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Abstract—We present programming abstractions for imple-
menting adaptive Wireless Sensor Network (WSN) software. The
need for adaptability arises in WSNs because of unpredictable
environment dynamics, changing requirements, and resource
scarcity. However, after about a decade of research in WSN
programming, developers are still left with no dedicated support.
To address this issue, we bring concepts from Context-Oriented
Programming (COP) down to WSN devices. Contexts model the
situations that WSN software needs to adapt to. Using COP,
programmers use a notion of layered function to implement
context-dependent behavioral variations of WSN code. To this
end, we provide language-independent design concepts to organize
the context-dependent WSN operating modes, decoupling the ab-
stractions from their concrete implementation in a programming
language. Our own implementation, called CONESC, extends
nesC with COP constructs. Based on three representative applica-
tions, we show that CONESC greatly simplifies the resulting code
and yields increasingly decoupled implementations compared to
nesC. For example, by model-checking every function in either
implementations, we show a ≈50% reduction in the number of
program states that programmers need to deal with, indicating
easier debugging. In our tests, this comes at the price of a
maximum 2.5% (4.5%) overhead in program (data) memory.

I. INTRODUCTION

Programmers design and implement Wireless Sensor Net-
works (WSN) software to enable interactions in the real
world at unprecedented granularity. As such, WSN software is
continuously confronted with a range of largely unpredictable
environment dynamics and changing requirements, besides
resource constraints. This demands WSN software to adapt to
a range of different situations. Notwithstanding the advances
in WSN programming [17], however, programmers are sorely
missing dedicated support to realize adaptive WSN software.

Example application. Consider a wildlife tracking applica-
tion [19]. Sensor nodes are embedded in collars attached to an-
imals to study their social interactions. The nodes are equipped
with sensors to track an animal’s movement, e.g., using GPS
and accelerometers, and to detect its health conditions, e.g.,
based on body temperature. Small solar panels harvest energy
to prolong a node’s lifetime. A low-power short-range radio
allows the nodes to discover each other based on periodic radio
beaconing. A node logs the radio contacts to track an animal’s
encounters with other animals. The radio is also used to off-
load the contact traces when in reach of a fixed base-station.

The nodes run on batteries, making energy a precious
resource that programmers need to trade against the system’s

1 module ReportLogs {
2 uses interface Collection;
3 uses interface DataStore;
4 }implementation {
5 int base_station_reachable = 0;
66 event msg_t Beacon.receive(msg_t msg) {
77 if (!acceleromenter_detects_activity())
8 return;
9 if (call Battery.energy() <= THRESHOLD)

1010 return;
11 base_station_reachable = 1;
12 call GPS.stop()
13 call BaseStationReset.stop();
14 call BaseStationReset.startOneShot(TIMEOUT);}
15 event void BaseStationReset.fired() {
1616 base_station_reachable = 0;}
1717 event void ReportPeriod.fired() {
18 switch (base_station_reachable){
19 case 0:
20 call DataStore.deposit(msg);
21 case 1:
2222 call Collection.send(msg);}}}

Fig. 1: Example nesC implementation of adaptive function-
ality: several orthogonal functionality become entangled and
need to share global data.

functionality, depending on the situation. For example, sen-
sor sampling consumes non-negligible energy for the GPS.
Depending on the desired granularity and on the difference
between consecutive GPS readings—taken as indication of the
pace of movement—programmers need tune the GPS sampling
frequency accordingly. The contact traces can be sent directly
to the base-station whenever in reach, but they need to be
stored locally otherwise. When the battery is running low,
developers may turn the GPS sensor off to make sure the node
survives until the next encounter with a base-station, not to lose
the collected contact traces.

Problem. Taking into explicit account every possible situation
in the design and implementation of WSN software is a
challenge. Crucially, multiple combined dimensions concur-
rently determine how the software should adapt its operation,
e.g., battery levels and physical locations in our example
application. Using available approaches, this typically results
in entangled implementations that are difficult to debug, to
maintain, and to evolve. As the number of dimensions affecting
the execution (and their combinations) grows, the implemen-
tations quickly turn into “spaghetti code” [6].

