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Abstract

L. Lovász and B. Szegedy proved in 2006 that the limits of convergent
graph sequences can be described by measurable symmetric functions
W : [0, 1] × [0, 1] → [0, 1] called graphons. In our present paper we
investigate the structure of the set of all graphons within the semigroup
(F([0, 1]2); ◦) of all fuzzy subsets of the unit square [0, 1]2 = [0, 1]× [0, 1],
where the operation ◦ is defined by: for every f, g ∈ F([0, 1]2) and every
s ∈ [0, 1]2, (f ◦ g)(s) = ∨x∈[0,1]2(f(x) ∧ g(s)).

Mathematics Subject Classification: 20M10; 08A72; 05C99.
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1 Introduction and motivation

Let Gn be a sequence of finite simple graphs whose number of nodes tends
to infinity. For every fixed finite simple graph F , let hom(F,Gn) denote the
number of all homomorphisms from F into Gn, that is, the edge-preserving
functions from V (F ) into V (Gn). Put

t(F,Gn) =
hom(F,Gn)

|V (Gn)||V (F )|
.

Clearly, t(F,Gn) is the probability that a random mapping from V (F ) into
V (Gn) should be a homomorphism. The sequence Gn is called convergent if
limn→∞t(F,Gn) exists for every finite simple graph F . Let

t(F ) = limn→∞t(F,Gn).

1This work was supported by the National Research, Development and Innovation Office
– NKFIH, 115288.
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Then t is a graph parameter, that is, a function on simple graphs that is
invariant under isomorphism. In [4], the authors given characterizations of
graph parameters that arise in this manner; that is, the authors characterize
the set T of graph parameters t for which there is a convergent sequence of
simple graphs Gn such that t(F ) = limn→∞t(F,Gn) for every simple graph
F . In the characterization of T, the symmetric and measurable functions W :
[0, 1]2 = [0, 1] × [0, 1] 7→ [0, 1] called graphons play an important role. Recall
that a functionW : [0, 1]2 7→ [0, 1] is said to be symmetric if W (x, y) = W (y, x)
is satisfied for all x, y ∈ [0, 1]. A graph is said to be k-labelled (k is a positive
integer) if the graph has k nodes labelled by 1, 2, . . . , k. For a k-labelled simple
graph F and a graphon W , the integral

t(F,W ) =

∫

[0,1]k

∏

ij∈E(F )

W (xi, xj)dx1dx2 · · · dxk

is called the density of the graph F in the graphon W ([5]), where E(F ) denotes
the set of all edges of F . In [4, Theorem 2.2] it was shown that a graph
parameter t belongs to T if and only if there is a graphon W such that t(F ) =
t(F,W ) for all simple graphs F .

A function of a non-empty set S into the real unit interval [0, 1] is called a
fuzzy subset of S (see [11]). By [3] and [7], if ∗ is an associative operation on a
non-empty set S, then the set F(S) of all fuzzy subsets of S form a semigroup
under the operation ◦ defined by the following way: for arbitrary f, g ∈ F(S)
and s ∈ S,

(f ◦ g)(s) =

{

∨s=x∗y(f(x) ∧ g(y)), if s ∈ S2

0, otherwise.
(1)

As every graphon is a fuzzy subset of the unit square [0, 1]2, the following
problem seems interesting from a semigroup theory perspective.

Problem: If an associative operation ∗ is given on the unit square [0, 1]2, what
can we say about the structure of the set W0 of all graphons in the semigroup
(F([0, 1]2); ◦)? Is it true that W0 forms a substructure of (F([0, 1]2); ◦)? If so,
what kind of substructure is it?

In this paper we deal with this problem in a special case: the given as-
sociative operation ∗ on [0, 1]2 satisfies the identity (x, y) ∗ (u, v) = (u, v).
A semigroup (S; ∗) is called a right zero semigroup if it satisfies the identity
a ∗ b = b. With this terminology, the above problem is examined in that case
when [0, 1]2 is a right zero semigroup.

We note that if S is a non-empty set (and so it is a right zero semigroup),
then the operation ◦ defined in (1) has the following form:

