≥ �2 ≥ �N ≥ 0 . 
The normalized eigenvalue �̃ℓ = �ℓ/

∑N
ℓ=1 �ℓ represents the explained variance ratio. In most cases, the first few 

principal components can represent most of the information of the original data.
In the SVD method, Xm×n can be any matrix, which we decompose as follows

where U is an m ∗m square matrix of left singular vectors, � is an m ∗ n singular value matrix, VT is an n ∗ n 
transposed matrix of right singular vectors. We express the dimensional change of the matrix as

According to an formula

where vℓ is the right singular vector. Combining this equation and Eq. 8, it is not difficult to prove

In most cases, the sum of the singular values of the top 10% or even 1% accounts for more than 99% of the total 
singular values. The right singular matrix can be utilized for column compression

Comparing this expression with the PCA decomposition of Y = XW , one finds that the orthogonal matrix V in 
SVD is exactly the orthogonal matrix W in PCA. Therefore, the method based on the eigenvalue decomposition 
covariance matrix is a particular case of the SVD method. That is, the original matrix is square.

The code implementation of PCA is easy. The kernel function used by the Scikit-learn package in Python is 
SVD, which we can call with little hindrance.

Appendix B: Autoencoder
The encoder process of the autoencoder is considered as the non-linear enhanced version of PCA. An autoen-
coder (in Fig. 12) is a neural network whose target output is its input without labeling the input samples. The 
learning goal of the autoencoder is to minimize reconstruction errors. In other words, it learns an approximate 
identity function such that the output x̂ is approximately equal to the input x. As the network representation 
form of an autoencoder, we can use it as a layer to build a deep learning network. With appropriate dimensions 
and sparse constraints, the autoencoder can perform better than PCA and other technologies.

Autoencoders are data-specific, which means they can only compress data similar to what they have been 
trained to do. For example, an autoencoder trained on images of elephants would do poorly at compressing 
images of flowers, because the features it would learn would be specific to the elephant.

To build an autoencoder, we need three things that are an encoder function, a decoder function, and a loss 
function. The loss function is the amount of information lost between the compressed and decompressed data 
representations. Where the encoder process from the input layer to the hidden layer is as follows

The decoder process from hidden layer to output layer is

Given that the value of each site xi,j of the PCP and the PCPD configurations is“1”(a given site is occupied) 
or“0”(a given site is not occupied). Thus, the mean cross-entropy over all sites and samples is employed as the 
loss function for the autoencoder,

where m is the number of samples used in training, and x̂i,j , the output of the decoder with xi,j as the input.
Encoders and decoders will be selected as parametric functions (usually neural networks) and will be differ-

entiable to the loss function. So by using a stochastic gradient descent algorithm, the autoencoder can optimize 
the parameters of the encoder or decoder function.

The parameters of our convolutional autoencoder network are as follows. Three convolutional pooling layers 
and one fully connected layer are used in the encoder process. In the first convolution layer, 16 filters are used, 
the size of the convolution kernel is 2× 3 , and the corresponding stride is 1. The padding form is ’same’ to keep 
the size of the feature map after the convolution operation. Similarly, the second and third convolutions use 8 
filters. All pooling layers use max-pooling, the corresponding filter size is 2× 2 , and the stride 2. In the decoder, 
the up-sampling layer replaces the pooling layer in the encoder, and it upsamples low-dimensional data to 

(7)XTXwℓ = �ℓwℓ.

(8)X = U�VT ,

(9)Xm∗n = Um∗m�m∗nV
T
n∗n.

(10)XTXvℓ = �ℓvℓ,

(11)σℓ =
√

�ℓ.

(12)X
′

m∗k = Xm∗nV
T
n∗k .

(13)h = g�1(x) = σ(W1x + b1)

(14)x̂ = g�2(h) = σ(W2h+ b2)

(15)Lloss =
1

m

m�

r


 1
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�
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high-dimensional data through a deconvolution filter whose size is 2× 2 . The Sigmoid is used as the activation 
function after each convolutional operation.

By minimizing the mean cross-entropy, we obtained detailed information about the hyper-parameters used 
in autoencoder, please refer to Table 5. We chose such an architecture because we have successfully used it in 
our previous  paper25 to calculate the critical points of another non-equilibrium phase transition model, the 
directed percolation (DP).

The enormous potential of unsupervised learning has made it popular in scientific research recently. In statis-
tical physics, for systems with tremendous data, unsupervised ML algorithms can process them well. Especially 
in phase transitions, the Monte Carlo simulations can generate the configuration data of the equilibrium or 
non-equilibrium phase transition models, and we can use unsupervised ML methods to capture the underlying 
information of the original data. Therefore, the powerful ability of data processing by unsupervised learning 
will bring new vitality to the research of statistical physics, which is also the current frontier research hotspot.
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