Fig. 1 shows an intuitive, yet greatly simplified example,
using nesC [8]. The code implements the behavior needed
in wildlife tracking to send contact logs to the base-station
whenever reachable, or to store them locally otherwise. Several
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orthogonal concerns become intertwined and dependent on
each other. For example, determining what operating mode to
apply—implemented in line 6 to 16 —rests within the same
module as the actual adaptive processing—implemented in
line 17 to 22 . Indeed, the two codes need to share global
state, in this case, the base_station_reachable flag.
Managing such global state rests entirely on the programmers’
shoulders. Moreover, the checks to apply before changing
operating mode, such as those on line 7 to 10 , appear
interleaved with the change of mode itself. Finally, the spe-
cific implementation of adaptive functionality—using either
DataStore or Collection—is entirely visible from the
caller module, further coupling the two.

In such a situation, debugging, maintaining, and evolving
the implementations is going to be difficult. Modifying the
code in one place would likely require changes in several
others. Alternative nesC implementations of the functionality
in Fig. 1 are of course possible to partly ameliorate the
problem. However, qualitative evidence gathered by looking
at publicly available implementations, e.g., within the TinyOS
codebase [24], indicate that similar implementation patterns
are indeed very common.

Contribution and road-map. We aim to redress this state of
affairs by enabling a notion of Context-Oriented Programming
(COP) [11] in WSN software. COP fosters a strict separation of
concerns in implementing adaptive software. This is achieved
through two key notions: i) the different situations where the
software needs to operate are mapped to different contexts,
and ii) the different context-dependent behaviors are encapsu-
lated in layered functions, that is, functions whose behavior
changes—transparently to the caller—depending on context.

COP already proved effective in creating context-aware
mainstream software, such as user interfaces [14] and text
editors [13], based on COP extensions of popular high-level
languages [20]. At present, however, COP remains a far cry
from being applicable to WSNs. The resource constraints that
limit the functionality attainable with existing WSN program-
ming languages, for example, the inability to create run-time
instances of components, prevents applying COP in WSN
programming as is.

To address this issue, we borrow concepts from COP and
design context-oriented programming abstractions for WSN
software. To this end, Section II illustrates design concepts
conceived to remain independent of a specific programming
language. In doing so, our goal is to decouple the abstractions
from their concrete realization in a language, thus facilitat-
ing their application to multiple WSN languages. One such
realization is CONESC, our own COP extension to nesC.
We choose nesC as the target language in that, besides its
widespread adoption and stable toolchain, it fosters a node-
centric view [17]. We argue that in most WSN applications,
adaptation decisions are most often local to individual nodes.
In illustrating CONESC, Section III demonstrates how we
render the processing in Fig. 1 nicely decoupled in different
modules, and hence easier to debug and to evolve.

We implement a dedicated translator, described in Sec-
tion IV, that converts CONESC code to pure nesC. Based on
three representative applications, the results we illustrate in
Section V indicate that CONESC implementations are increas-
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Fig. 2: Wildlife tracking diagram.

ingly decoupled and distinctively simpler. For example, the
analysis we perform with a model-checking tool to measure
the number of states that programmers need to deal with
shows a ≈50% reduction in favor of CONESC, indicating that
the latter implementations are likely easier to debug and to
maintain. Crucially, these advantages come at a modest price:
the MCU overhead when performing calls to layered functions
is negligible, while we measure a a maximum 2.5% (4.5%)
overhead in program (data) memory.

We conclude the paper by surveying related efforts in
Section VI, and with brief concluding remarks in Section VII.

II. DESIGN CONCEPTS

We illustrate language-independent design concepts, pro-
viding a foundation to apply the COP model to different con-
crete languages, as we illustrate next. Throughout this section
and the next, we refer to the wildlife tracking application
described earlier as a running example.

We define two key concepts: i) individual contexts, and
ii) context groups. Contexts represent the different environ-
mental situations the system may encounter, and correspond
to behavioral variations associated to a given situation. As
the environment surrounding the system or the requirements
mutate, the software adapts accordingly by activating given
contexts. Context groups represent collections of contexts
sharing common characteristics; for example, whenever the
required adaptive behavior is determined by the same envi-
ronmental quantity.

Fig. 2 exemplifies how programmers use these concepts in
the design of the wildlife tracking application. Context groups
are defined to describe behavioral variations corresponding
to different battery levels and whether a node is within the
communication range of a base-station, as well as an animal’s
health conditions and activity.

The contexts within a group define the individual behav-
ioral variations depending on the situation. For example, the
function to report sensor readings and contact traces must
behave differently depending on whether the base-station is
reachable. If so, the data may be relayed immediately to the
base-station using the radio. To this end, the programmer
activates context Reachable within the Base-station group.
Otherwise, the programmer activates context Unreachable, as
the software must log the data locally; for example, on flash.