(f ◦ g)(s) = ∨x∈S(f(x) ∧ g(s)). (2)
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Throughout the paper, for a non-empty set S, (F(S); ◦) will denote the
semigroup in which the operation ◦ is defined by (2). Thus the purpose of
this paper is to examine the structure of the set W0 of all graphons in the
semigroup (F([0, 1]2); ◦). Our studies consist of two parts. In Section 2 we
describe the structure of the semigroup (F(S); ◦) for an arbitrary non-empty
set S, in Section 3 we focus on the semigroup (F([0, 1]2); ◦) and its subset
W0. A semigroup S is called a band if every element e of S is an idempotent
element, that is, e2 = e. A band satisfying the identity axa = xa is called a
right regular band ([9]). In Section 2 we prove that if S is an arbitrary non-
empty set, then the semigroup (F(S); ◦) is a right regular band (Theorem 2.6).
In Section 3, applying the above result for the right regular band (F([0, 1]2); ◦),
we show that the set W0 of all graphons is a left ideal of (F([0, 1]2); ◦). By
this result, if W is a graphon and f is a fuzzy subset of [0, 1]2, then f ◦W is
a graphon. Thus, for arbitrary simple graphs F , we can consider the densities
t(F ;W ) and t(F ; f ◦W ) of F in W and in f ◦W , respectively. In Section 3 we
give an upper bound to |t(F ;W )− t(F ; f ◦W )|. In Theorem 3.6 we show that
|t(F ;W )− t(F ; f ◦W )| ≤ |E(F )|(sup(W )− sup(f))∆({W > sup(f)}), where
∆({W > sup(f)}) denotes the area of the set {W > sup(f)} = {(x, y) ∈
[0, 1]2 : W (x, y) > sup(f)}.

For notations and notions not defined here, we refer to the paper [4] and
the books [1], [6], [8], and [9].

2 On the semigroup (F(S); ◦), where S is an

arbitrary non-empty set

For a fuzzy subset f and a subset X of a non-empty set S, let supX(f) =
∨x∈Xf(x). Especially, let sup(f) = supS(f). If f and g are arbitrary fuzzy
subsets of S, then let gf and g∗f denote the following fuzzy subsets of S: for
an arbitrary s ∈ S, let

gf(s) =

{

sup(f), if g(s) > sup(f)

g(s), otherwise

and

g∗f(s) =

{

g(s)− sup(f), if g(s) > sup(f)

0, otherwise.

Remark 2.1 By the above definitions, gf + g∗f = g for every fuzzy subsets f
and g of a non-empty set S.
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Remark 2.2 Let f and g be arbitrary fuzzy subsets of a non-empty set S.
It is clear that sup(g) ≤ sup(f) implies g(s) ≤ sup(f) for every s ∈ S and
so gf = g. In case sup(g) > sup(f), there is an element s ∈ S such that
g(s) > sup(f) and so gf (s) = sup(f) < g(s). Hence gf 6= g. Thus, for
every fuzzy subsets f and g of S, the equation gf = g holds if and only if
sup(g) ≤ sup(f).

By Remark 2.2, the following lemma holds.

Lemma 2.3 For arbitrary fuzzy subsets f and g of a non-empty set S, the
equations gf = g and fg = f together hold if and only if sup(g) = sup(f).

The next lemma will be used in Lemma 3.1.

Lemma 2.4 If f and g are fuzzy subsets of a non-empty set S such that
sup(f) ≤ sup(g) then sup(gf) = sup(f) and sup(g∗f) = sup(g)− sup(f).

Proof. By the definition of gf and g∗f , it is obvious. ⊓

Theorem 2.5 Let S be a non-empty set. For every fuzzy subsets f and g of
S, we have f ◦ g = gf .

Proof. Let f and g be arbitrary fuzzy subsets of a non-empty set S. By
the above, (F(S); ◦) is a semigroup. Let s be an arbitrary element of S. If
g(s) > sup(f), then f(x) ∧ g(s) = f(x) for every x ∈ S, and so (f ◦ g)(s) =
∨x∈Sf(x) = sup(f). If g(s) ≤ sup(f), then we have two subcases.
Case 1: If g(s) = sup(f), then f(x) ∧ g(s) = f(x) for all x ∈ S, and so
(f ◦ g)(s) = ∨x∈Sf(x) = sup(f) = g(s).
Case 2: If g(s) < sup(f), then there is an x0 ∈ S such that f(x0) > g(s) and
so f(x0) ∧ g(s) = g(s). Moreover, for arbitrary x ∈ S \ {x0}, we have

f(x) ∧ g(s) =

{

g(s), if g(s) < f(x)

f(x), if f(x) ≤ g(s),

and so (f ◦g)(s) = (f(x0)∧g(s))∨(∨x∈S\{x0}(f(x)∧g(s)) = g(s). Summarizing
our results, we get

(f ◦ g)(s) =

{

sup(f), if g(s) > sup(f)

g(s), otherwise,

that is, (f ◦ g)(s) = gf(s), which proves our assertion. ⊓

A commutative band is called a semilattice. A congruence α on a semigroup
A is said to be a semilattice congruence if the factor semigroup A/α is a
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semilattice. A semigroup A is said to be semilattice indecomposable if the
universal relation is the only semilattice congruence on A. It is known ([10])
that every semigroup has a least semilattice congruence η; the classes of η are
semilattice indecomposable. By [9, II.3.12. Proposition], a band is a right
regular band if and only if its η-classes are right zero semigroups.

