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Abstract

We show that the space of rooted tree-based phylogenetic networks is connected under rooted

nearest-neighbor interchange (rNNI) moves.
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1 Introduction

Phylogenetic networks are a generalisation of phylogenetic trees that have become widely used as ways to

represent evolutionary histories, because they are able to either capture uncertainty in the inference, or

represent non-tree-like evolutionary processes [1, 13] (see also the texts [9, 16]). Such processes include

hybridization, in which two species combine to produce a third, and horizontal gene transfer, in which

genetic material from one species is incorporated into that of another (common in bacteria).

Despite these non-tree-like evolutionary events, evolution can still appear “tree-like”, in the sense that

it may be representable as having a broad, underlying tree, with additional arcs (directed edges) between

the arcs of the tree. This sense motivated the definition of a “tree-based network” [5].

Tree-based networks have become an active area of research because they capture biological intuition

and have many mathematical characterisations [6, 12, 17] and connections to other well-studied properties

(for example they are precisely the “tree-child” networks for which every embedded tree is a base tree [15]).

For many applications, it is important to be able to randomly move around a set of phylogenetic

networks, for instance when searching for a network that maximises a likelihood, or has the highest

parsimony score. Mechanisms that allow such movement are important, as without them such sampling

is very difficult.

The nearest neighbour interchange (NNI) is a local operation on a graph that is widely used for moving

around the space of trees or networks. It was introduced for phylogenetic trees in 1971 [14], generalised

to unrooted phylogenetic networks in 2016 [8], and for rooted networks shortly after [7] (where the move

is called rNNI). The spaces of such trees and networks are connected under the relevant rNNI moves, and

this allows random walks within those spaces to search for optimal trees or networks.

In this paper we prove that the space of rooted tree-based networks is connected under rNNI moves.

This is the rooted analogue of the result of Fischer and Francis [4] showing the connectedness of (unrooted)

tree-based networks under NNI moves. We also show that the space is connected under the recently

introduced tail -moves [11].
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The paper begins by introducing necessary concepts in Section 2. We then explore the effect of rNNI

moves on a tree-based network with some technical results in Section 3, and finally prove connectedness

in Section 4.

There are many opportunities to extend this work. For instance, extending the understanding of

tree-based networks as a space, it would be interesting to extend the notion of tree-based rank, introduced

for unrooted networks in [3], to the rooted case. This would be another generalization of the proximity

measures for rooted tree-based networks discussed in [6]. Finally, there are many other useful classes of

network that might be connected under such rearrangements, including well-studied classes such as the

tree-child network, and the recently introduced orchard networks [2].

2 Preliminaries

A rooted phylogenetic network N on X is a directed, simple acyclic graph with the following types of

vertices:

• a single vertex of out-degree 1 or 2 and in-degree 0 called the root ;

• vertices of in-degree 1 and out-degree 0 called leaves, which are labelled bijectively by the elements

of X ;

• vertices of in-degree 1 and out-degree 2, called tree vertices ;

• vertices of in-degree 2 and out-degree 1, called reticulation vertices.

Write V = V (N) for the set of vertices of N , and E = E(N) for the set of arcs (directed edges) of N .

For an arc e = (u, v) ∈ E, write s(e) := u and t(e) := v for the source and target of e, respectively. If

(u, v) ∈ E(N), we say N has an arc on {u, v}.

Rooted phylogenetic networks with the above properties are commonly called binary. Denote the set

of rooted phylogenetic networks on X by RP (X). Throughout this paper phylogenetic networks will be

taken to be both rooted and binary unless otherwise stated.

A rooted phylogenetic network without reticulation vertices is actually a rooted tree, hence it is called

a rooted phylogenetic X-tree.

An arc e = (u, v) of N ∈ RP (X) may be subdivided by removing e, and adding a new vertex w and

new arcs (u,w) and (w, v). A network with a subdivided arc is no longer a phylogenetic network because

it contains a vertex of degree 2. In the other direction, a vertex w of degree 2 may be suppressed by

deleting it and its two incident arcs (u,w) and (w, v), and adding the arc (u, v) to the network.