The contexts in a group are tied with transitions that
express the conditions triggering the context change. For
example, within the Base-station group, the system transitions



1 context group BaseStationG {
22 layered command void report(msg_t msg);
3 }implementation {
44 contexts Reachable,
55 Unreachable is default,
66 MyErrorC is error;
7 components Routing, Logging;
8 Reachable.Collection -> Routing;
9 Unreachable.DataStore -> Logging;}

Fig. 3: Context group in CONESC.

from context Reachable to Unreachable whenever no base-
station beacons are received within a timeout. This entails a
node is out of the base-station communication range and the
software must adapt accordingly, that is, by locally storing the
contact logs instead of sending them over the radio.

The behavioral variations must not necessarily implement
a complete functionality on their own, but they may just
serve other functionality; for example, by providing context-
dependent data. The group Health conditions is one such
example. By using a body temperature sensor, the system
detects whether the animal is Diseased or Healthy. The cor-
responding behavioral variations implement two ways to build
the radio beacon used as a “proximity” sensor for detecting
contacts between animals. If the animal is Diseased, additional
information is added to the beacon for understanding how the
disease spreads. Either type of beacon is then handed over to
the radio stack for transmission.

The concepts we outlined suffice to organize the
environment-dependent functionality in a large class of WSN
applications, as we further argue in Section V. On the other
hand, unlike the vast majority of WSN programming ap-
proaches [17], these concepts remain largely decoupled from
a concrete language implementation. Although the following
section describes a nesC-based implementation, our design
can be straightforwardly embedded within other WSN lan-
guages. For example, within functional languages such as
Regiment [18] or Flask [16], one would simply enable be-
havioral variations of programmer-defined functions through a
proper syntax, together with dedicated keywords for context
transitions.

III. CONESC

We illustrate how we render the concepts in Section II
within CONESC: our own context-oriented extension to nesC.
We describe a notion of context module and configuration in
Section III-A, and discuss in Section III-B how programmers
use these constructs to specify an application’s adaptive behav-
ior. Section III-C describes how CONESC programmers deal
with context transitions and their relations.

A. Context Group and Individual Contexts

Context groups in CONESC extend nesC configurations.
Programmers use context groups to declare layered functions
and the contexts providing the corresponding behavioral vari-
ations. Fig. 3 shows an example for the Base-station group.
A layered report function is declared on line 2 by using
the keyword layered. The contexts providing the necessary
behavioral variations are specified following the keyword
contexts on line 4 . In this case, programmers define two
such contexts, depending on base-station reachability. The

1 context Reachable {
2 uses interface Collection;
3 uses context group BatteryG;
4 }implementation {
55 event void activated(){
6 call GPS.stop();}
77 event void deactivated(){//...}
88 command bool check(){
9 return call BatteryG.getContext() == BatteryG.Normal;}

10 layered command void report(msg_t msg){
1111 call Collection.send(msg);}}

Fig. 4: Reachable context.

1 context Unreachable {
22 transitions Reachable iff ActivityG.Running;
3 uses interface DataStore;
4 }implementation {
55 event void activated(){//...}
66 event void deactivated(){//...}
77 command bool check(){//...}
8 layered command void report(msg_t msg){
99 call DataStore.deposit(msg);}}

Fig. 5: Unreachable context.

1 module BaseStationContextManager {
2 uses context group BaseStationG;
3 }implementation {
4 event msg_t Beacon.receive(msg_t msg) {
55 activate BaseStationG.Reachable;
6 call BSReset.stop();
7 call BSReset.startOneShot(TIMEOUT);}
8 event void BSReset.fired() {
99 activate BaseStationG.Unreachable;}}

Fig. 6: Base-station context manager.

is default modifier, shown on line 5 , indicates what
context is active at start-up. The next is error modifier on
line 6 declares context MyErrorC as an error context, which
programmers may optionally use to handle errors during the
execution, as we discuss in Section III-C. If an error context
is not declared, it is generated automatically.

The individual contexts in CONESC extend the standard
nesC modules by providing context-dependent implementa-
tions of layered function declared in context groups. Only
one context at a time can be active in a group to provide an
implementation for the given layered functions. For example,
Fig. 4 and 5 show CONESC snippets for the Reachable
and Unreachable contexts of Fig. 3. They provide different
implementations for report depending on the situation. If the
base-station is Reachable, and thus the corresponding context
is active, the code transmits the message to the base-station,
as in line 11 of Fig 4. Differently, the code deposits a message
in local memory as in line 9 of Fig. 5.

