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ABSTRACT OF THE DISSERTATION

INTERPRETABILITY OF AI IN COMPUTER SYSTEMS AND PUBLIC POLICY

by

Farzana Beente Yusuf

Florida International University, 2021

Miami, Florida

Professor Giri Narasimhan, Major Professor

Advances in Artificial Intelligence (AI) have led to spectacular innovations and so-

phisticated systems for tasks that were thought to be capable only by humans. Examples

include playing chess and Go, face and voice recognition, driving of vehicles, and more.

In recent years, the impact of AI has moved beyond offering mere predictive models

into building interpretable models that appeal to human logic and intuition because they

ensure transparency and simplicity and can be used to make meaningful decisions in

real-world applications. A second trend in AI is characterized by important advancements

in the realm of causal reasoning. Identifying causal relationships is an important aspect of

scientific endeavor in a variety of fields. Causal models and Bayesian inference can help

us gain better domain-specific insight and make better data-driven decisions because of

their interpretability.

The main objective of this dissertation was to adapt theoretically sound AI-based

interpretable data-analytic approaches to solve domain-specific problems in the two un-

related fields of Storage Systems and Public Policy. For the first task, we considered the

well-studied problem of cache replacement problem in computing systems, which can be

modeled as a variant of the well-known Multi-Armed Bandit (MAB) problem with delayed

feedback and decaying costs, and developed an algorithm called EXP4-DFDC. We proved

theoretically that EXP4-DFDC exhibits an important feature called vanishing regret. Based

on the theoretical analysis, we designed a machine learning algorithm called ALeCaR, with

vii



adaptive hyperparameters. We used extensive experiments on a wide range of workloads

to show that ALeCaR performed better than LeCaR, the best machine learning algorithm

for cache replacement at that time. We concluded that reinforcement machine learning can

offer an outstanding approach for implementing cache management policies.

For the second task, we used Bayesian networks to analyze the service request data

from three 311 centers providing non-emergency services in the cities of Miami-Dade, New

York City, and San Francisco. Using a causal inference approach, this study investigated

the presence of inequities in the quality of the 311 service to neighborhoods with varying

demographics and socioeconomic status. We concluded that the services provided by

the local governments showed no detectable biases on the basis of race, ethnicity, or

socioeconomic status.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the last decade, the field of Artificial Intelligence (AI), powered by Machine Learning

(ML) and Deep Learning (DL), has transformed the world we live in with far-reaching

applications like self-driving cars [Bojarski et al., 2016, Krizhevsky et al., 2012], strategy

development in games [Mnih et al., 2013, Ganzfried and Yusuf, 2017], medical diagnostics

[Chen et al., 2017, Beam and Kohane, 2018], natural language processing [Sundermeyer

et al., 2012, Graves et al., 2013, Chung et al., 2014]. ML and DL, sub-fields of AI, enable a

system to learn from experience and improve its performance over time in an autonomous

fashion and are extensively applied to solve many domain-specific problems, where they

have been used as a black box mainly for prediction or forecasting.

ML models are designed to be predictive and excel in connecting the input data to

the output and finding patterns from them. However, they fall short in reasoning about

cause-effect relationships. Just as with ML and DL, a second trend in AI is characterized

by major advances in the field of causal reasoning. Identifying causal relationships and

applying causal reasoning is an integral part of scientific inquiry, and is applicable to a wide

range of domains including life sciences, epidemiology, environment, economics, finance,

behavior, public policy, and much more. Understanding cause-and-effect relationships can

help us make better data-driven decisions. Traditionally, causality is studied by performing

controlled experiments, typically in the form of randomized trials. However, Pearl and

others [Pearl, 2009, Pearl and Mackenzie, 2018] have developed computational approaches

to perform causal inferencing. Causal inferencing is a collection of AI techniques that

allow us to infer causal relationships using observational data. Once a reliable causal
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model is built, causal inferencing can also help us to infer the effect of interventions and

counterfactuals, thus allowing us to answer “what if ...” questions for the modeled systems.

A third important trend in AI is the effort to build more “generalizable” AI models

that can explain the decisions made by the model. For example, if an automatic loan

approval system rejects an applicant’s loan, or if a self-driving car is involved in an

accident, then it is natural to demand an explanation. Model interpretability allows us to

understand an outcome or a prediction, not just be informed of the outcome, thus allowing

us to treat the algorithm as something beyond a “black box” that predicts outputs from

inputs. To tackle the issue of interpretability, a new field of AI has emerged known as

Explainable AI (XAI) and has been applied extensively to making neural network models

more explainable [Goebel et al., 2018, Holzinger, 2018, Hagras, 2018, Samek et al., 2019].

Model interpretation comprehends and explains the what, why, and how of the decision-

making process. Transparency, the ability to query, and the ease with which humans can

grasp model decisions are essential in model interpretation.

It is also important to ensure that AI models are unbiased. There are numerous real-

world circumstances, i.e., predicting potential criminals, judicial sentence risk scores,

credit scoring, fraud detection, health assessment, self-driving, in which biased models can

have disastrous consequences. In many ML models, bias is eliminated by careful choice

of training sets. Note that it may be possible to measure the extent of bias if we have an

interpretable ML model, but an unbiased model would not make it interpretable. In causal

models, the extent of bias may be more readily quantifiable.

The main objective of this proposal was to develop theoretically sound AI-based inter-

pretable data-analytic approaches to solve domain-specific problems in Storage Systems

and Public Policy. The research reported in this dissertation also focused on achieving

domain-specific insight, thus allowing us to better understand and interpret the system,

and find better ways to make the methods adaptive and automatic. To achieve this, the
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methods were applied to data from two vastly different fields, i.e., Storage Systems and

Public Policy.

Our first application area was cache management. Every cache management process

handles billions of memory requests and make decisions about which memory items to

retain in the cache at any given time. It is natural to wonder if it is possible to learn from

prior mistakes and to improve a cache replacement policy over time. Although cache

management has improved over the last few decades, ML has only been applied with

limited success [Ari et al., 2002, Liu et al., 2019]. Improved predictions of what to retain in

the precious small cache can dramatically impact system efficiency. However, this requires

knowing the future. A natural question to ask is whether predictive and interpretable ML

models can be utilized to outperform the existing non-ML algorithms. A recent algorithm

designed at FIU called LeCaR answered that question in the affirmative. An in-depth

study was needed to understand why the ML-based approach used by LeCaR worked

well and whether we can explicitly identify what the algorithm learned by interpreting the

models built. These questions are particularly relevant today in the context of different

ML models [Goodfellow et al., 2016, Amvrosiadis et al., 2018] where interpretation of

the models has become a challenge. The answers have far-reaching implications. A

slight improvement of a cache replacement algorithm could mean energy savings on

every computing device that uses it. The first work proposed here aims to understand the

effectiveness of ML approaches applied to cache management, both from a theoretical and

a practical perspective. Therefore, the first application of ML-based system improvement

reported in this dissertation focuses on applying interpretable ML to the storage subsystem

of a computing system with the goal of improving its performance.

Our second application area was in the field of public policy. Traditional data science

methods for analyzing big data have mainly relied on correlations (e.g., regression, linear

models, etc.). Emerging methods based on Pearl’s causal inferencing techniques provide
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new avenues for understanding causal relationships between variables. Causal models

capture more than correlations and associations, allowing us to extract meaningful rela-

tionships, and making it possible to analyze the effects of interventions. Understanding

the causes behind the effects is critical in decision-making processes. Additionally, if

one intends to act on a forecast or decide to intervene to change the existing policies,

then causal inferencing becomes even more important. The process of making public

policy decisions made using administrative data was explored in this dissertation. By using

conditional probabilities, Bayesian networks provide an approach to distinguish between

direct and indirect dependencies and to identify common effects from the observational

data. We applied causal Bayesian networks to publicly available administrative data from

311 call centers, which provide non-emergency services to residents. Our secondary goal

was to use causal inferencing to study equity issues in the 311 centers in different cities

of USA, i.e., Miami-Dade County, New York city, and San Francisco city. In the process,

this project also aimed to identify the challenges of applying causal inference on public

policy domain data and provide recommendations for the use of causal inferencing using

interpretable causal BNs.

1.2 Research Components

As mentioned earlier, the main objective of this proposal was to develop data-analytic

approaches to improve decision making in Storage Systems and Public Policy. This is

described further in the two components mentioned below.

1. Component 1– Application of ML on Cache replacement problem: The cache,

a mainstay in nearly every computing device, is the fastest storage device for a

program to access. When a data item is requested, it is first searched in the cache.

If found, the cache hit results in the fastest access. Else, a cache miss occurs, and
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the item is brought into the cache for further processing from a storage device that

is a lot slower (e.g., main memory or secondary storage). Caches are expensive,

and the cost rises steeply with size and speed of access. Since the small cache

is almost always full, some item is evicted from it on every miss to make room

for the new data. The evicted item is chosen using the cache replacement policy.

If the cache is provisioned to be sufficiently correctly and if cache replacement

is managed well, then it is equivalent to having the entire memory needs of the

program stored in the fastest storage device. Thus the efficiency of the system can

be significantly enhanced if the cache replacement policy is successful. However, its

success requires knowing the future. The basic algorithms of Least Recently Used

(LRU), Least Frequently Used (LFU), and CLOCK [Corbato, 1968] have identified

key features (recency and frequency of items) to implement an efficient replacement

policy. Algorithms such as LIRS [Jiang and Zhang, 2002], ARC [Megiddo and

Modha, 2003, 2004] appear to anticipate the future better than the aforementioned

basic algorithms in many settings and predates many innovations in ML. LeCaR

represents a recent breakthrough in cache replacement policies and is a ML-based

“online reinforcement learning” algorithm [Vietri et al., 2018].

(a) Theoretical Analysis of LeCaR: LeCaR [Vietri et al., 2018], an online adap-

tive cache replacement algorithm, demonstrated outstanding empirical per-

formance over state-of-the art cache replacement algorithm. The LECAR

algorithm makes a simple, but elegant, assumption that on any cache miss, it

is sufficient for the algorithm to pick from one of only two policies: Least

Recently Used (LRU) and Least Frequently Used (LFU). In this dissertation,

we analyzed LeCaR theoretically with the goal of gaining insights into the

worst-case performance of the algorithm.
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(b) Designing improved versions of LeCaR: Understanding the impact of the

hyperparameters in LeCaR is essential as they are an integral part of adaptation.

Updating the regret values at each step and the fixed design choices might

result in performance bottleneck of the algorithm since they do not incorporate

systems dynamics. An improved version that assigns theoretically optimal

values for some of the hyperparameters and automates the setting of others was

designed and implemented.

2. Component 2– Causality on public policy domain: The second aim of this disser-

tation was to illustrate the application of causal inference method to administrative

data. The task was divided into two chapters.

(a) Causal Inferencing and its Challenges: The Case of 311 Data We applied

causal Bayesian networks method to 311 data from Miami-Dade County,

Florida (USA). The 311 centers provide non-emergency services to residents.

The 311 data are large and granular. We explored the equity issues and biases

that might exist in this particular type of service requests. As a case study,

the relationship between population characteristics (independent variables),

request volume, and completion time (dependent variables) was examined to

identify any racial or ethnic disparities that may be present in the observational

data.

(b) Comparative analysis of 311 data for different cities We looked at the limits

of the 311 data analytics: Processes, Potential Benefits, and Limitations of the

Bayesian Network Approach to causal inference when applied to admisitrative

dataset. We provided an improved framework to overcome the limitations.