A rooted phylogenetic network that has a spanning tree T whose leaves are precisely the leaves of N ,

is a tree-based network [5]. Such a spanning tree for a tree-based network N is called a support tree for

N . Note that a support tree for N is generally not a phylogenetic X-tree, because it will have vertices of

degree 2 (unless N is itself a tree, in which case T = N). By “suppressing” the vertices of degree 2 in T ,

one obtains a phylogenetic X-tree T̂ that is called a base tree for N , in the sense that N may be obtained

from T̂ by “subdividing” arcs of T and adding additional arcs, as in the original definition in [5].

The set of tree-based networks is denoted TBN(X) ⊆ RP (X).

Nearest neighbour interchange (NNI) operations defined on phylogenetic trees have been used to

explore the space of trees for half a century [14]. They have recently been generalised to unrooted

phylogenetic networks [8], and to rooted networks [7], as in Definition 2.1.

Definition 2.1. Suppose N ∈ RP (X) has arcs on {a, b}, {b, c}, {c, d}, for distinct vertices a, b, c, d ∈

V (N). A rooted nearest neighbour interchange (rNNI) move on {a, b}, {b, c}, {c, d}, replaces those arcs

with arcs on {a, c}, {b, c}, {b, d}, with the following conditions:

1. the in-degrees and out-degrees of a and d are unchanged;

2. the in-degrees and out-degrees of b and c remain 1 or 2;

3. the network remains an acyclic phylogenetic network.

Note that (3) precludes the network N from containing arcs on the arcs {a, c} and {b, d}.
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An rNNI move is a local operation on a subgraph of N of four vertices and three arcs. If P and Q

are subgraphs of N such that |V (P )| = |V (Q)| = 4 and |E(P )| = |E(Q)| = 3, we say that an rNNI move

switches P to Q if it changes N to N ′ where E(N ′) = (E(N) \ E(P )) ∪E(Q).

For the proof of the main result we will need the notion of a “burl-rooted tree”, defined as follows.

This is a rooted version of the networks with “k-burls” used in [10].

Definition 2.2. A burl-rooted tree is a rooted phylogenetic networkN with reticulation vertices b1, . . . , bk
and root ρ with the following properties:

• there is a path from ρ to a leaf ℓ1 that consists only of the vertices (ρ, b1, . . . , bk, ℓ1);

• all paths from ρ to other leaves begin (ρ, a1, . . . , ak, u, . . . ) for tree vertices a1, . . . , ak; and

• N contains arcs (ai, bi) for i = 1, . . . , k.

The structure of a burl-rooted tree is illustrated in Figure 1.

ρ

ℓ1 u

b1 a1

1
b2 a2

2

bk ak

k

.

.

.

ℓ2 ℓrℓ3 ℓ4 . . .

v

.

.

.

Figure 1: The structure of a burl-rooted tier-k tree. The k reticulation arcs join the vertices between ρ− ℓ1 and

ρ− u. The vertices contained inside the dashed triangle induce a rooted binary tree with r − 1 leaves.

Finally we recall the definition of head and tail moves, introduced in [11].

Definition 2.3. Let e = (u, v) and f be arcs in a rooted phylogenetic network N . A tail move of e to f

involves: deleting e; subdividing f with a new node u′; suppressing u; and adding the arc (u′, v). A head

move of e to f involves: deleting e; subdividing f with a new node v′; suppressing v; and adding the arc

(u, v′).

3 The impact of rNNI moves on tree-based-ness

Lemma 3.1. Let N be a rooted tree-based phylogenetic network with support tree T . Suppose P : u →

v → w → z is a path of length 3 in T . Let e, f ∈ E(N) \ E(P ) be arcs incident to v and w, respectively.

If either

(a) f is oriented away from w and e 6= vz, or

(b) e is oriented towards v and f 6= uw, or

(c) f 6= uw and e 6= vz, and N does not contain a directed t(e)→ s(f) path,

then the rNNI move switching the path P to Q : u→ w → v → z is valid and the resulting network N ′ is

still tree-based.