Programmers can specify operations upon activating a
context, such as initializing variables or enabling/disabling
hardware modules. For example, on entering the Reachable
context, programmers may decide to disable the GPS sensor,
as location information can be inferred from the (static) base-
station. Programmers specify this functionality within the body
of a predefined activated event, as in line 5 of Fig. 4. Sim-
ilarly, programmers may specify clean-up operations within
deactivated events, as in line 7 of Fig. 4. Providing an
implementation for these events, however, is not mandatory.

B. Execution

Fig. 6 shows a sample snippet of code to detect and to
activate the proper context in the base-station example. Pro-



1 module User {
22 uses context group BaseStationG;
3 }implementation {
4 event void Timer.fired() {
55 call BaseStationG.report(msg);}
66 event void BaseStationG.contextChanged(context_t con) {
77 if(con == BaseStationG.Reachable) // DO SOMETHING...}}

Fig. 7: Caller module.
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Fig. 8: Context activation rules.

grammers can, anywhere in the code, trigger explicit transitions
between contexts in a group. This is as simple as using the
activate keyword followed by a full context name. In
this fragment of code, the Reachable context is activated on
line 5 as soon as a beacon from the base station is received.
Should the timeout expire with no more beacons received,
context Unreachable is activated on line 9 . Either context
change results in a different context-dependent implementation
of report to be activated.

Modules using layered functions perform function calls
transparently w.r.t. the available contexts and, most impor-
tantly, independently of what context is active at a given
moment. Fig. 7 shows one such example for function report.
Following the indication that context group BaseStationG is
used, as specified on line 2 , the call to the layered function
report does not refer to the individual contexts. The net
advantage is that the use of context-dependent functionality is
fully decoupled w.r.t. context detection and activation. The two
may be implemented even in different modules.

Should programmers of caller modules need to find out
about context changes, a predefined event contextChanged
is fired corresponding to every context change, as in line 6
in Fig. 7. Within the event handler, programmers can access
constant values that our translator automatically generates to
find out what context was activated and to react accordingly,
as shown on line 7 .

C. Transition Rules

In general, programmers need to take significant care of
context transitions, in that the latter may drastically change
an application’s behavior. To better support programmers in
doing so, every context transition in CONESC entails several
checking stages, as shown in Fig. 8. A successful check allows
the transition to continue, while the failure leads either to the
canceling of the transition or to activation of the Error context.

The first check in Fig. 8 looks at feasible transitions. In
the context diagram of Fig. 2, within the Activity group, it is
only possible to transition from NotMoving to Resting. Feasible
transitions are specified within the individual contexts using
the keyword transitions as in line 2 of Fig. 9. An
attempt to initiate a transition from a context to one that is
not explicitly listed in the former leads to the activation of
the Error context. Indeed, such occurrences typically represent
a significant design or implementation flaw requiring special

1 context NotMoving {
22 transitions Resting;
3 }implementation {//...}

Fig. 9: NotMoving context.

1 context Low {
22 triggers BaseStationG.Unreachable;
3 }implementation {//...}

Fig. 10: Low context.

handling at run-time, which programmers implement within
the Error context.

There may also exist relations across context groups. For
example, within the Base-station group, a transition from
Unreachable to Reachable is likely only meaningful if context
Running within the Activity group is active, indicating the
animal was actually moving when the node gained base-station
connectivity. These inter-group relations are covered in our
design by context dependencies, declared as shown on line 2
in Fig. 5. Within the transitions clause, the keyword iff
is optionally employed to indicate the full name of another
context whose activation is a requisite to perform the given
transition. The second check in Fig. 8 verifies this rule, again
leading to the Error context in case of violations, giving
programmers a chance to handle the situation.

The last check in Fig. 8 considers violations to “soft”
requirements that do not necessarily indicate a design or imple-
mentation flaw. For example, before activating the Reachable
context, programmers may want to check that sufficient energy
is available to invest in bulk data transfers to the base-station.
Should this not be the case, they may defer the activation of
the Reachable context until the solar panels gather sufficient
energy. To implement such processing, CONESC programmers
specify the proper conditions in the body of a predefined
check command, as shown in line 8 of Fig. 4. If check
returns false, the initiated context transition does not occur,
and the system remains in the previous context.