To compare how effective the method was in terms of completion time, we

looked at data from three different cities: Miami-Dade County, New York City,
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and San Francisco. The causal (signed) Bayesian Network models that were

developed suggested that demographic and socioeconomic characteristics had

little or no influence on the target variables, such as completion time and call

request volumes. The data did not support the existence of demographic or

socioeconomic bias in the provision of non-emergency services to residents of

these cities according to our findings.

1.3 Contributions

1.3.1 Theoretical analysis of LeCaR

We studied a variant of the well-known Multi-Armed Bandit (MAB) problem with delayed

feedback, costs decaying with delay, and costs vanishing after a threshold. Previously

studied variants focused on the case where costs increased with delays, and are hence not

applicable to the variant under study. We presented an algorithm called EXP4-DFDC for

the delayed-feedback-decaying-cost variant. Theorem 2.4.2 shows that it is guaranteed

to have vanishing regret. Cumulative regret for the EXP4-DFDC algorithm is of the

form O(
√
KT lnN). As a result, average regret vanishes with increasing time, since

REXP4-DFDC(t)/T = O(T−1/2)→ 0, as T →∞.

Theorem 1.3.1 Given K,T > 0, learning rate η ∈ (0, 1], a family of N experts, and

an assignment of arbitrary rewards regularized by a decaying cost that depends on

delay d, the expected regret of the EXP4-DFDC algorithm can be upper bounded by

REXP4-DFDC(T )] ≤ 2ηT + (K lnN)/η.

A corollary of Theorem 1.3.1 is that LeCaR, a learning algorithm based on EXP4-

DFDC, with any fixed non-negative learning rate, has a regret value that vanishes with

increasing time horizon.
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Improvement of LeCaR based on theoretical analysis The optimal learning rate at

which regret is minimized can be derived theoretically (as a function of time) from Theorem

2.4.2. We have designed an adaptive version of LeCaR, called OLECAR, with learning

rate set as recommended by the theoretical derivation.

1.3.2 Adaptive LeCaR: ALeCaR

Inspired by the gradient-based approach [Robbins and Monro, 1951], we proposed a novel

approach to make the learning rate (η) adaptive. ALeCaR is a gradient-based variant of

LeCaR that has been shown to improve the performance over state-of-the art algorithms.

ALeCaR outperforms the best-known algorithms (ARC, LIRS, and DLIRS) 26% of the

times, is competitive 48% of the times. ALeCaR paved the way for the development of

CACHEUS [Rodriguez et al., 2021], the best caching algorithm to date and enabled the

development of a framework for combining cutting-edge caching techniques like ARC

or LIRS with a supplementary expert like LFU to handle a broad range of workloads

efficiently and effectively.

1.3.3 Causal Inference applied to the 311 Data

We applied the causal inference method to administrative data. First, we used Bayesian

networks to analyze 311 data from Miami-Dade County, Florida (USA). Residents use the

311 centers for non-emergency services. The 311 data is extensive and detailed. However,

due to missing or impure data, insufficiency, and latent confounders, inferring causation

from administrative data poses a number of issues. Finally, we attempted to improve the

inferencing technique by integrating prior domain knowledge into the Bayesian networks

by adding temporal information, integrating blacklisting (list of edges in the blacklist never

appear in the learned network), and extending it to new cities, i.e., New York City and San
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Francisco, with more observations. The purpose of this study was to find out whether there

are any equity concerns or biases in this type of service request. The relationship between

demographic characteristics (independent factors) and request volume and completion time

(dependent variables) was investigated as a case study in order to find any discrepancies

from observational data. According to the findings, there are no biases in the services given

to any demographic, socioeconomic, or geographic categories. The goal of this study was

to use the causal inference method to analyze the 311 administrative data to learn more

about how local governments respond to service requests and whether government service

provision is consistent across demographic, socioeconomic, and geographic variables.

More importantly, this research provided a framework for performing causal inference on

311 datasets that can be easily applied to others cities or regions. Finally, we discussed the

difficulties and challenges of using the causal method with this type of dataset.

1.4 Outline

The dissertation is organized as follows. First, we introduced a new variant of the traditional

MAB problem to map the cache replacement problem. We provided a theoretical analysis

of the solution delayed feedback and decaying cost variant of the EXP4 algorithm named

EXP4-DFDC. Finally, we apply the theoretical analysis to the LeCaR algorithm in the

Chapter 2. Next, we described the adaptation of the learning rate of LeCaR along with

detailed performance analysis in the Chapter 3. We discussed the application of causal

Bayesian networks on the 311 datasets and provide insights, while taking on the challenges

of interpreting the analysis in Chapter 4. Finally, we extended the causal framework to

overcome the challenges and applied it to two more cities in Chapter 5 before providing

concluding remarks in Chapter 6.
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CHAPTER 2

CACHE REPLACEMENT AS A MAB WITH DELAYED FEEDBACK AND

DECAYING COSTS

2.1 Motivation

Software programs can be speeded up using software or hardware caches. The Cache

Replacement problem is a fundamental problem in computer science that dictates the

performance of such caches. Classical cache replacement algorithms such as Least Recently

Used (LRU) and Least Frequently Used (LFU) are known to perform well on average but

leave a lot of room for improvement. The Adaptive Replacement Cache (ARC) algorithm

showed better performance by exploiting both frequency and recency properties of data

items, and quickly became the state-of-the-art method for cache replacement after its

invention [Megiddo and Modha, 2003, 2004]. More recently, some algorithms have

demonstrated comparable or even better performance than ARC. These include LIRS

[Jiang and Zhang, 2002] and DLIRS [Li, 2018]. Among the recent crop of outstanding

cache replacement algorithms is the LECAR algorithm invented by Vietri et al. [2018],

which uses online reinforcement learning, thus opening a promising new direction to

improve cache replacement with the help of machine learning. In this study, we aim to

address the cache replacement problem by formulating a new variant of the Multi-Armed

Bandit (MAB) problem and providing theoretical insight into how to improve the LECAR

algorithm for cache replacement.

The original MAB [Robbins, 1985] problem can be formulated as a T -round game

where a player has access to a panel of N experts, each following a specific strategy. In

round t, the player consults the N experts (arms), each of whom recommends one of

K possible actions, represented as a K-dimensional binary vector, ξi(t) with only one

occurrence of a 1. Thus ξi(t) ∈ {0, 1}K with only one 1. The action in round t is j if and

10



only if ξji (t) = 1, where ξji (t) is the j-th component of ξi(t). We also note that the proof

can be generalized to the case when the recommendations from each expert is represented

by a probabilistic vector, i.e., ξji (t) ≤ 1 and
∑N

j=1 ξi(t) = 1. Each action is associated with

a reward or cost value, which is provided in the form of feedback to the player immediately

following the action. The problem is to find the strategy that results in the highest gain. A

successful algorithm for MAB must strike a balance between acquiring new knowledge

about the input (i.e., “exploration”) and optimizing decisions based on existing knowledge

(i.e., “exploitation”).

Cache replacement can be considered as a variant of the MAB where, for each page

request σ(t), expert i recommends an action ξi(t) indicating the page in the cache to be

evicted, if a replacement is needed. A feedback for an action to evict page X in round t

is provided in round t′ if the eviction of page X triggers a “miss” when X is requested

for the first time at a later round, t′. Therefore, the feedback could be delayed by an

indeterminate amount, and the magnitude of the associated cost is inversely proportional

to the time passed since the action was taken. Note that because of the application being

considered, it is convenient for us to use the term “cost” instead of “reward”, although they

are equivalent.

Even though variants of MAB with delayed feedback have been studied previously

[Weinberger and Ordentlich, 2002, Agarwal and Duchi, 2011, Langford et al., 2009, Neu

et al., 2010, Desautels et al., 2014, Dudik et al., 2011], they cannot be applied to the cache

replacement problem. First, in all existing studies, cost increases with increased delay. In

our case, with larger delay, the cost associated with the chosen action decreases. Second,

the cost vanishes when the delay is larger than a specified threshold. In this dissertation,

we formulated a new MAB variant - MAB with delayed feedback and thresholded decaying

cost (MAB-DFDC).
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To solve the newly formulated problem, we introduced the EXP4-DFDC algorithm

and showed that it exhibits vanishing regret over an increasing time horizon. Finally, we

presentd OLECAR – an enhanced LECAR version with a theoretically optimal adaptive

learning rate derived from regret minimization applied to EXP4-DFDC.

2.2 Background

2.2.1 Variants of MAB

The classical Multi-Armed Bandit problem was initially formulated by Robbins [1952,

1985]. The motivating application was to find a balance between two competing goals

of finding the best treatment (exploration) and treating the patients as soon as possible

from the best known treatments (exploitation) so far in clinical trails for treatments. The

formulation of MAB in terms of a T -round repeated game is as follows: For each play

t over T rounds, the player selects one of the K actions, ξi(t) ∈ {0, 1}K , i = 1, . . . , n,,

where
∑K

j=1 ξ
j
i (t) = 1 and obtains a cost of xj(t) for this play. The cost for each action

is associated with an unknown probability distribution. The goal is to find the the best

strategy to follow by selecting actions that will minimize the total cumulative cost, thus

minimize regret. As a result, many different algorithms have been proposed depending

on the regret minimization technique, which involves playing a mix of exploration and

exploitation strategies.

Lai and Robbins [1985] proved that the player’s regret over T rounds can be made as

small as O(log T ) in a stochastic setting based on the assumption that the cost distribution

over the actions are random. As T → ∞, the average regret vanishes. Littlestone and

Warmuth [1994] proposed a weighted majority algorithm with N experts which makes at

most c(log|N |+m) mistakes on that play sequence, where c is a fixed constant and m is
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the number of mistakes made by the best expert. The player chooses the action based on

the majority voting, and the weights are updated based on the associated cost. Vovk [1995]

provided similar bounds on the cumulative loss of the learning algorithm for the prediction

problem, where it never exceeds cL + a logN such that a and c are fixed constants, N

is the number of experts, and L is the cumulative loss incurred by the best expert in the

pool. Variants of algorithms to solve a worst-case stochastic MAB problem in an online

framework were developed [Freund and Schapire, 1995, 1999] based on the previous

mentioned works.

In certain applications, the cost function cannot be modeled by a stationary distribution.

As an example, in a communication network, to find the best route for transmitting packets

from a fixed number of possible options requires sophisticated statistical assumptions

on the associated costs of the routes. In other applications, it might be impossible to

determine the appropriate distribution. Therefore, a non-stochastic multi-armed bandit (or

a adversarial bandit) makes no assumption about the nature of the cost generation process

[Auer et al., 2002]. Instead of a well-defined stochastic distribution, the adversary takes

control over the costs generation process. The adversary may be oblivious (where the costs

of all actions at all rounds are selected in advance) or non-oblivious (where the adversary

changes the distribution based on the player strategy) [Auer et al., 1995].

The oblivious adversarial MAB problem can be solved using the Exponential Explore-

Exploit (EXP3) algorithm [Auer et al., 2002], which is a variant of the “Hedge” algorithm

proposed by Freund and Schapire [1995]. “Exponential weight algorithm for Exploration

and Exploitation using Expert advice” (EXP4) [Auer et al., 2002] extends the EXP3

algorithm for multiple experts settings. The standard weighted majority algorithm is not

effective in non-stochastic settings because experts with large weights could prevent actions

with potentially smaller costs that are delivered later in time. Both the EXP3 and EXP4

algorithm has an exploration parameter, which controls the probability of choosing the
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arm at random. It have been shown that both EXP3 and EXP4 player strategies guarantee a

worst-case regret of O(
√
T ), where T is the number of rounds played [Auer et al., 2002].