Theorem 2.6 For an arbitrary non-empty set S, the semigroup (F(S); ◦) is a
right regular band. The η-classes of F(S) are right zero semigroups. Two fuzzy
subsets f and g of S are in the same η-class if and only if sup(f) = sup(g).

Proof. Let S be an arbitrary non-empty set. Then S is a right zero semigroup,
and so (F(S); ◦) is a semigroup under the operation ◦ defined in (2), that is,
(f ◦ g)(s) = ∨x∈S(f(x) ∧ g(s)) for every fuzzy subsets f and g of S and every
element s ∈ S. By Theorem 2.5, it is clear that f ◦ f = f for every f ∈ F(S),
and so (F(S); ◦) is a band. Using also Theorem 2.5, we have g ◦ f ◦ g = g ◦ gf .
As sup(g) ≥ sup(gf), we have g ◦ gf = gf . Thus g ◦ f ◦ g = gf = f ◦ g.
Hence (F(S); ◦) is a right regular band. Let η denote the least semilattice
congruence on (F(S); ◦). The η-classes of (F(S); ◦) are right zero semigroups
by [9, II.3.12. Proposition]. Let f and g be arbitrary fuzzy subsets of S. By [9,
II.1.1. Proposition], (f, g) ∈ η if and only if f ◦ g ◦ f = f and g ◦ f ◦ g = g. As
(F(S); ◦) is a right regular band, we have f ◦ g ◦ f = g ◦ f and g ◦ f ◦ g = f ◦ g.
Thus (f, g) ∈ η if and only if g ◦ f = f and f ◦ g = g. Using Theorem 2.5,
(f, g) ∈ η if and only if fg = f and gf = g. By Lemma 2.3, we get (f, g) ∈ η
if and only if sup(f) = sup(g). ⊓

3 On the structure of the set of all graphons

in the semigroup (F([0, 1]2); ◦)

Let (S,A, µ) be a measurable space ([2]). For a fuzzy subset h of S and a real
number A, let {h > A} = {s ∈ S : h(s) > A}. A fuzzy subset h of S is
said to be measurable if, for every real number A, the subset {h > A} of S is
measurable (that is, {h > A} ∈ A).

Lemma 3.1 Let (S,A, µ) be a measurable space. Then, for an arbitrary fuzzy
subset f and an arbitrary measurable fuzzy subset g of S, the fuzzy subsets gf
and g∗f are measurable.

Proof. Let f and g be arbitrary fuzzy subsets of S such that g is measurable.
If sup(f) ≥ sup(g), then gf = f ◦ g = g and g∗f = 0. In this case the fuzzy
subsets gf and g∗f are measurable. Consider the case when sup(f) < sup(g).
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Then sup(gf) = sup(f) and sup(g∗f) = sup(g)− sup(f) by Lemma 2.4. Let A
be an arbitrary real number. It is easy to see that

{gf > A} =

{

∅, if A ≥ sup(f)

{g > A}, otherwise

and

{g∗f > A} =











∅, if A ≥ sup(g)− sup(f)

{g > A+ sup(f)}, if 0 ≤ A < sup(g)− sup(f)

S, if A < 0

from which it follows that gf and g∗f are measurable fuzzy subsets of S. ⊓

A fuzzy subset f of [0, 1]2 is said to be symmetric if f(x, y) = f(y, x) is
satisfied for all x, y ∈ [0, 1].

Lemma 3.2 If f is an arbitrary fuzzy subset and g is a symmetric fuzzy subset
of [0, 1]2, then gf and g∗f are symmetric fuzzy subsets of [0, 1]2.

Proof. It is obvious by the definition of gf and g∗f . ⊓

Lemma 3.3 If W is a graphon and f is a fuzzy subset of [0, 1]2, then Wf and
W ∗

f are graphons.

Proof. By Lemma 3.1 and Lemma 3.2, it is obvious. ⊓

The following theorem provides an answer to the question raised in Problem
in the case, where the given operation · on [0, 1]2 satisfies the identity a · b = b.

Theorem 3.4 The set W0 of all graphons is a left ideal of the right regular
band (F([0, 1]2); ◦) of all fuzzy subsets of [0, 1]2. Thus the semigroup (W0; ◦) of
all graphons is a right regular band, and so it is a semilattice I of right zero
subsemigroups Si (i ∈ I). Two graphons W1 and W2 are in the same Si if and
only if sup(W1) = sup(W2).