Dually, programmers may need to proactively initiate con-
text transitions as the result of other contexts being activated.
The scenario is symmetric to the previous one: if the base-
station is Reachable, but a context transition is initiated to
context Low in the Battery group of Fig. 2, the available
energy is running low and it is probably better to refrain from
radio communications. This makes sure the node does not
completely turn off before the solar panels re-gain energy. Our
design allows programmers to express this processing by using
the triggers keyword, as shown on line 2 in Fig. 10. The
triggers keyword points to a context that is to be activated
as the result of the enclosing context being activated. The same
checks shown in Fig. 8 apply to this type of transitions.

IV. TRANSLATOR

We develop a translator to convert CONESC code to plain
nesC. Our translator performs two passes through the input
code. First, it reads the main Makefile to recursively scan
the component tree. Based on the information gained during
the first pass, including the list of every context and context
groups defined in the code, the translator parses every input
file to convert the CONESC code to plain nesC and to generate



TRANSLATOR

FooGroup <<context group>>
BarP <<module>>

BarC <<configuration>>

FooConContext <<module>>

FooGroupConfig <<configuration>>
FooGroupBinding <<module>>

FooGroupLayered <<interface>>
ErrorFooGroup <<module>>

<<module>>

<<configuration>>

ConesCInterfaces <<interface>>

nesC toolchain

FooCon <<context>>

<<implements>>

Fig. 11: CONESC translation to nesC code for a generic
FooGroup context group and an individual context FooCon.

a set of support functionality. The resulting sources are then
compiled using the standard nesC toolchain.

Fig. 11 details the operations during the second pass.
Generally, the input to the translator includes four types of
components: context groups and contexts, as well as nesC
configurations and modules where CONESC constructs appear.
In Fig. 11, context groups and contexts are represented by a
sample FooGroup context group and an individual FooCon
context, whereas nesC configurations (modules) with CONESC
constructs are represented as BarC (BarP).

Based on every context group, we generate a custom
nesC module, such as FooGroupBinding in Fig. 11, that
implements the dynamic binding of layered functions to the
active context. This module is part of a configuration, such as
FooGroupConfig in Fig. 11, also automatically generated.
This configuration implements a nesC interface our translator
produces, such as FooGroupLayered in Fig. 11, that ex-
ports the layered functions defined in the group. Optionally,
an error context is also generated in plain nesC, as indicated
by ErrorFooGroup in this case, if the programmer does
not provide one. Each individual context is translated to a
corresponding nesC module with the proper interfaces to be
wired within the aforementioned configuration, as in the case
of FooConContext for the FooGroupConfig in Fig. 11.

At this stage, context and context groups disappeared, yet
CONESC constructs, such as activate, may still appear
within the source code. Our translator converts these constructs
to functionally-equivalent nesC code both in the nesC files
generated out of context groups and individual contexts, and in
the plain nesC files that possibly includes them, such as BarC
and BarP in Fig. 11. The resulting sources are then wired
to generic interfaces that define the predefined commands and
events in CONESC, such as contextChanged for context
groups, as in Fig. 7, and activated/deactivated for
individual contexts, as in Fig. 4 and 5. The result is plain
nesC code that can be given as input to the nesC toolchain.

Our translator is implemented using JavaCC [12]. Three
aspects are worth noticing. First, the generated code is still
human-readable, and a programer can modify it to implement
fine-grained optimizations. Second, the code is completely
hardware-independent. Therefore, hardware compatibility is
the same as the original nesC toolchain, allowing us to support
a wide range of WSN platforms and not to modify our
translator due to hardware idiosyncrasies. Second, the whole
translation process is only seemingly straightforward. Render-
ing the logic embedded within the CONESC abstractions does

require a fairly sophisticated processing. To give an intuition,
we measured the size of the CONESC implementations of the
application we use for evaluation, described next, against the
size of the nesC implementations output by our translator. On
average, we observe three times as much lines of code in the
automatically-generated nesC code.

V. EVALUATION

We implement three representative applications, as de-
scribed in Section V-A, using either CONESC or nesC. The
implementations are functionally equivalent. Based on these,
we evaluate our approach along four dimensions. Section V-B
analyzes the severity of different coupling types in our im-
plementations. Tighter forms of coupling are generally detri-
mental to code maintenance and evolution [15]. Section V-C
reports code metrics assessing the complexity of the implemen-
tations, which often impacts a system’s reliability and ease of
debugging [15]. The efforts required for evolving the software
are measured in Sec. V-D based on illustrative case studies.
Finally, Section V-E quantifies the performance overhead when
using CONESC in terms of MCU and memory penalty.