Many variants of the MAB problem and solution approaches have been developed

inspired by different applications, i.e., online advertisement, network communication

modeling, and news recommendation system based on the adversarial bandit work of Auer

et al. [2002]. In some of these cases, the feedback is not instantaneous, instead delayed due

to some constraints. For example, Weinberger and Ordentlich [2002] studied MAB with

delayed feedback in the adversarial full information setting (the player receives feedback

information related to all the actions instead of only the chosen action). They discussed an

application of this to prefetch pages in computer memory systems and proved vanishing

regret. Mesterharm [2005] explored another variant of the full information setting when

side information is available. For example, in a social network, to recommend a new friend

to a user, it is possible to exploit the mutual friend information by the recommendation

system. For such a setting, the algorithm by Mesterharm [2007] exhibits increasing regret

to average delay for the adversarial environment. They also studied the stochastic setting

and provided a regret bound, which increases with maximum delay when feedback is

delayed. Langford et al. [2009] proved similar bounds for a sufficiently slow learner

and exploited parallelism to design an online learning strategy that best uses multi-core

architecture technology to solve the problem. Neu et al. [2010] formulated a MAB with

an oblivious adversary and showed a multiplicative regret for a fixed and known delay

when there is no side information available. Dudik et al. [2011] and Desautels et al. [2014]

presented online learning algorithms for delayed feedback, resulting in a regret bound with

an additive term dependent on the fixed delay and maximum delay for no side information

and side information case.

Beygelzimer et al. proposed a solution of contextual bandits when only partial feedback

is available. The work of Agarwal and Duchi [2011] and Joulani et al. [2013] on online
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stochastic MAB showed that regret increases linearly with delay respectively for full and

partial information delayed feedback setting. The blinded bandit addresses another variant

when the feedback is not provided on the rounds the player switches to a different action

[Dekel et al., 2014].

One important application is the online routing network problem. During the route

switching of the streaming transmission, it takes time to compute the new transmission rate.

Cooperative bandit problems in multi-player settings have been studied by Awerbuch and

Kleinberg [2008], Szorenyi et al. [2013] in a stochastic and adversarial setting, where the

players cooperate to find the best strategy using dynamic random networks. Cesa-Bianchi

et al. [2016] explored delay and cooperation in non-stochastic bandits with an application to

communication networks. Cesa-Bianchi et al. [2016] proved a regret bound for adversarial

delayed feedback in a cooperative multi-agent setting, where regret increases with delay.

Joulani et al. [2016] showed regret bounds of
√

(d+ T ) lnK, where d is the total delay

in feedback experienced over the T rounds with K available actions for full-information

settings.

2.3 Problem formulation: MAB with delayed feedback

In this section, we formulate a new MAB variant with Delayed Feedback and Decaying

Cost (MAB-DFDC) that is applicable to the cache replacement problem. MAB-DFDC

differs from the existing literature in terms of the formulation of delayed feedback. In

the MAB problem, there is no delay in obtaining the feedback. In contrast, MAB-DFDC

allows delays in feedback to be greater than zero. In previous studies that allowed delays in

feedback, cost and/or regret was modeled as increasing with the delay. But, in our proposed

formulation, regret decreases as delay increases. As inspired by the cache replacement

problem, if an evicted item is requested immediately after its eviction, the regret is much

15



Figure 2.1: A schematic for the Multi-Armed Bandit problem with delayed feedback.

higher than if the request occurs after a considerable passage of time. Additionally, when

the delay reaches a predefined threshold, our formulation ignores its contribution and the

associated cost term vanishes from the regret bound equation. The intuition here is that

once the regret due to an eviction becomes appreciably small, i.e., after a sufficient passage

of time, it is not worth the bookkeeping effort to track its negligible impact and can be

dropped altogether from further consideration.

We describe the delayed feedback, decaying cost version of MAB problem (MAB-

DFDC), and borrow from the notation used for the adversarial MAB problem by Auer et al.

[2002]. The problem is modeled as a game where the player’s objective is to minimize

costs. The player receives a sequence of requests and must respond with one of K actions

at the end of each request. The player also has access to N experts who are consulted

on every action. Every action has a cost and the player seeks to minimize the cost over

T requests as T becomes large. As described earlier, the decaying cost is unknown until

the action elicits a feedback, which may be delayed for an indeterminate amount of time.
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However, the cost is a pre-specified function of the delay of the feedback – we assume a

simple linear dependence. Fig. 2.1 provides a schematic and highlights the key concepts of

the MAB-DFDC problem, from which the application to the cache replacement problem

can be readily seen. The schematic describes 4 steps in each iteration, which are explained

in detail below.

1. A request (e.g., a page request) is received for round t in a T -round game.

2. The player consults with N experts, each of whom recommends an action ξi(t)

as a (binary) vector of probabilities, where ξi(t) = (pi1(t), . . . , p
i
K(t)) and pij(t) ∈

[0, 1], j = 1, . . . , K. As mentioned earlier, ξji (t) can be thought of as the probability

of choosing action j by expert i at time t. Note that all experts have access to the

state of the system in making their expert recommendations, and that “no action”

is a valid recommendation. In the cache replacement problem, an expert is a page

replacement policy (e.g., LRU), and the action is the associated cache manipulation.

“No action” is recommended if the item is found in cache (i.e., a hit). Each action is

associated with a cost, which is revealed to the player after an indeterminate delay.

3. An action it is chosen by the player based on the recommendations of the experts

and based on some pre-determined criteria. Therefore, ξji (t) = 1, if and only if

it = j, and 0 otherwise. A “history” of actions is maintained in order to provide

feedback when appropriate. History information may also be used by the experts

to provide a recommendation. For the cache replacement scenario, a hit triggers

“no action”, but a miss results in an action that evicts a page resident in the cache

to make room for the page requested in round t. Eviction information is stored in

history to generate a feedback in a later round, if needed.

4. Finally, a feedback may be generated. The feedback may be for the current request

or for a request from some previous round t′, and its computation requires the
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information stored in history. For the cache replacement problem, a hit triggers a “no

action” and results in an immediate feedback with no cost. if a “miss” is encountered

for the currently requested page, we search the page eviction history to find the

round t′ when the page was last evicted from the cache. If the currently requested

page is found in history, we provide the feedback for the action from round t′. If the

requested page is not found in history, no feedback is provided.

The classical MAB problem assumes that t = t′, i.e., that the feedback is immediate for

every action. In our case, the delay, d = t− t′, is defined as the number of rounds between

when the action is taken and when the feedback was received for that particular action. We

assume that the cost is a function of the delay. Consequently, its computation may require

an infinite history. Since this is impractical in real applications, we assume that the history

is truncated and is of bounded size. In the cache replacement application, the history size

is bounded by some memory constraint and we assume that beyond a certain delay, the

real cost is negligible and can be ignored. In other words, we do not distinguish between a

request that is appearing for the first time (and therefore triggers a miss) and a request that

appears after an extremely long time well after the item was last evicted from the cache.

Since feedback may be delayed, the penalty/cost for an action is a decaying function of

the delay d. Also, if the delay (in feedback for any action) is higher than some predefined

threshold, then it is assumed to be infinite, thus making the feedback cost for that particular

action to be negligible and ignored totally.

Many variants of MAB have been proposed based on the way the cost function is

defined. We assume that in round t, the vector of values of the cost function for each action

are denoted by x(t) = (x1(t), . . . , xK(t)), where xj(t) ∈ [0, 1]. In an oblivious model,

the cost function does not depend on the player’s action in the previous rounds. In an

adversarial model, the cost function may change based on the previous actions. In each

round, no feedback is provided on the other K − 1 actions that were not chosen by the
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player. The main objective of the player is to minimize the cost (or maximize the reward)

over a T -round game. The cumulative cost after T rounds for the best strategy is given by

Cbest(T ) = min
1≤i≤N

T∑
t=1

ξi(t) · x(t),

which assumes that the best of the N expert recommendations are followed in each round.

Also, the cumulative cost incurred by an algorithm A selecting action a(t) in round t is

given by

CA(T ) =
T∑
t=1

xit(t).

To measure the performance of adaptive learning algorithms, the concept of regret was

borrowed from the literature on the theory of games. For any algorithm, regret can be

defined in terms of cumulative difference between the costs of the best strategy in each

step and the algorithm in consideration. Thus, the regret RA(T ) of any algorithm A after

round T can be calculated from Eq. (2.1) below.

RA(T ) = Cbest(T )− CA(T ). (2.1)

The main objective of any adaptive learning algorithm is to minimize the total regret over

time, while ensuring that it vanishes over a long time horizon.

2.4 Algorithms

We first describe the EXP4 algorithm designed by Auer et al. [2002] before describing

the EXP4-DFDC algorithm analyzed in this chapter. EXP4-DFDC extends the EXP4

algorithm for the Delayed Feedback and Decaying Cost settings.

2.4.1 Existing approach: EXP4 algorithm

The “Exponential weight algorithm for Exploration and Exploitation using Expert advice”

(EXP4) algorithm for the non-stochastic multi-armed bandit problem assumes the existence
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of a fixed set of N strategies/experts. At each round t, all N experts are consulted. In each

round, the player either follows the advice of one of the experts or explores by picking a

random action. If no prior knowledge is available about the experts, EXP4 initializes by

assigning equal weights. Thus, wi(1) = 1, i = 1, . . . , N . The probability, pj(t), of picking

action j = {1, . . . , K} in round t is proportional to the sum of the weights of the experts

that recommend action j. If more experts recommend an action, that action will have

higher probability to be chosen by the algorithm. This is interpreted as the “exploitation”

of the information accumulated by the learning algorithm so far. If the player chooses

to explore with a random action, the algorithm will choose an action randomly from the

available options. In other words, pj(t), the probability of the player taking action j in

round t is given by Eq. (2.2) below, for j = {1, . . . , K}.

pj(t) = (1− η)
N∑
i=1

wi(t)× ξji (t)
Wt

+
η

K
, (2.2)

where η is the learning rate, wi(1) = 1, i = 1, . . . , N, and Wt =
∑N

i=1wi(t). The learning

rate η controls the amount of exploration and exploitation at each round. If the learning

rate is too high, the algorithm will explore more and exploit less and vise versa.

Whenever some feedback is made available, the algorithm updates the weights ac-

cording to Eq. (2.3) below. In the EXP4 algorithm, the estimated cost vector is denoted

by x̂(t), where each element x̂j(t) of the vector is set to xj(t)/pj(t) for j = 1 . . . K and

upper bounded by the maximum possible value of actual cost xj(t) as in Auer et al. [2002].