Remark 3.2. The rNNI move P → Q simply relocates w onto the uv arc. Depending on the orientation

of f , this rNNI move is equivalent (up to isomorphism) to a distance-1 head-move or tail-move.
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Figure 2: An rNNI move which is valid if one of the three conditions of Lemma 3.1 hold.

Proof. Both zv, wu /∈ E(N), because either arc would make N cyclic. If f is oriented away from w, then

uw /∈ E(N), because w has total degree 3. If e is oriented towards v, then vz /∈ E(N), because v has

total degree 3.

Thus the network N ′ created by the rNNI move transforming P into Q is well-defined, but it might

contain an oriented cycle. Suppose there is an oriented cycle in N ′, let the shortest one be ~C. Note that

this forces z 6= ρ, because the root ρ has in-degree 0.

Suppose first, that f, wv, e ∈ ~C: then f is oriented towards w, e is oriented away from v, and there is

a directed t(e) → s(f) path in N ′, which is also present in N . In any case, we have a contradiction. If

both e, f ∈ ~C, but wv /∈ ~C, then ~C is not the shortest oriented cycle, because we could shortcut through

wv. Because e and f cannot be both traversed by the cycle, ~C can be trivially shortened or extended by

one arc to form an oriented cycle in N .

Lastly, observe that T ′ = T − E(P ) + E(Q) is a support tree of N ′.

Lemma 3.3. Let N be a rooted phylogenetic network with support tree T . Suppose P : u← z → v → w

is a subgraph of 3 arcs in T . If there is no u → v path in N and vu /∈ E(N), then the rNNI move

switching P to Q : u ← v ← z → w is valid and the resulting network is still tree-based. The statement

holds even if z = ρ.

z

u v

w
e

f

N z

u

v w

e

f

N ′

Figure 3: A child v of z can move across z into its other branch if there is no arc joining {u, v}. If z = ρ then f

should be omitted from the picture.

Proof. By the assumptions, there is no arc of any orientation between u and v. Because N is acyclic,

wz /∈ E(N). Therefore the rNNI move switching P to Q produces a valid network.

Suppose there is an oriented cycle in N ′; let the shortest one be ~C.

Suppose first, that e ∈ ~C: either e is oriented towards v and vu ∈ ~C, or e is oriented away from v and

zv ∈ ~C. In any case, this means that there is a u → v path in N . If f ∈ ~C and e /∈ ~C, then ~C can be

trivially shortened or extended by one arc to form an oriented cycle in N . If e, f /∈ ~C, then ~C is already

an oriented cycle in N .

Lastly, observe that T ′ = T − E(P ) + E(Q) is a support tree of N ′.

4 The connectedness of the space of tree-based networks

Lemma 4.1. The set of burl-rooted trees in tier k is connected under rNNI moves.
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Proof. By definition, the burls of burl-rooted trees in tier k are identical, and they only differ by the trees

below the burl (vertex u in Figure 1). Since the space of trees is connected under rNNI moves [14], one

can be transformed into the other, treating the vertex in position u as the root.

We can now prove our main theorem.

Theorem 4.2. TBN(X) is connected under rNNI moves.

Proof. We show that any tree-based network can be transformed into a burl-rooted tree (Definition 2.2),

and use the fact that it is possible to move between any two networks in that form (Lemma 4.1).

We fix an arbitrary tree-based network N , and a support tree T for N . In each step we need to cover

four cases regarding N and T and their root ρ:

(A) ρ has out-degree 1 in T ;

(B) ρ has out-degree 2 in T and on both sides of the root there are branching points in T ;

(C) ρ has out-degree 2 in T , but on one side of the root there are no branching points in T ;

(D) ρ has out-degree 2 in T and T is path (in this case |X | = 2).

Note, that multiple support trees may exist for a fixed tree-based network N . Furthermore, the degree

of ρ might be 1 in one support tree, and 2 in another, which means that in the first case ρ must be the

source of a reticulation arc.

4.1 Case (A), when |X| = 1.

Although this is a degenerate case, we need to deal with it for the sake of completeness. There is no

burl-rooted tree when there is only one leaf. Let e = ρv be the reticulation arc incident on the root.