A. Applications

To demonstrate the generality of our design, we implement
a smart-home controller and an adaptive protocol stack in
addition to the wildlife tracking application.

The smart-home controller, whose design is shown in
Fig. 12, relies on context information to regulate temperature
and lighting conditions in a room, as well as to deal with
emergency situations. The former functionality are driven by
user-provided preferences that depend on the current context.
The preferences are managed within the Preferences group,
whose contexts provide different operating parameters depend-
ing on day/night and working days vs. weekend conditions.
The context transitions within the Light and Temperature
groups are driven by thresholds found in such parameter
set, compared against current temperature and light readings.
When transitioning between these contexts, the node operates
actuators to control the HVAC and lighting systems. The
controller exploits image, fire, and smoke sensors to detect
housebreaking and fire situations. It may notify the user about
the incident and possibly relay data to a controller in a different
room, depending on the situation.

The adaptive protocol stack, whose detailed context di-
agram we omit for brevity, implements dynamic protocol
switching in situations where a node may alternative periods
of significant mobility to periods of static operation. The node
roams within a network of static nodes running CTP [10]. As
long as the node remains static, it joins the existing routing
tree by running an instance of CTP. As soon as the on-board
accelerometer detects a significant movement, it switches to a
route-less gossip protocol, which allows the node to relay data
to the static infrastructure opportunistically [7]. In addition,
the node may switch between three parameter sets for CTP,
depending on context information that determine whether
lifetime, bandwidth, or latency is to be favored.
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Fig. 12: Smart-home controller context diagram.

TABLE I: Coupling types.
Type Description
Content (tightest) One module relies on the internal working of another. Chang-

ing one module requires changes in the other as well.

Common Two or more modules share some global state, e.g., a variable.

External Two or more modules share a common data format.

Control One module controls the flow of another, e.g., passing infor-
mation that determine how to execute.

Stamp Two or more modules share a common data format, but each
of them uses a different part with no overlapping.

Data Two or more modules share data through a typed interface, e.g.,
a function call.

Message (loosest) Two or more modules share data through an untyped inter- face,
e.g., via message passing.

B. Coupling

According to Stevens et al. [22], seven types of coupling
between software modules exist, as summarized in Table I. It is
generally known that the tightest is coupling, the more difficult
is debugging, maintaining, and extending the implementations.
We investigate the types of coupling we can observe in
CONESC and nesC implementations.

Results. Table II illustrates the results of our analysis. Gen-
erally, the ConesC implementations are significantly more
decoupled compared to their nesC counterparts. CONESC
avoids Content coupling in that different behavioral variations
are encapsulated in different contexts. NesC programmers, on
the other hand, cannot dynamically bind command calls or
event signals to different modules, which forces them to expose
internal module information that make one module’s operation
depending on that of several others’. For the same reason,
nesC programmers are forced to use global state to switch
between different functionality depending on the situation.
This creates Common coupling that is not found in CONESC,
in that the necessary functionality is automatically generated
by our translator. Finally, CONESC spares Control coupling
as well. This is a result of allowing dynamic binding across
modules driven by the context transitions. Such functionality
needs to be hand-coded in nesC.

However, both CONESC and nesC force Data and External
couplings. This is unavoidable, in that both rely on typed
interfaces and different modules in both implementations must
necessarily agree on a common data format.

TABLE II: Coupling comparison: CONESC implementations
save most types of coupling that are unavoidable in nesC.
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TABLE III: Complexity comparison: CONESC yields simpler
implementations that are easier to debug and to reason about.
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Wildlife tracking – nesC 6 8 12567.3

Wildlife tracking – ConesC 3 2 6231.2

Smart-home controller – nesC 2 2 18654.2

Smart-home controller – ConesC 0,8 1,9 5678.3

Adaptive stack – nesC 2,5 3,25 9830.3

Adaptive stack – ConesC 0,4 1,6 3451.8

C. Complexity

We estimate the complexity of the implementations by
measuring the number of variable declarations and the number
of functions in every module. These are generally considered
as intuitive indicators of a program’s complexity [15]. It is
also observed that complexity is a function of the number of
states in which the program can find itself [15]. A state here
is any possible assignment of values to the program variables.
Thus, the number of states must be computed by looking at the
different combinations of values assumed by variables during
every possible execution.