The estimated cost x̂it of any action it ensures that the actions with low probabilities

are adjusted when they get picked in a later round. Otherwise, the algorithm will keep

ignoring an action because the cost was high in an earlier round. In a later round, when

the cost associated with that action becomes lower, it is not reflected, and the action

never gets chosen due to its low probability. Also, given a sequence of random choices

i1, i2, . . . , it−1 of the previous rounds, the expectations of estimated cost of any random
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action it taken at round t is guaranteed to be equal to the actual cost of that action. Conse-

quently, E [x̂it(t)|i1, . . . , it−1] = xit(t) As in Auer et al. [2002], the weight update rule is

as follows:

wi(t+ 1) = wi(t) exp
(
−ηx̂(t) · ξi(t)

K

)
, i = 1, . . . , N. (2.3)

The same steps are applied repeatedly for T steps, allowing us to bound the regret for

EXP4 as outlined in Cesa-Bianchi and Lugosi [2006], Auer et al. [2002].

Theorem 2.4.1 [Auer et al., 2002] For any K,T > 0, for any learning rate η ∈ (0, 1], for

any family of N experts (including an uniform expert), and for any assignments of arbitrary

costs, the following holds,

REXP4(T ) ≤ (e− 1)ηT +
K lnN

η
. (2.4)

Classical EXP4 cannot be used in the bounded and delayed feedback settings because the

update rule cannot be applied to rounds where no feedback is available or the feedback

is delayed beyond a defined limit. Dudik et al. [2011] presented an algorithm devising a

modification of EXP4 for MAB with stochastic delayed feedback. Meanwhile Neu et al.

[2010] showed a multiplicative regret for the adversarial bandit case without any additional

information. The full information case was developed by Joulani et al. [2016], showing

regret bounds of
√

(d+ T ) lnK, where d is the total delay in feedback experienced

over the T rounds. Also the online learning case under delayed feedback for stochastic

bandit optimization was analyzed by Desautels et al. [2014] and resulted in a regret bound

involving a multiplicative increase that is independent of the delay and an additive term

depending on the maximum delay.
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2.4.2 New approach: EXP4-DFDC Algorithm

We describe, EXP4-DFDC, a variant of EXP4, to solve MAB-DFDC, the MAB problem

with delayed feedback and decaying cost. In EXP4-DFDC, when feedback is non-zero,

the weights of the experts get updated. A feedback is generated at round t, triggered by an

action, it′ , which was taken back in round t′. As the delay in feedback, t− t′, increases, the

relative cost of the chosen action decays. Since regret is proportional to cost, the weights

of experts who chose the action it′ are decreased using the estimated cost value observed

at round t. Estimated cost is calculated as:

x̂it(t) =
xit(t)

d× pit(t)
. (2.5)

Hence, the estimated cost calculation, which incorporates the decaying cost with delayed

feedback in EXP4-DFDC is the major difference from the existing literature in the proposed

algorithm. Finally, we want to draw a conclusion on the performance of the generic EXP4-

DFDC and specific OLECAR algorithm. Below we will prove a theorem for the delayed

feedback and decaying case along the lines of Theorem 2.4.1.

Theorem 2.4.2 For any K,T > 0, for any learning rate, η ∈ (0, 1], for any family of N

experts, and for any assignment of arbitrary costs decaying with delay d, the expected

regret of the algorithm can be upper bounded by: REXP4-DFDC(T ) ≤ 2ηT + K lnN
η

.

Proof: As with other reinforcement algorithms, we formalize the regret bound for EXP4-

DFDC. For the sake of completeness, we provide here the complete steps following the

derivation for EXP4 [Auer et al., 2002] regret bound and adapt it for our delayed and

decaying cost setting.

Note that Wt = w1(t) + w2(t) + . . . + wN(t). We consider the ratio of the sum of

weights over all iterations.

Wt+1

Wt

=
N∑
i=1

wi(t+ 1)

Wt

=
N∑
i=1

wi(t)

Wt

exp
(
− η

K
x̂(t) · ξi(t)

)
(2.6)
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Algorithm 1: EXP4-DFDC
Input: Learning rate η ∈ (0, 1], delay d, delay threshold for feedback m
begin

Set wi(1) = 1, for i = 1, . . . , N ;
for t = 1, 2, . . . do

Obtain expert advice ξ1(t), . . . , ξN(t);
Set Wt =

∑N
i=1wi(t);

for j = 1, . . . , K do
pj(t) = (1− η)

∑N
i=1

wi(t)×ξji (t)
Wt

+ η
K

;
end
Select action it ∈ [1, K] using probability distribution pj(t);
for j = 1, . . . , K do

x̂j(t) =

{
xj(t)

d×pj(t) , if it′ = j; 1 ≤ d ≤ m

0, otherwise

end
for i = 1, . . . , N do

wi(t+ 1) = wi(t) exp
(
−ηx̂(t) · ξi(t)

K

)
end

end
end

Replacing wi(t)
Wt

by qi(t) and setting yi(t) = −x̂(t)·ξi(t) in Eq. (2.6) results in the following

equation:

Wt+1

Wt

=
N∑
i=1

qi(t) exp
( η
K
yi(t)

)
. (2.7)

Using well-known inequalities, ex ≤ 1 + x+ 1
2
x2 for x ≤ 0, and 1

2
< e− 2, we replace

the ex term in Eq. (2.7) by ex ≤ 1 + x+ (e− 2)x2, giving us the following inequality.

Wt+1

Wt

≤
N∑
i=1

qi(t)

[
1 +

η

K
yi(t) + (e− 2)

( η
K
yi(t)

)2]

≤

[
1 +

η

K

N∑
i=1

qi(t)yi(t) + (e− 2)
( η
K

)2 N∑
i=1

qi(t)yi
2(t)

]
.
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Setting x = η
K

∑N
i=1 qi(t)yi(t) + (e − 2)

(
η
K

)2∑N
i=1 qi(t)yi

2(t), applying the inequality,

1 + x ≤ ex, and taking logarithms on both sides, we get

ln
Wt+1

Wt

≤ η

K

N∑
i=1

qi(t)yi(t) +
(e− 2)η2

K2

N∑
i=1

qi(t)yi
2(t). (2.8)

Now, adding up for t = 1, 2, . . . , T , we get

ln
WT+1

W1

≤ η

K

T∑
t=1

N∑
i=1

qi(t)yi(t) + (e− 2)
( η
K

)2 T∑
t=1

N∑
i=1

qi(t)yi
2(t). (2.9)

Focusing on the weight update for one expert i we get,

wi(T + 1) = wi(T )e
η
K
yi(T ) =

T∏
t=1

e
η
K
yi(t) = exp

(
η

K

T∑
t=1

yi(t)

)
. (2.10)

Since WT+1 ≥ wi(T + 1) for all experts, i, we get

ln
WT+1

W1

≥ ln
wi(T + 1)

W1

=
η

K

(
T∑
t=1

yi(t)

)
− lnN. (2.11)

Combining Eqs. (2.9) and (2.11), we get the following inequality.

T∑
t=1

N∑
i=1

qi(t)yi(t) ≥
T∑
t=1

yi(t)−
K lnN

η
− (e− 2)

η

K

T∑
t=1

N∑
i=1

qi(t)yi
2(t). (2.12)

Replacing back yi(t) by −x̂(t).ξi(t) on the part of left hand side in Eq. (2.12), we get

N∑
i=1

qi(t)yi(t) = −
N∑
i=1

qi(t)x̂(t).ξi(t) = −
N∑
i=1

qi(t)
K∑
j=1

ξji (t)x̂j(t). (2.13)
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We know that ξji (t) = 1 if it = j, and 0 otherwise. Using the value of
∑N

i=1 qi(t)× ξ
j
i (t)

from Eq. (2.2) and replacing it in Eq. (2.13), we get:
N∑
i=1

qi(t)yi(t) = −
K∑
j=1

(
N∑
i=1

qi(t)× ξji (t))

)
x̂j(t)

= −
K∑
j=1

(
pj(t)− η/K

1− η

)
x̂j(t)

= −
K∑
j=1

(
pj(t)x̂j(t)

1− η
− ηx̂j(t)

K(1− η)

)

≤
K∑
j=1

ηx̂j(t)

K(1− η)

=
η
∑K

j=1 x̂j(t)

K(1− η)

Since only action it is chosen at time t, we know that
∑K

j=1 x̂j(t) = x̂it(t). Also, we know

that η ≤ 1 and K ≥ 1 resulting in the following inequality,
N∑
i=1

qi(t)yi(t) ≤
K∑
j=1

ηx̂j(t)

K(1− η)
≤ x̂it(t)

(1− η)

Summing over t = 1, 2, . . . , T , we get
T∑
t=1

N∑
i=1

qi(t)yi(t) ≤
T∑
t=1

x̂it(t)

(1− η)
. (2.14)

Similarly,

N∑
i=1

qi(t)yi(t)
2 = qi(t) (−x̂(t) · ξi(t))2 ≤ x̂it(t)

2 pit(t)

(1− η)
≤ x̂it(t)

(1− η)
(2.15)

Combining inequalities 2.12, 2.14 and 2.15, we get

T∑
t=1

x̂it(t)

1− η
≥

T∑
t=1

yi(t)−
K lnN

η
− (e− 2)

η

K

T∑
t=1

x̂it(t)

1− η
(2.16)

Multiplying both sides with (1− η) of the above Eq. and taking expectations, we obtain

E

[
T∑
t=1

x̂it(t)

]
≥ (1− η)E

[
T∑
t=1

yi(t)

]
− (1− η)K lnN

η
− (e− 2)

η

K
E

[
T∑
t=1

x̂it(t)

]
.

(2.17)
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Since E
[∑T

t=1 x̂it(t)
]
=
∑T

t=1 xit(t) = CEXP4-DFDC ≥ Cbest, we get the following inequal-

ity.

CEXP4-DFDC ≥ (1− η)E

[
T∑
t=1

yi(t)

]
− (1− η)K lnN

η
− (e− 2)

η

K
Cbest. (2.18)

Multiplying both sides of the Eq. (2.18) with -1, and using the fact that E
[∑T

t=1 yi(t)
]
=

−E
[∑T

t=1 x̂it(t) · ξ
it
i (t)

]
= −

∑T
t=1 xit(t) ≤ Cbest, we get

−CEXP4-DFDC ≤ (η − 1)Cbest +
K lnN

η
+ (e− 2)ηCbest

≤ (η − 1)Cbest +
K lnN

η
+ ηCbest.

(2.19)

Finally, adding Cbest on the both sides of the Eq. (2.19), we get

Cbest − CEXP4-DFDC ≤ (η − 1 + η + 1)ηCbest +
K lnN

η
≤ 2ηCbest +

K lnN

η
.

For a fixed time horizon T , since no action can result in a cost greater than 1, Cbest ≤ T ,

thus giving us the following bound on the regret, REXP4-DFDC(t), for the EXP4-DFDC

algorithm, completing the proof:

REXP4-DFDC(T ) ≤ 2ηT +
K lnN

η
. (2.20)

2

Picking the optimal learning rate for vanishing regret: Theorem 2.4.2 shows that

the cumulative regret is a function of the learning rate. We argue that picking the right

learning rate can minimize regret and ensure that it vanishes. To minimize the regret,

we differentiate the right-hand side of Eq. (2.20) and set it to 0. Thus the equation,

R′A(T ) = 2T − K lnN
η2

= 0, gives us the optimal value of η as follows:

ηOPT = min

(
1,

√
K lnN

2T

)
. (2.21)
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Finally, plugging this back into Eq. (2.20), gives us the following regret bound:

RA(t) ≤ 2
√
2KT lnN. (2.22)

The significance of this regret bound is that as T →∞, the regret bound vanishes with the

time horizon.