Lemma 3.1(a) applies to the source of reticulation that is below v and closest to it. Therefore, we can

move every source of reticulation between ρ and v one-by-one. Next, via Lemma 3.1(b), we can move

every target of reticulation below v similarly, in an appropriate order. Lastly, we can freely permute the

sources between ρ and v via Lemma 3.1(a), and similarly, we can permute the targets below v freely

via Lemma 3.1(b). Thus it is clear that any two networks of tier-k that have exactly one leaf each are

connected via rNNI moves.

4.2 Case (A), when |X| ≥ 2.

Let b1 be the branching point in T which is the closest to ρ (in both T and N). Let ℓ be an arbitrarily

chosen leaf, and let b2 be the closest branching point to it. (We may have b1 = b2). Let dT (x, y) be the

undirected distance between x and y in the support tree T for N . Define the quantity

ΘN,T :=
∑

f∈E(N)\E(T )

dT (ρ, s(f)) +
∑

e∈E(N)\E(T )

dT (t(e), ℓ).

Let the number of reticulation arcs be τ . We claim that via rNNI moves we can reduce Θ to
(
τ

2

)
+
(
τ+1
2

)
=

τ2 (note, that there is a reticulation arc whose source is ρ), ie., in the desired network, a vertex v is

• the source of a reticulation if and only if v = ρ or v is between ρ and b1 on the support tree,

• the target of a reticulation if and only if v is between b2 and ℓ on the support tree.

Suppose f is a reticulation arc for which dT (ρ, s(f)) > dT (ρ, b), and the left hand side is minimal wrt.

f . Lemma 3.1(a) applies to our case, because e = vz contradicts the minimality assumptions on f . For

the same reason, the rNNI move specified by Lemma 3.1 decreases the first sum in Θ by 1.

If such an f does not exist, but Θ > τ2, then there exists an e such that t(e) is not between b2 and ℓ.

Choose the e for which dT (t(e), ℓ) > dT (b2, ℓ), and the left hand side is minimal wrt. e. We have three

cases.

(i) If the undirected t(e) → ℓ path in T starts on an out-arc of t(e), then Lemma 3.1(b) applies to

e (with the same name), because f = uw contradicts the minimality assumption on e. The rNNI

move specified by Lemma 3.1 decreases Θ by 1.
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(ii) If the undirected t(e) → ℓ path in T starts on an in-arc of t(e), and the next arc is in opposite

orientation (see the bold arcs in N in Figure 3), then we apply Lemma 3.3 to e. The conditions

of the lemma are satisfied, because the sources of reticulation arcs are closer to the root than the

parent of t(e) in T . By the minimality assumption on e, the rNNI move reduces Θ by at least 1.

(iii) If the undirected t(e) → ℓ path in T starts on an in-arc of t(e), and the next arc is in the same

orientation (see graph N ′ in Figure 2), then we apply the rNNI move of Lemma 3.1(c) to e, but with

the labels of arcs e and f exchanged. Because b1 6= v, w, z in the setup of Lemma 3.1, the conditions

of the lemma are satisfied. The rNNI move decreases Θ by 1 (by the minimality assumption on e).

We may assume now that ΘN,T = τ2. Let e be the reticulation arc whose source is the root ρ. Via a

couple of rNNI moves provided by Lemma 3.1(c), we may assume that t(e) is the child of b2 in T (while

keeping Θ = τ2). Change the tree base while keeping the network N intact: let T ′ = T − b2t(e)+ e. This

a support tree for N , because b2 is a branching vertex in T .

Although e is no longer a reticulation arc, b2t(e) becomes one. If b1 = b2, we have a burl-rooted tree.

Otherwise, b2 can be moved to the path between ρ and b1 via Lemma 3.1(a). Lastly, note that the choice

of leaf ℓ on the burl has been arbitrary.

4.3 Cases (B) and (C).

Suppose b1 is a branching vertex closest to ρ in T . Let ℓ be an arbitrary leaf below b1 in T , and let b2
be the branching point it is joined to in T . On the branch of the root containing b1 we may perform the

procedure outlined in the previous Case (A) until Θ is reduced to its minimum (counting only sources or

targets of reticulations on the branch of b1). We have to check that reticulation arcs that join the two

main branches (originating at the root) do not interfere with the previously described rNNI sequence.