To carry out the latter analysis, we use SATABS [3], a
model-checking tool for C programs. SATABS performs off-
line verification of C programs against user-provided asser-
tions. To do so, it searches through the relevant program
executions to check whether the assertion always holds. At
the end of the process, SATABS returns the number of states
it explores in the program. Using a specific configuration, it is
possible to force SATABS to explore all program executions.
If the procedure terminates, SATABS returns the total number
of distinct states in a program. We use SATABS on a per-
function basis, implementing empty stubs to replace code that
we cannot process with SATABS, e.g., hardware drivers.

Results. Table III illustrates our results. On a per-module basis,
CONESC shows significant reductions in both the number of
declared variables and defined functions. This comes from the
ability to dynamically bind a function call to the required
context-dependent implementation transparently to the caller.
In nesC, on the other hand, this requires defining global vari-
ables to check what behavior needs to be triggered depending
on the situation. As a result of this, the number of per-function
states programmers must manage also drastically decreases,
making the implementations simpler to understand.



As debatable as it may be for measuring the effectiveness of
a programming abstraction [17], we also measured the number
of lines of code in both nesC and CONESC implementations:
the two are roughly comparable. More interestingly, however,
as already discussed, we also measured the size of the code
generated by our translator, described in Section IV. Besides
giving an intuition of the complexity involved in the translation
process, this figure also indicates the “expressive power” of the
abstraction, that is, the amount of processing that CONESC
programmers can succinctly express using the language con-
structs we design. As already mentioned, it turns out that the
output of our translator is roughly three times the size of the
input code, demonstrating that our abstractions do capture a
significant portion of processing in a few simple concepts.

D. Software Evolution

WSN software needs to constantly evolve due to changes
in requirements. Generally, the better an implementation is
modularized, the easier are the modifications, since the changes
will affect an isolated portion of the system [15]. For each
application we consider, we estimate the effort to modify the
CONESC implementation compared to the nesC counterpart.
We study three types of modification: removing a context,
adding a new context, and adding a new context group.

To estimate the effort for removing a context, we rework
the scenario of the adaptive protocol stack. Say developers
want to remove of one of the CTP parameter sets after testing,
since those parameters performed ineffectively. To study the
addition of a new context, we extend the wildlife tracking
application to the case where it becomes necessary to monitor
the spread of a disease. To do this, developers add a new
context Carrier to the Health conditions group to create a
beacon for an animal who was in contact with a diseased
one, but shows no symptoms yet. To study the addition of
an context group, in the smart-home controller scenario we
consider a case where developers need to monitor a device’s
state depending on periodic run-time checks. If a potential
failure is discovered, the controller should change its behavior.
To this end, programmers add an entire context group Status
with two contexts Normal and Failure.

Results. Our analysis shows that removing a context in the
CONESC implementation of the adaptive protocol stack only
requires modifying 3 lines of code, besides deleting the context
itself. To remove unnecessary functionality in nesC, develop-
ers must modify several lines of code scattered throughout
the main module. To add a context in the wildlife tracking
application, using CONESC it is necessary to modify 5 lines
of code, besides providing the implementation for the new
context. Implementing the same extension in nesC requires,
among other code modifications, adding two new global states,
further complicating the control flow. Adding a new context
group in the smart-home controller requires modifications in
about 40 lines of code using CONESC, besides providing the
implementation for the new contexts. Using nesC, about the
same amount of code changes are required, yet these include
adding two global states, again rendering the implementation
necessarily more entangled. Finally, worth noticing is that the
effort to apply context-unrelated changes in CONESC is the
same as in nesC.
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Fig. 13: MCU and memory overhead: the resource usage
penalty for using CONESC is almost negligible.

E. MCU and memory overhead

The advantages brought to programmers come at the cost
of additional system overhead. To assess this, we measure the
MCU overhead for context transitions and calls to layered
functions, as well as memory overhead when using CONESC
as compared to nesC. To measure the MCU overhead we
use the MSPSim MSP430 emulator [5], while we estimate
the memory overhead using tools in the nesC and GNU-C
toolchains. As the executions are determinstic, the run-time
experiments constantly yield the same measures.

Results. Fig. 13 shows the results. The average MCU overhead
for a layered function call ranges from 2 to 5 MCU cycles,
depending on the application. Such figures are negligible in
terms of energy consumption, since the simplest operation in
TinyOS, that is, turning on/off an LED, already consumes 8
MCU cycles. The overhead of context transitions is slightly
larger, but in the same order of magnitude. This arises from the
activation rules, described in Fig. 8. Additional MCU cycles
are needed to check if the transition is possible, then to check
the dependencies, and finally to execute the body of check().