2.4.3 Application to Cache Replacement - Analysis of the LECAR

algorithm

In this section, we show how to use the EXP4-DFDC algorithm and its theoretical analysis

from Section 2.4.2 to improve a state-of-the-art cache replacement algorithm. The recent

LECAR algorithm of Vietri et al. [2018] is an outstanding cache replacement algorithm

that is based on reinforcement learning and regret minimization. The algorithm accepts a

stream of requests for memory pages and decides which page to evict from a cache when a

new item is to be stored in the cache following a “cache miss”. LECAR has been shown

to be among the best performing cache replacement algorithms in practice [Vietri et al.,

2018]. Experiments have shown that it is competitive with the best cache replacement

algorithms for large cache sizes, and is significantly better than its nearest competitor for

small cache sizes including the state-of-the-art methods like ARC, which was designed

over 15 years ago by Megiddo and Modha [2003, 2004]). The LECAR algorithm is

an online reinforcement learning algorithm that relies on only two very fundamental

cache replacement policies typically taught in an introductory Operating Systems class,

namely the Least Recently Used (LRU) policy and the Least Frequently Used (LFU) policy.

LECAR assumes that the best strategy at any given time is a probabilistic mix of the two

policies and attempts to “learn” the optimal mix using a regret minimization strategy. Thus,
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the LECAR algorithm can be thought of as a special case of MAB with two arms, but with

delayed feedback and decaying costs.

If an evicted page is requested again, then some “regret” is associated with the eviction

decision that caused the miss. However, the regret is greatest if it is requested immediately

after an eviction. As the gap between when the page is evicted and when it is requested

again increases, the regret decays, until a certain threshold on the delay, beyond which

the regret is assumed to drop to zero. Regret is assigned to the policy that caused the

eviction of that entry. In other words, LECAR attempts to sense which of the two arms

is likely to result in less regret at any given point in the request sequence, and also

successfully sensing when the tide may be changing to a different arm. One of the primary

shortcomings of LECAR is that its learning rate had to be fixed. Vietri et al. [2018]

experimented with different learning rates and picked one that worked best for the data

sets they used. Although the data showed that different (fixed) learning rates resulted in the

best performance for different data sets, they identified a value that worked best for (most)

of their data sets. We show that the LECAR algorithm, when modified appropriately, is a

version of the EXP4-DFDC algorithm, allowing us to use the results of Section 2.4.2 and

proving that a modified version of LECAR has vanishing regret over time. For the rest of

this dissertation, the version of LECAR with minor modifications will be referred to as

OLECAR, which stands for LECAR with optimal learning rate.

The following notation will be used for the discussion below. Let N denote the number

of experts. In LECAR only two experts were exploited – LFU and LRU. Let K denote the

number of possible decisions to choose from. In LECAR, this is bounded by the cache size

(plus 1 for “no action”), since the decision refers to which item to evict. Since LECAR

manages a first-in-first-out history data structure to track the most recent evictions, the

delay in feedback, denoted by d, is “approximated” by its position in the history data

structure. If the entry is present in history, the delay is bounded by the size of the history, h.
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If it is not present, then the feedback is ignored, with the assumption that regret is negligible.

The delay value for the current request is used to update the weights of the experts in

each round. The user-defined learning rate is denoted by η. The cost of an eviction in

LECAR was calculated as xit(t)d, where xit(t) was called the discount factor and was set

to 0.005
1
K . To conform to the new formulation of EXP4-DFDC, we changed the estimated

cost function to be xit (t)

d
in OLECAR. Both LECAR and OLECAR attempt to minimize

the cumulative cost given by the expression, CA(T ) =
∑T

t=1 xit(t). This, in turn, attempts

to minimize the regret function given by the expression, RA(T ) = Cbest(T )− CA(T ).

Algorithm 2: The OLECAR algorithm
Input: Request sequence, σ; Cost vectors, x(t); Learning rate, η ∈ (0, 1]; History

size, h; Cache size, K; set of experts = {LFU,LRU}
begin

Set N = 2, w1(1) = w2(1) = 1, and Wt =
∑N

i=1wi(t);
for t = 1, 2, . . . do

Obtain expert advice ξ1(t), . . . , ξN(t) for request σ(t);
Select action j ∈ {1, . . . , K} with prob,

pj(t) = (1− η)
∑N

i=1
wi(t)×ξji (t)

Wt
+ η

K
;

for i = 1, . . . , N do

x̂it(t) =

{
xit (t)

d
, if it′ = j and σ(t′) is in history in position d

0, otherwise

wi(t+ 1) = wi(t) exp (
−ηx̂(t) · ξi(t)

K
)

end
end

end

Next, we formalize the regret bound for the OLECAR algorithm. From the theoretical

analysis of EXP4-DFDC, we have an optimal learning rate to choose for OLECAR

with theoretical guarantees. Even though the learning rate suggested by Eq. (2.21)

decreases with time, the decreasing learning rate works when the time horizon T is known.

Furthermore, a decreasing learning rate is feasible when the environment is stationary and
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does not change over time once the distribution is learnt. But in dynamic settings such as

for the cache page replacement problem, the system is not stationary over time. For this

dynamic settings, decreasing learning rate will not work when the system is stationary for

a period of time, but learning needs to be restarted as the environment change is detected.

As an initial attempt, we set the learning rate at the theoretically optimal value replacing T

with 1 and incorporating it in OLECAR. This learning rate depends on the cache size of

the system and number of experts. Consequently, we are able to get rid of the fixed choice

of learning rate in LECAR, leading us to a new version called OLECAR.

Corollary 2.4.3 Assume that OLECAR (Algorithm 2) is run with a learning rate of

η = min(1,
√

K lnN
2T

), then the expected regret of the algorithm can be upper bounded by,

ROLECAR(T ) ≤ 2ηT +
K lnN

η
. (2.23)

In this work, we laid the groundwork for a theoretical framework of reinforcement

learning in the context of cache replacement. For the cache replacement problem, we

developed a novel MAB version with delayed feedback and decaying cost (MAB-DFDC).

This version is unlike any of the previous Bandit frameworks. We showed that the EXP4-

DFDC algorithm, which incorporates delayed feedback, has vanishing regret properties.

Finally, we showed that LECAR and OLECAR machine learning-based cache replacement

approaches and a simplified form of EXP4-DFDC, are theoretically guaranteed to have

vanishing regret.
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CHAPTER 3

ALECAR: LECAR WITH ADAPTIVE LEARNING RATES

3.1 Motivation

Many domain-specific problems are solved with the aid of machine learning algorithms

[Bojarski et al., 2016, Krizhevsky et al., 2012, Mnih et al., 2013, Chen et al., 2017, Beam

and Kohane, 2018]. The best cache replacement algorithms in computing systems are

adaptive, which can be considered as a mild type of machine learning. On the other hand,

explicit machine learning methods have only recently been investigated, owing to the fact

that machine learning is often computationally intensive, making it difficult to utilize in

low-level applications such as cache replacement problem. ML-based frameworks were

previously designed (see ACME [Ari et al., 2002], LRFU[Lee et al., 2001]), but have

had limited success in cache replacement. ACME employs a pool of strategies, resulting

in high costs of maintaining expensive information without an appreciable performance

benefit, making its viability questionable. LRFU showed promising performance exploiting

only two fundamental policies (LRU,LFU), but no further improvements were carried out

to tune the configurable parameters, which are termed hyperparameters.

The machine learning-based LeCaR [Vietri et al., 2018], an online adaptive cache

replacement algorithm, has been recently proposed to efficiently facilitate the cache

replacement policy. LeCaR algorithm demonstrated that exploiting just two essential

strategies, LRU and LFU, was sufficient to outperform the state-of-the-art ARC algorithm

for small cache sizes and competitive for large cache sizes on a limited set of experiments.

Machine learning algorithms typically contain many built-in hyperparameters. LeCaR is

no exception; It uses a learning rate to set the magnitude of the change when the algorithm

makes a poor decision and regret is accrued. In LeCaR, the learning rate was chosen to be

fixed at 0.45 empirically [Vietri et al., 2018]. However, experiments with a broad range
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of workloads showed that different values of the learning rate were optimal for different

workloads (Fig. 3.3) [Rodriguez et al., 2021]. LeCaR achieves good performance but

lacks the generalization since it also has a static hyperparameter, learning rate (η), that

may need to be set beforehand. Fig. 3.3 shows the results of our experiments on four

different workloads with varying learning rates. The results showed that the performance

varies significantly, and therefore, LeCaR is highly sensitive to the chosen value of a fixed

learning rate. Moreover, Fig. (3.3) indicates that with the optimal learning rate, which is

unknown, LeCaR can achieve better performance. Furthermore, the request pattern could

change quickly within the same workload (Fig. 3.1), requiring different learning rates at

different time points.

(a) FIU workload. (b) Nexus workload. (c) MSR workload. (d) CloudVPS workload.

Figure 3.1: Access pattern for different workloads from different sources: Requested block
address as a function of time.

LeCaR is sensitive to the input pattern of the workloads since it exploits two basic

cache replacement algorithms (LRU and LFU) and inherits their limitations on handling

workload-specific patterns. Finally, experiments with LECAR (Fig. 3.4 and Fig. 3.4) have

shown that high learning rates lead to overly quick responses to small changes leading

to potentially instabilities. On the other hand, low learning rates can delay much needed

reactions to changes in the pattern. Finding a proper balance between these two extremes is

necessary for good performance across different input patterns. In the algorithm, OLECAR,

presented in Chapter 2, we fixed the learning rate depending on the cache size and the
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number of experts (two experts in LeCaR). It is therefore not surprising that OLECAR

is also not responsive enough to detect the changes in input pattern as it remains fixed

for a particular cache size. This chapter focuses on adapting the learning rate in LECAR

and OLECAR to respond to the changes in the input patterns and presenting an improved,

adaptive, machine learning algorithm called ALeCaR.

3.2 Background

3.2.1 Caching algorithms

In this section, we first briefly describe different cache replacement algorithms and their

limitations. Different page replacement algorithms exploit different workload features, i.e.,

recency, frequency, and reuse distance (time difference between two consecutive accesses

to the same item) of the requested sequence to evict an item from the cache. The main goal

is to increase the number of hits in the cache for the requested items resulting in better

performance. The metric used for evaluating the performance of the caching algorithm

is typically cache hit rate, a percentage representation of the number of cache hits to the

number of total requests.

Least Recently Used (LRU)

The Least Recently Used (LRU) algorithm uses a greedy approach in which the algorithm

replaces the page used least recently. The concept is based on the fact that the least recently

used item is unlikely to be requested again shortly and termed locality of reference. LRU

is not scan-resistant since it allows a scan (one-time sequential requests with the temporal

locality) type request stream to pollute the cache, which is a major bottleneck.
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Least Frequently Used (LFU)

The The Least Frequently Used (LFU) algorithm keeps track of the frequency of a requested

item. When the cache is full and a new item is requested, the LFU algorithm will replace

the item with the lowest reference frequency. LFU is unable to capture the temporal

feature of the workloads. As a result, new items entering into the cache are at risk of being

replaced very quickly, as they have a low frequency at first, even though they might be

re-accessed soon.

Adaptive Replacement Cache (ARC)

The adaptive caching algorithm, Adaptive Replacement Cache [Megiddo and Modha,

2003], utilizes both the recency and frequency of the referenced item. ARC divides the

cache into two LRU “subcaches”, T1 and T2. T1 contains the items that have only been

referenced once, while T2 includes the items requested more than once (i.e., items with

frequency more than 1). It also maintains a history of recently evicted items into two

LRU (FIFO) lists B1 and B2, containing items evicted from T1 and T2, respectively.