This is easily seen to be the case.

We will reduce this case to Case (A) now. Let u, v be the children of ρ such that v is on the same

branch as b1 in T . Let t(e) be the target of reticulation which is the child of b2 on T .

If vu ∈ E(N), then we change the support tree of N to T ′ = T − ρu+ vu, and the reduction to Case

(A) is done.

If vu /∈ E(N), then the root can be moved down along the ρ → t(e) path in T until ρ is between b2
and t(e); all we need to do is check that the conditions of Lemma 3.3 are satisfied at each step. Because

a directed path cannot traverse the root and all of the targets of reticulation arcs are below b2 in the

branch of v, the conditions are satisfied. Once we have t(e) ← ρ → b2, we change the support tree to

T ′ = T − ρt(e) + e. We have completely reduced this case to Case (A).

4.4 Case (D)

Let u, v be the two children of ρ. Without loss of generality, we may assume that v or one of the vertices

below it in the support tree is a target of reticulation. If vu ∈ E(N), we can rewire the support tree

through vu and reduce this case to Case (A). If there is a u → v path in N , then v must be the target

of a reticulation arc e, such that s(e) is below u in T (otherwise N would contain an oriented cycle). Via

Lemma 3.1(a), we may assume that e = uv, and we can rewire the support tree through uv to reduce

this case to Case (A).

If vu /∈ E(N) and there is no u→ v path inN , we can perform the rNNI move described by Lemma 3.3.

By repeating the argument, we may assume that v is the target of a reticulation arc, in which case we

are done (as above).

4.5 Connectedness under distance-1 tail-moves

Theorem 4.3. TBN(X) is connected under distance-1 tail-moves.

Proof. In the proof of Theorem 4.2, each rNNI-move performed falls into the scope of either Lemma 3.1

or Lemma 3.3. We claim that all of these rNNI-moves performed during the proof are either already

distance-1 tail-moves, or they can be simulated with tail-moves (see Definition 2.3).
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The rNNI-move described by Lemma 3.3 is a distance-1 tail-move if v is the tail of e. In Section 4.3,

this is always the case for applications of Lemma 3.3. In Section 4.2, however, it is possible that in

terms of the labeling used in Lemma 3.3, v is the head of e if z is not the root. In both of these cases

the rNNI-move can be simulated with two distance-1 tail-moves: first, move the tail of zu onto vw, and

then move the tail of zw onto the incoming arc of v which is different from e. The intermediate graph

is a phylogenetic network, because the first tail-move is an rNNI-move to which Lemma 3.1(c) applies.

Moreover, it trivially has a tree-base, because f , zu, zv, and vw are all supporting the tree-base of N .

The rNNI-move described by Lemma 3.1 is a distance-1 tail-move if v is the tail of e or w is the tail

of f . Otherwise, if t(e) = v and t(f) = w, the rNNI-move can be decomposed into three tail-moves. Let

s(e) = x and s(f) = y, so that e = xv and f = yw. By the assumptions of Lemma 3.1(c), y 6= u. The

arcs e and f are not supporting the tree-base of N , hence x and y are not reticulation vertices. First,

move the tail of f to uv and let the new incoming arc of w be y′w. Secondly, move the tail x of e to the

original position of y. Lastly, move the tail of y′w to the original position of x. The two intermediate

networks are trivially acyclic, because both the starting network N and the target network N ′ are acyclic

and y′w is the only additional arc in the two intermediate networks. Both of the intermediate networks

possess a tree-base, because the arcs whose tails were moved are not contained in the chosen tree-base.

Although the three tail-moves are generally not distance-1, they can be broken up into distance-1

tail-moves, such that the tail traverses the shortest undirected path in the support tree. Let N ′′ be any

intermediary network along these refined steps. For any vertex x, the set of vertices that are reachable

through a direct path starting from x is broader in N (or alternatively, in N ′) than in N ′′. Thus N ′′ is

acyclic, too.
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