Most importantly, the memory overhead is also negligible,
measuring a worst-case 2.5% penalty for the size of the
program binary and a worst-case 4.5% penalty for RAM
usage. The complexity of the application largely dictates the
corresponding memory overhead. For example, the wildlife
monitoring application, being the most complex in terms of
contexts, context changes, and data processing, shows the
highest overhead. The overhead for the adaptive protocol stack,
on the other hand, is negligible in that a nesC programmer
would essentially leverage a similar set of variables compared
to those that our CONESC translator automatically generates.

VI. RELATED WORK

Efforts related to ours are roughly divided in two cate-
gories. On one hand, as the need for adaptivity in WSNs was
immediately recognized because of the intimate environment
interactions, several system-level solutions exist to provide
adaptive behaviors at different levels in the stack. Our work is
complementary to these efforts: rather than devising problem-
specific adaptation mechanisms, we present design concepts
and programming constructs to facilitate the implementation



of such mechanisms. On the other hand, programming support
for adaptation, including the application of COP, is more
extensively studied for more traditional computing platforms,
missing, however, a dedicated port of concepts and abstractions
to resource-constrained devices. In the following, we briefly
survey the literature based on examples closer to our work.

Adaptation in WSNs. Solutions in this category often target
run-time adaptation of MAC and routing protocols. For exam-
ple, Zimmerling et al. [25] focus on an adaptation of MAC pro-
tocol parameters depending on link qualities, topology dynam-
ics, and traffic loads. Based on an mathematical formulation
of the problem at hand, the base-station computes optimized
MAC parameters to satisfy user-provided performance goals.
Another example is that of Bourdenas et al. [2], who design a
routing protocol with dedicated adaptive functionality. Using
a custom forecasting approach, the system can predict the
conditions of the network and anticipate the changes required
in the routing protocol behavior. Our work is intended to
serve the needs of those needing to implement such adaptive
functionality, easing their implementation chore.

Closer to our goals are the works on self-organizing WSN
architectures. For example, Subramanian and Katz [23], define
a component model to build adaptive WSN architectures. Their
work, however, is again intended for specific adaptation needs,
that are, those arising in static WSNs deployed for large-
scale sensing tasks. For example, the work is not applicable
in mobile scenarios akin to a wildlife tracking application.
Diguet et al. [4] blur the boundaries between software and
hardware to gain additional flexibility in providing adaptive
functionality. Their design, however, leads to application-
specific implementations. Our work aims to be more general
than these efforts, as we demonstrated by applying CONESC
to diverse application scenarios, as discussed in Section V.

Programming support for adaptation. Some works explic-
itly provide programming support for adaptation outside the
WSN, essentially regarding the latter as an application-agnostic
source of raw data. For example, Sehic et al. [21] design
a Java-based framework for context-aware applications using
input data from a WSN. Differently, we bring a notion of
context down to the resource-constrained devices, allowing to
implement context-aware behaviors right on the WSN device.

A natural way to handle adaptivity at the programming
level is to embed some notion of COP within an existing
language, similar to what we do. Indeed, several high-level
languages already feature COP extensions [1], [9], [13], [20],
[21]. Such approaches, however, are far from being applicable
in WSNs, due to specific application requirements and resource
limitations. For example, the multiple dimensions of adaptive
behavior germane to WSN applications are rarely considered in
existing works. In CONESC, we borrow concepts from COP
and adapt them to the typical requirements arising in WSN
applications and to the limitations of related platforms.

VII. CONCLUSION

We presented programming abstractions for implement-
ing adaptive WSN software. By borrowing from COP, we
conceived language-independent design concepts mirrored in
a concrete language implementation—CONESC—that extends
nesC with COP constructs. Our dedicated translator converts

CONESC code to plain nesC code, then handed over to the
standard nesC toolchain. Based on three representative applica-
tions, we observed that CONESC greatly simplifies developing
adaptive WSN software. For example, we found that, along
with increased decoupling of software components, we gain a
≈50% reduction in the number of per-function states that pro-
grammers need to deal with, and applications can be evolved
with reduced efforts compared to their nesC counterparts. The
price for gaining such advantages is, however, negligible: we
observed an overhead of 2.5% (4.5%) in program (data) mem-
ory, whereas the MCU overhead is negligible. The CONESC
toolchain is available at code.google.com/p/conesc.
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