When an item is found in B1 (resp. B2), it increases (resp. decreases) the size of T1,

thus, decreasing (resp. increasing) the size of T2. ARC is scan-resistant; Unlike LRU,

it utilizes the T1 to pass through the scan requests without excessively polluting the

cache. Unfortunately, ARC is unable to capture the complete frequency distribution of the

workloads due to its use of an LRU list for T2 and does not generalize for workload where

LFU algorithm performs well.

Low Interference Recency Set (LIRS)

LIRS [Jiang and Zhang, 2002] is a well-designed caching algorithm based on the concept

of reuse distance. LIRS dynamically ranks the accessed items as either low inter-reference

item or high inter-reference item and maintains two stacks S and Q to hold them. LIRS
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efficiently manages scan type sequences by routing one-time accesses into its Q filtering

list of small size. However, since LIRS uses a fixed-length Q, its ability to adapt is limited.

Moreover, like ARC, LIRS does not have access to the entire frequency distribution of

accessed objects, limiting its effectiveness for workloads where LFU performs best.

Dynamic LIRS (DLIRS)

DLIRS [Li, 2018], a recently proposed caching policy, adapts LIRS to adjust the size of

cache partitions for high and low reuse distance items. Although this strategy achieves

comparable performance to ARC on LRU-favorable workloads for specific cache size

configurations while retaining the scan-resistant properties of LIRS, its performance

showed inconsistency across the workloads [Rodriguez et al., 2021]. Finally, as with LIRS,

it fails to perform well for the LFU-favorable workloads.

Learning Cache Replacement (LeCaR)

As described in Chapter 2, LeCaR [Vietri et al., 2018] is a machine learning-based caching

algorithm that employs reinforcement learning and regret minimization techniques to

dynamically learn the best eviction strategy from two simple experts, LRU and LFU.

An expert is selected at random for each eviction, with probabilities proportional to the

experts’ weights, wLRU and wLFU . It also maintains separate eviction histories for the two

experts, hLRU and hLFU . When there is a cache miss for an item, if it is found in one of

the histories, LeCaR penalizes the particular expert and decreases the weight of that expert.

For real-world workloads, LeCaR outperformed ARC for small cache sizes [Vietri et al.,

2018]. However, it has limited adaptability as it has a static learning rate. It also inherits

the limitation of LRU’s lack of scan-resistance.
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3.2.2 Learning rate adaptation

It is challenging to set the learning rate in traditional machine learning algorithms. The

learning rate controls how much the parameter’s weight in the model changes in response

to the estimated error. As discussed earlier, a value too small can result in a long training

process slowly progressing towards the optimal point (local or global), by which time

the opportunity may have passed. At the same time, a value too high can result in a

sub-optimal change if the opportunity is too transitory, or may lead to instability in the

learning process (see Fig. 3.2). ML literature has proposed different random search and

(a) Low learning rate. (b) High learning rate.

Figure 3.2: Impact of low and high learning rate in learning models.

gradient-based approaches for parameter adaptation in learning algorithms [Robbins and

Monro, 1951, Smith, 1955, Khachaturyan et al., 1979, Chan and Fallside, 1987, Battiti,

1989, Kirkpatrick et al., 1983, Breiman et al., 2017, Russell and Norvig, 2016, Ganzfried

and Yusuf, 2018, 2019]. One [Chan and Fallside, 1987] of the earlier studies investigated

the limitations of the use of fixed coefficients and presented an adaptive algorithm using

variable coefficients. In contrast to the fixed settings, this adaptive approach was found

to be effective and stable, providing easy near-optimal training and avoiding trial and
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error choice of fixed coefficients. Randomized approaches to hyperparameter optimization

are more effective according to the analytical and theoretical findings when compared

against other approaches, i.e., sequential model based, Gaussian approach, tree structured,

grid based models [Bergstra and Bengio, 2012, Bergstra et al., 2011]. Many variants of

stochastic gradient descents were exploited to tackle the hyperparameter optimization in

online settings [Battiti, 1989, Plagianakos et al., 2001]. The back-propagation technique is

now the most commonly used in neural network algorithm. However, the algorithm’s slow

learning speed and local minimum problem are often cited as its major flaws. A dynamic

adaptation of learning rate and momentum through oscillation detection for improving

back-propagation algorithm efficiency, are suggested by Yoo et al.. Duchi et al. [2011]

presented a new class of subgradient methods that dynamically integrate prior knowledge

to conduct more informative gradient-based learning. Popular deep learning algorithms

have been proposed in the recent years where dynamic adaptation of learning rate and

momentum were achieved successfully [Yoo et al., Duchi et al., 2011, Zeiler, 2012, Kingma

and Ba, 2014]. Instead of accumulating all past gradients, Adadelta [Zeiler, 2012] is a

more stable extension of Adagrad [Duchi et al., 2011] that adapts learning rates based on a

moving window of gradient updates. In contrast to Adagrad, it is not necessary to set an

initial learning rate in the Adadelta algorithm. Finally, one of the successful and popular

deep learning algorithms, Adam [Kingma and Ba, 2014], focuses on individual learning

rates for each parameter and works well both in environments with sparse gradients and in

non-convex neural network optimization.

3.3 Experiments

For the cache management application, the input request sequence remains stationary for

short periods (due to the principle of locality of reference). Still, it’s characteristics change
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over time as the process generating the requests change. Since the performance of LeCaR

[Vietri et al., 2018] depends on the learning rate, η, we first attempted to empirically

answer the following questions:

1. What is the sensitivity of LECAR’s performance to the learning rate?

2. What is the sensitivity of LECAR’s parameters to the workload itself? Is it reasonable

to expect that the optimal learning rates we found to work with the current workloads

will also work with other workloads or will work when the workloads’ characteristics

change?

3.3.1 Dataset

We collected the production-level workloads from various sources of block I/O traces

[SNIA, Arteaga and Zhao], including Microsoft Research Cambridge (MSR) [Narayanan

et al., 2008], Nexus Smartphone [Zhou et al., 2015], FIU [Verma et al., 2010], and

CloudVPS [Arteaga and Zhao, 2014]) to run the experiments. The sources and their

descriptions can be found in Table 3.1.

3.3.2 Sensitivity of learning rate in LeCaR

In order to capture the impact of learning rate in LeCaR, we ran multiple experiments

across different FIU [Verma et al., 2010] and MSR [Narayanan et al., 2008] workloads

(see Table (3.1) for details on the data sets). Figure 3.3 shows the performance obtained

for different values of learning rate within the range 0 to 1 for four different workloads

from FIU and MSR data sets. Fig. (3.3) shows that the optimal learning rate depends on

the workloads. When the learning rate is close to zero, the performance is low for three

of them (A, C, and D), whereas the performance is highest for one of them (B). Figure
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Source # of Workloads Details

FIU 181

Developer/end user directories
Online course management
Document store for research projects
Mail server
Web server

MSR (Cambridge) 22

User Home directories
Hardware monitoring
Source control
Web staging
Test web server

CloudVPS 18 VMs on production environment of cloud provider
CloudCache 6 Online Course Webservers

Nexus 16

Booting smartphone process
Watching a movie on the smartphone
Listening songs on the smartphone
Facebook comments
Playing video games
Watching videos on the YouTube

Table 3.1: Description of datasets used in our experiments
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Figure 3.3: Plots of Hit rate against learning rate for the following workloads: (A) FIU
Topgun, (B) FIU Ikki, (C) MSR Terminal Server, (D) MSR Firewall Server.

3.3 leads to some interesting observations. In the FIU Topgun (A) workload, if we set

the learning rate to zero, LeCaR performs very poorly, but it increases as the learning

rate increases to a value close to 0.001. After that, the performance drops. For the other

workloads, the performance varies considerably with learning rate. These experiments

show clearly that a fixed learning rate is not the best approach for this problem.

Next, we took a closer look at the weights of the experts in LeCaR to the change in

learning rates. From Fig. (3.4), the experiments suggest that change in the learning rate

can affect the weights drastically in LeCaR. Because the learning rate is used to adjust

the weights, for a learning rate close to 0, the weights become stable and change slowly;

therefore, lower values can lead to a slow response. Also, it is evident that setting the

learning rate too high (near to 1) can cause a quick response to small changes in the data

leading to instability.
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(a) Low LR (0.1). (b) High LR (0.9).

Figure 3.4: Impact of learning rates on LECAR with the weights for LRU and LFU in
LECAR.

In the LECAR work [Vietri et al., 2018], the learning rate was fixed at 0.45. The

experiments suggested that LECAR is sensitive to the workloads since the optimal value

for the learning rate is different for different workloads and that the hit rate vs. learning

rate curve can have more than one local optima and/or near-global optima. Therefore, it is

possible to make the learning rate dynamic and find the curve’s optimum (either local or

global) point using stochastic gradient estimation. In summary, any good solution needs

to find ways to (a) pick near-optimal learning rates that can be set independent of the

workloads, and, (b) for a given workload, must tune the learning rate on-the-fly as the

characteristics of the workload changes.

3.3.3 ALeCaR: Adapting the learning rate in LeCaR

To adapt the learning rate in LeCaR, one approach is to design an offline approach that

uses historical data to find the peak of the curve from many observations, as was done with

LeCaR. This offline approach is easy to implement, but is infeasible because no single

optimal value works for every workload, and it depends on the user knowing information
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about the workload beforehand. Furthermore, it is a form of overfitting and does not

guarantee the algorithm’s performance on unseen workloads.

A second approach involves optimizing the learning rate at runtime. Online tuning

will need careful design to avoid overhead due to computations and memory usage. Thus,

while offline optimization requires cross-validation over historical data that may or may

not be available, online optimizations come in at least three different flavors. It may be (a)

Time-based, (b) State-based, or (c) Gradient-based.

Time-based approach

A high learning rate can result in an unstable fluctuation of weights and prevent the learning

algorithm from converging. As a result, the traditional time-based approach starts with

a high learning rate initially. It gradually lowers the learning rate over time, keeping it

constant for the first T iterations using the following equation: η(t) = η(0)/(1 + t/T ).

The disadvantage is that it introduces a new hyperparameter, η, that must be set by trial

and error, making it unsuitable for online cache optimization.

State-based approach

Another approach involves inferring states and deducing rules from the empirical obser-

vations. For this purpose, we can use a decision tree approach to deduce states and state

transitions. Finally, at each state, it is possible to infer rules for setting and modifying

the learning rate. mARC [Santana et al., 2015] uses such state transition to update non-

datapath cache policies successfully. Similarly, we can define different states for workload

and switch from one to another with different learning parameters at each state. Since it

will be rule-based, it would be computationally less expensive and adaptive to the workload

at runtime. The main disadvantage of this approach is that all the inferences will need to
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be made at runtime, which will incur extra overhead in terms of space and time, not to

mention the fact that it may not be infer the rules at all times for a given workload.

Gradient-based approach

This leaves the gradient-based approach as the most viable alternative. Popular potential

candidates for adaptation in online learning are Hill climbing, Random Restart [Russell

and Norvig, 2016], Simulated Annealing [Khachaturyan et al., 1979, Kirkpatrick et al.,

1983] and Stochastic gradient descent approach [Robbins and Monro, 1951]. Hill climbing

is expensive as it explores the vicinity of the point and follows the direction that minimizes

the error. It adds an extra overhead of running several instances of the same algorithm,

which will be expensive even using a parallel computing model.