Proof. LetW be a graphon and f be a fuzzy subset of [0, 1]2. By Theorem 2.5,
f ◦W = Wf . Then f ◦W is a graphon by Lemma 3.3. Thus the set W0 of all
graphons is a left ideal of the semigroup (F([0, 1]2); ◦) of all fuzzy subsets of
[0, 1]2. By Theorem 2.6, the semigroup (F([0, 1]2); ◦) and so its subsemigroup
(W0; ◦) is a right regular band. Moreover, the η-classes of W0 are right zero
semigroups; two graphons W1 and W2 are in the same η-class if and only if
sup(W1) = sup(W2). ⊓

Let σ denote the equivalence relation on the set W0 of all graphons defined
by (W1,W2) ∈ σ if and only if W1 = W2 almost everywhere in [0, 1]2.
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Proposition 3.5 The equivalence relation σ ∩ η is a congruence on the right
regular band (W0; ◦) of all graphons, where η is the least semilattice congruence
on (W0; ◦).

Proof. Let W1 and W2 be two graphons with (W1,W2) ∈ σ ∩ η. Then, using
Theorem 3.4, we have sup(W1) = sup(W2) and W1 = W2 almost everywhere
in [0, 1]2. Let W be an arbitrary graphon. As sup(W1) = sup(W2), we have
W1 ◦ W = W2 ◦ W . Thus (W1 ◦ W,W2 ◦ W ) ∈ σ ∩ η. Hence σ ∩ η is a
right congruence on (W0; ◦). Let T = {(x, y) ∈ [0, 1]2| W1(x, y) 6= W2(x, y)}.
As (W1,W2) ∈ σ, the area of T is 0. It is clear that {(x, y) ∈ [0, 1]2 : (W ◦
W1)(x, y) 6= (W ◦W2)(x, y)} ⊆ T and so (W ◦W1,W ◦W2) ∈ σ. As (W1,W2) ∈
η and η is a congruence on (W0; ◦), we have (W ◦ W1,W ◦ W2) ∈ η. Thus
(W ◦W1,W ◦W2) ∈ σ ∩ η and so σ ∩ η is a left congruence on (W0; ◦). Thus
σ ∩ η is a congruence on (W0; ◦). ⊓

Let W be a graphon and f a fuzzy subset of [0, 1]2. By Theorem 3.4,
f ◦W is a graphon. Thus, for arbitrary simple graphs F , we can consider the
densities t(F ;W ) and t(F ; f ◦ W ) of F in W and f ◦ W , respectively. The
next theorem gives an upper bound to |t(F ;W )− t(F ; f ◦W )|.

Theorem 3.6 Let W be an arbitrary graphon. Then, for an arbitrary fuzzy
subset f of [0, 1]2 and an arbitrary finite simple graph F ,

|t(F ;W )− t(F ; f ◦W )| ≤ |E(F )|(sup(W )− sup(f))∆({W > sup(f)}),

where E(F ) denotes the set of all edges of F and ∆({W > sup(f)}) denotes
the area of the set {W > sup(f)} = {(x, y) ∈ [0, 1]2 : W (x, y) > sup(f)}.

Proof. Let W be an arbitrary graphon and f an arbitrary fuzzy subset of
[0, 1]2. By Theorem 3.4, f ◦ W is a graphon. If sup(W ) ≤ sup(f), then
W = f ◦ W and {W > sup(f)} = ∅. Thus |t(F ;W ) − t(F ; f ◦ W )| =
0 = |E(F )|(sup(W ) − sup(f))∆({W > sup(f)}). Consider the case when
sup(W ) > sup(f). By Remark 2.1, W − (f ◦W ) = W ∗

f . As W is a graphon,
Wf = f ◦W and W ∗

f are graphons by Lemma 3.3. Thus W , f ◦W and W ∗
f are

integrable functions on [0, 1]2. Using [4, Lemma 4.1], |t(F ;W )− t(F ; f ◦W )| ≤
|E(F )| · ||W ∗

f ||0, where ||W ∗
f ||0 = supA⊆[0,1]

B⊆[0,1]

∣

∣

∫

A

∫

B
W ∗

f (x, y)dxdy
∣

∣. As W ∗
f is a

non-negative function, ||W ∗
f ||0 = ||W ∗

f ||1, where ||W
∗
f ||1 =

∫ 1

0

∫ 1

0
|W ∗

f (x, y)|dxdy.
Thus |t(F ;W ) − t(F ; f ◦ W )| ≤ |E(F )| · ||W ∗

f ||1. As W ∗
f (x, y) = 0 for all

(x, y) ∈ [0, 1]2 \ {W > sup(f)}, we have ||W ∗
f ||1 =

∫ 1

0

∫ 1

0
W ∗

f (x, y)dxdy ≤
(sup(W ) − sup(f))∆({W > sup(f)}, because sup(W ∗

f ) = sup(W ) − sup(f)
by Lemma 2.4. Consequently |t(F ;W ) − t(F ; f ◦ W )| ≤ |E(F )|(sup(W ) −
sup(f))∆({W > sup(f)}). ⊓
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