In situations where the time to find a better solution is not so critical, simulated

annealing could be a good option. However, it is applicable for supervised machine

learning models, where immediate feedback is available. Since this is not the case for

our problem, all the above-mentioned approaches are not appropriate with the exception

of the gradient-based approach, which allows us to update the learning rate [Plagianakos

et al., 2001, Duchi et al., 2011] in an adaptive fashion while optimizing for the hit rate.

The method does not have a provably optimal performance, which is a drawback of this

approach. In conclusion, since LeCaR uses a reinforcement learning approach with no

prior knowledge of the input, the aforementioned methods are not directly applicable.

Our Hybrid Approach

We considered an approach that combines the time-, state-, and gradient-based approaches.

We presented an adaptation approach of learning rate in LeCaR based on time and perfor-

mance gradient. We also incorporateed the idea of random jump and restart [Smith, 1955]
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on top of a traditional stochastic hill-climbing approach to avoid issues like getting stuck

on a plateau or in local optima. Several design choices are discussed below.

How often to update: First, we note that we used the hit rate as the performance measure

to use for gradient updates. Adaptive algorithms that attempt to improve the performance

of computing subsystems require an observation window to collect information so that

parameters relevant to the fine-tuning of the system performance can be modified. We

choose the size of this window to be the size of the cache. Therefore, we updated the

learning rate, η, after N consecutive accesses where N is the cache size. At any time t, the

average hit rate over last N accesses at time t−N and t are denoted by HRt and HRt−N ,

respectively. Thus, the learning rate (η) is updated at the end of each predefined window.

Which direction to take: The performance (hit rate) is measured for each window. The

change in performance during the window is used to decide the direction of update (up

or down) for the learning rate. For time t and window N , we track the learning rate used

at time t− 2N (ηt−2N ) and at time t−N (ηt−N ). If the performance gradient slope with

respect to the changes in learning rate is positive at time t, the same direction for the update

in learning rate is reinforced for the next window. Else, if the performance gradient with

respect to the changes in learning rate becomes negative, the update direction is reversed.

Several scenarios can happen as described below.

1. Performance change is positive from t−N to t,

• Learning Rate changed from t − 2N to t − N , follow the last direction to

change the learning rate for the next interval.

• Learning Rate unchanged from t − 2N to t − N , make no changes to the

learning rate for the next interval.
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2. Performance change is negative from t−N to t,

• Learning Rate changed from t − 2N to t − N , reverse the last direction to

change the learning rate for the next interval.

• Learning Rate unchanged from t−2N to t−N , try random directions (Possible

local minimum).

3. Performance is close to zero for some pre-specified window (Possible plateau),

• Regardless of the change in learning rate, reset it.

We determined the direction of the gradient, δt, using the change in hit rate and learning

rate information as follows from Equation (3.1).

δHRt = HRt −HRt−N

δLRt = ηt−N − ηt−2N

δt =
δHRt
δLRt

. (3.1)

Gradient amount

Once the gradient direction is decided, we calculated the update amount for the learning

rate at each step. When the learning rate changes from t− 2N to t−N , we can take the

amount of change, δLRt , to quantify the new learning rate in the next interval. However,

when the learning rate change is zero and the performance improvement is negative, a

random jump is employed to entourage “exploration”.

Restart learning to avoid local optimum: The learning rate at each interval is either

increased or decreased by a percentage of the previous learning rate (multiplied by the

change in learning rate from the previous iteration). However, the rate does not always

change. When the learning rate does not change (δ is close to 0) substantially from its
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value in recent windows, then there is the possibility that it is stuck in a local optimum.

So, whenever the change in learning rate is nearly zero and the performance deteriorates,

the learning rate is changed in either the upward or downward direction with random

probability to get it out of the local optimum and get the algorithm to start “learning” again.

As with many other algorithms, the main challenge is to identify dramatic changes in

workload characteristics. Sometimes, even the momentum induced by a random jump

may not be large enough to get it out of the local optimum. We wanted to differentiate

between the state when the performance is going down due to the characteristics change in

workload and the stable state when the learning rate is steady due to high performance.

To keep track of the two states, we recorded the performance gradient over the last ten

intervals [Einziger et al., 2018]. If the performance keeps going downward, we reset

the learning rate to the initial value that was derived from the theoretical analysis of the

Multi-armed Bandit (MAB) problem (as prescribed in Theorem 2.4.2. The effect of getting

stuck in a local optimum can be seen in Fig. 3.5. The green ellipse highlights the region

on the hit rate plot where ALeCaR performs worse than the competitors, made worse by

a extremely low learning rate during those requests. In this region, ALeCaR has set the

weights of LRU to be high and seems to have gotten stuck in a local optimum. Figure 3.6

shows that with restarting the learning, ALeCaR can re-initiate the learning process. We

present the learning rate adaptation algorithm incorporating all the steps mentioned above.

Algorithms 3 and 4 describe the necessary steps.

Algorithm 3: GradientUpdates(δt, δLRt , ηt−N , ηt−2N )

if δt > 0 then
ηt−N = min(ηt−2N + |ηt−2N × δLRt | , 1)

else if δt ≤ 0 then
ηt−N = max(ηt−2N − |ηt−2N × δLRt | , 10−3)
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Figure 3.5: Adapting learning rate using a Gradient-based approach without restart;
Workload: MSR.
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Figure 3.6: Adapting learning rate using a Gradient-based approach with restart; Workload:
MSR.
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Algorithm 4: UPDATELEARNINGRATE(ηt−N , ηt−2N , HRt, HRt−N )

δHRt = HRt −HRt−N
δLRt = ηt−N − ηt−2N
if δLRt 6= 0 then

GradientUpdates(δt, δLRt , ηt−N , ηt−2N )
unlearnCount = 0

else
if HRt == 0 or δHRt ≤ 0 then

unlearnCount = unlearnCount+ 1
if unlearnCount ≥ 10 then

unlearnCount = 0
δLRt = choose randomly between 10−3 & 1
δt= Randomly choose to either increase or decrease
GradientUpdates(δt, δLRt , ηt−N , ηt−2N )

Algorithm 5: UPDATEWEIGHTS(q, η, we1 , we2 )

if q ∈ He1 then
we1 = we1 ∗ e−η

else if q ∈ He2 then
we2 = we2 ∗ e−η

we1 = we1/(we1 + we2) we2 = 1− we1

We adapted the stochastic gradient approach for the learning rate vs. hit rate perfor-

mance curve and devised an adaptive approach to tune the learning rate in LeCaR. We

delineated all the necessary steps: how often to update the learning rate, what direction to

take at each step, and finally, with what amount. Algorithm 6 provides the pseudocode

for ALeCaR, an adaptive version of LECAR. It employs two experts, LRU and LFU and

adjusts the learning rate at runtime. Note that it calls the two algorithms presented in

Algorithms 4 and 5.

3.4 Performance analysis

We ran 6,810 simulations on 227 individual workloads within the five sets of workloads,

using six different cache sizes. As reported by Vietri et al. [2018], LECAR outperforms
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Algorithm 6: ALeCaR(e1, e2)
Data: Cache C;
Eviction histories He1 , He2;
Weights we1 , we2;
Current time t;
Learning rate update window size N ;
Learning rate at time t ηt;
Average hit rate at time t HRt

Input :Requested page q
if q ∈ C then

C.UPDATEDATASTRUCTURES(q)
else

UPDATEWEIGHTS(q, η, we1 , we2)
if q ∈ He1 then

He1 .DELETE(q)
if q ∈ He2 then

He2 .DELETE(q)
if C is full then

if e1(C) == e2(C) then
C.DELETE(e1(C))

else
action = (e1, e2) w/prob (we1 , we2)
if (action == e1) then

if He1 is full then
He1 .DELETE(LRU(He1))

He1 .ADD(e1(C))
C.DELETE(e1(C))

if (action == e2) then
if He2 is full then

He2 .DELETE(LRU(He2))
He2 .ADD(e2(C))
C.DELETE(e2(C))

C.ADD(q)
if (t%N) = 0 then

UPDATELEARNINGRATE( ηt−N , ηt−2N , HRt, HRt−N )

the traditional non-parametric approaches (LRU, LFU, ARC) for small cache sizes and

is competitive for large cache sizes on a set of experiments done on a limited number of

workloads [Vietri et al., 2018]. For ALeCaR, we extended the experiments to include

workloads from several sources. We evaluated ALeCaR comparing its performance with
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that of ARC, LIRS, DLIRS, LECAR (with a fixed learning rate of 0.45), and OLECAR

on a small set of workloads. In Figure 3.7, we plot the average hit rate for various cache

sizes for the FIU, VPS, and MSR workloads. We note that the adaptive algorithm ALeCaR

outperforms ARC for small cache sizes. The performance on FIU workloads shows

that ALeCaR outperforms ARC, LIRS, DLIRS, and fixed LECAR and either better or

competitive with respect to OLECAR. For the MSR and CloudVPS workloads, the average

hit rate is worse and is competitive relative to ARC LIRS, DLIRS, and fixed LECAR for

most cases.

Next, we extended our experiment using a large set of empirically collected workloads

(see Table 3.1). We excluded the Nexus dataset as they were collected for less than a day,

making them unsuitable for our experimets. All the others were one day-long workloads.

Also, for further experiments, we excluded the OLECAR results from our experiment as

ALeCaR was either better or competitive in ours experiments. Finally, we plot the hit

rate grouping by the cache size. We conducted 4,968 experiments with different cache

configurations using those mentioned above four representative traces, i.e., FIU, MSR,

VPS, and CloudCache.

From Fig. (3.8), we observe that the average hit rate for ALeCaR is better than ARC

and LIRS for small cache sizes, whereas LIRS outperforms all the algorithms. Also,

ALeCaR is competitive with respect to all the algorithms, i.e., arc, LIRS, DLIRS, and

LeCaR, for MSR workloads.

Replacing LRU with LIRS in ALeCaR

Since the performance of LIRS was better in some cases of our experiments, the pattern

indicated that ALeCaR is not doing well for the cases where LIRS performs best. We

know that ALeCaR uses LRU and LFU as experts and inherits their limitations. LRU is

unable to handle workloads with scan. As a result, ALeCaR also fails to perform well in
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(a) FIU workloads.

(b) CloudVPS workloads.

(c) MSR workloads.

Figure 3.7: Average cache hit rate as a function of cache sizes for the following workloads:
FIU (top), CloudVPS (middle), and MSR (bottom)
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Figure 3.8: Average cache hit rate of 5 algorithms as a function of cache sizes for the
FIU workloads for the following algorithms: ARC, LIRS, DLIRS, LeCaR, ALeCaR(LRU,
LFU); Cache sizes of 0.1% - 10% of total workload were used for the experiments reported
in this Figure.

Figure 3.9: Average cache hit rate of 5 algorithms as a function of cache sizes for the MSR
workloads for the following algorithms: ARC, LIRS, DLIRS, LeCaR, ALeCaR(LRU,
LFU); Cache sizes of 0.1% - 10% of total workload were used for the experiments reported
in this Figure.

those cases. Since LIRS overcame the limitation of LRU by introducing scan resistance,

we replaced the expert LRU in ALeCaR with LIRS. Next, we plot the performances of all

while replacing LRU with LIRS which exhibits the best performances for the different

algorithms.
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Figure 3.10: Average cache hit rate of 6 algorithms as a function of cache sizes for the
FIU workloads for the following algorithms: ARC, LIRS, DLIRS, LeCaR, ALeCaR(LRU,
LFU), ALeCaR(LIRS, LFU); Cache sizes of 0.1% - 10% of total workload were used for
the experiments reported in this Figure.

Figure 3.11: Average cache hit rate of 6 algorithms as a function of cache sizes for the
MSR workloads for the following algorithms: ARC, LIRS, DLIRS, LeCaR, ALeCaR(LRU,
LFU), ALeCaR(LIRS, LFU); Cache sizes of 0.1% - 10% of total workload were used for
the experiments reported in this Figure.

Next, we conducted a total of 6,210 experiments with different cache configurations

using four representative traces. We also plot the hit rate distribution graph for all the

algorithms. Fig. (3.12) displays a violin plot comparing the performance of ALeCaR

with the performance of ARC, LIRS, and LeCaR. Positive Y-values indicate that ALeCaR

algorithm performs better in comparison. The violin plots show the median as a white dot,
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the range from the first to third quartile as a thick bar along the violin’s center line, and a

thin line showing an additional 1.5 times the interquartile range. It also shows the density

shape at each Y-value [Hintze and Nelson, 1998], making these plots very informative.

The violin plot is bi-modal for each of the algorithms, which suggests that there exists a

broader spectrum of hit rates with two different modes.

Figure 3.12: Average cache hit rate distribution of 5 algorithms for all the workloads for
the following algorithms: ARC, LIRS, DLIRS, LeCaR, ALeCaR(LIRS, LFU); Cache sizes
of 0.1% - 10% of total workload were used for the experiments reported in this Figure.

All the experiments we have done so far only looked at the average performance. But,

these experiments do not consider the distribution of the hit rates, or the patterns of pairwise

differences between two algorithms. Therefore, we performed a broad palette of paired

t-tests to evaluate the performance of ALeCaR against the strongest competitors, i.e., ARC,

LIRS, DLIRS, and LeCaR grouping them by dataset source and cache sizes. Paired t-test,

a statistical method for determining if the mean difference between two sets of experiments

on the same datasets is zero, provides the p-value, which can be used to figure out the

statistical significance of the difference. The null hypothesis states that the difference

between the mean of the paired samples is zero. We used a p-value threshold of 0.05 for

this purpose. When the p-value is less than 0.05, we can reject the null hypothesis, which
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means the two means are significantly different. In contrast, p-values greater than 0.05

indicate that the difference in the mean values is insignificant. We take this comparison

one step further. When assessing the validity of a statistical argument, the effect size is also

critical as it provides the magnitude of the experimental effect. Therefore, we augmented

the significance test with the effect size computations. Effect sizes were computed using

Cohen’s d-measure [Cohen, 2013, Navarro, 2015].

Cohen’s d =
(µ2 − µ1)√

(SD2
1 + SD2

2)/2)
,

where µ1 and µ2 are the means of group 1 and group 2 resp., and SD1 and SD2 are

the standard deviations of group 1 and group 2 resp. Figure 3.13 presents the results

of our t-test analysis for ALeCaR. Each of the boxes in the figure represents both, the

effect size (i.e., magnitude of difference between the two averages) and the statistical

significance of that difference. Each box compares ALeCaR with the other algorithms for

a particular dataset and cache size. The brightness of the color emphasizes the strength

of the difference. A brighter color means a larger effect size, and the mean difference is

significantly different. Red colors indicate that ALeCaR was significantly worse. The

gray color indicates no significant difference. Whereas the brighter green color means

ALeCaR was significantly better than the other algorithm, and brighter red colors indicate

that ALeCaR was significantly better than the other algorithm. From the figure, we find

that ALeCaR performed better than all the algorithms for small cache sizes in the FIU

workloads. Also, ALeCaR was significantly better 33% of the times, 17.7% of the times

significantly worse, and showing no significant difference 49.3% of the times. The effect

sizes range from -0.17 to 1.18. In 40% of the cases, the effect size was negative, and 60%

of the times it was positive with 17% of the times the value was greater than 0.2.
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In summary, we designed ALeCaR, a new version of LeCaR with improved adaptation

of the learning rate. Our evaluation showed that ALeCaR was either better or competitive

as the negative effect sizes were much smaller than the positive effect sizes.

Figure 3.13: Paired t-test analysis to understand the difference in performance between
(A) ALeCaR vs. (B) Other.

3.4.1 Interpretability of ALeCaR

One of the key features of ALeCaR is the experts’ weights, i.e., LIRS and LFU, which

get updated at each round. This feature helps us introduce interpretability to the action

taken for future rounds. The algorithm assigns equal weights to both of the experts initially.

However, as the learning progresses, the algorithms favor one of the experts depending on

the workload characteristics and the current state. As a result, it possible to know what

will be the most likely choice of experts in the next round if we look at the weights of

the experts at each round. As an example, Fig. 3.5 shows the weights of the experts for

different algorithms, i.e., ARC, LeCaR, and ALeCaR, at different rounds. As pointed out

in the figure by the highlighted green ellipse, we were able to figure out that both ARC

and LeCaR was performing well as the experts were chosen randomly in both cases, but

ALeCaR was selecting LRU most of the times and suffered in terms of performance. As a

result, we adjusted our adaptation technique to restart the learning at this phase resulting in
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better performance for ALeCaR (Fig. 3.6). As a result, we could interpret the weaknesses

and strengths of the applied RL-based approach and improve the model further.

3.4.2 Related collaborative work: CACHEUS

Finally, in collaboration with the Systems Research Laboratory (SyLab) at FIU, ALeCaR

algorithm was used as a benchmark to develop CACHEUS [Rodriguez et al., 2021], a

family of fully adaptive, machine-learned caching algorithms that employ a mixture

of experts to handle various types of workloads. State-of-the-art algorithms including

ARC, LIRS, and LFU were used along with two new ones – SR-LRU, a scan-resistant

version of LRU, and CR-LFU, a churn-resistant version of LFU– were among the experts

employed by CACHEUS, which was evaluated using 329 workloads against six distinct

cache configurations, resulting in 17,766 simulation experiments. This work showed that

CACHEUS, employing the recently suggested lightweight experts, SR-LRU and CR-LFU,

is the most consistently performing caching algorithm across a range of workloads and

cache sizes, according to paired t-test and effect size analysis. Furthermore, CACHEUS

included two more variants where the state-of-the-art algorithms (i.e., LIRS and ARC)

were combined with a complementary cache replacement method (e.g., LFU) to manage a

broader range of workloads better. The variant with LIRS and LFU is the same as ALeCaR

(called C2 in the CACHEUS paper [Rodriguez et al., 2021]). The variant with ARC and

LFU is named C1. Finally, the version with two improved experts SR-LRU and CR-LFU

is named C3. The performances of the three variants are summarized in Table 3.2.

For storage researchers, development of consistently high-performing caching algo-

rithms remains an intriguing, but elusive, aim. ALeCaR brings us closer to this goal by

introducing a machine-learned caching algorithms that is both lightweight and adaptive,

which paved the way to the development of the best caching algorithm to date, CACHEUS.
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CACHEUS

variant
Experts Effect size range Better (%)

Not
Significant

(%)
Worse (%)

C1 ARC, LFU [-0.62, 0.44] 20 41 39
ALeCaR LIRS, LFU [-0.17, 1.18] 26 48 27

C3 SR-LRU, CR-LFU [-0.31, 2.08] 47 40 13

Table 3.2: Summary of CACHEUS variants statistical analysis.

ALeCaR and CACHEUS [Rodriguez et al., 2021] provided a framework to efficiently and

effectively combine cutting-edge caching technique like ARC or LIRS with a comple-

mentary expert like LFU to accommodate a larger range of workload primitive types. We

believe that machine learning-based frameworks for leveraging caching experts have a lot

of promise for increasing the consistency and efficacy of caching systems when handling

production workloads.
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CHAPTER 4

CAUSAL INFERENCING AND ITS CHALLENGES: THE CASE OF 311 DATA

4.1 Motivation

Innovations in e-governance have enabled citizens and government agencies to join forces

in improving the quality of services and achieving greater citizen satisfaction. The 311

contact centers are examples of such innovative systems. The 311 centers are organizations

within local governments to field non-emergency service requests. They were enabled by a

1997 Federal Communications Commission policy to reduce the volume of non-emergency

calls to 911 centers. The 311 centers have become a hub for local services, to respond

to both information and service requests from residents. A citizen can report issues,

complaints, or requests for services related to local government. Examples of such service

requests include: tree trimming request on a blocked sidewalk, broken stoplight, trash

pickup requests, and many more depending on the locality. The requests can be made via

mobile apps, social media, online chats, emails and text messages. The service requests

are routed to the relevant department through a 311 Customer Relationship Management

(311/CRM) system. The data recorded through the 311 CRM system are quite large and

granular, which include details about the characteristics or metadata (e.g. location, time,

etc.) associated with each service call. As the 311 centers gained popularity over the

years, more than 100 cities have implemented them [Thomas, 2013]. With Open 311, a

movement toward open data and greater transparency, many cities have made their 311

data public. The 311 data are thus big administrative data sets from local governments.

Analysis of the 311 data is useful for policy makers and analysts to gain insights into the

nature and demand for services in the local governments.

The purpose of the research reported in this chapter was to apply causal inference

methods to the 311 administrative data to gain further insights into the local governments’
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response to service requests and to examine if government service provided is uniform

across different demographics, socioeconomic classes, and geographical regions. With the

ever-growing publicly available administrative data like the 311, it is now feasible to seek

answers from the data rather than relying on citizen surveys. The availability of public

data has also enabled application of sophisticated models to better understand the causal

factors for designing better policies that are effective for a community. In order to make

new policy decisions, or figure out the effectiveness of existing policies, it is important

to understand the underlying community characteristics that may have a causal influence.

Extracting the key characteristics from administrative data provides useful information to

policy makers.

The ability to infer causal relationships between variables in a system is an important

scientific endeavor. Whereas traditional regression models establish correlations, recent

advances in AI have enabled us to develop causal explanatory models. The causal Bayesian

network (BN) is one such powerful model, which is easy to understand and reasonably

interpretable. BNs are probabilistic frameworks that are useful for establishing generic

causality and capture more complex, and often, more insightful relationships between

variables than a traditional models. The important characteristics of BNs include being able

to distinguish between direct and indirect causal dependencies and identifying common

effects from the observations [Steyvers et al., 2003]. The theory of Bayesian networks

(BNs) provides the foundation for us to explore a network of such dependencies. Moreover,

these models can simultaneously represent statistically significant knowledge (learned

from data) and domain expertise, therefore being the intuitive choice for our causal analysis

instead of regression analysis. BNs have been applied successfully in many different fields,

such as, gene expressions analysis [Friedman et al., 2000, Zhang et al., 2017, Sazal et al.,

2018, 2020a,b], medical services [Margaritis, 2003, Acid et al., 2004], risk assessment and

safety systems [Lee and Lee, 2006, Cai et al., 2013, Bayraktarli et al., 2005], epidemiology
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[Sachs et al., 2002, Fuster-Parra et al., 2016, Harding, 2011, Ojugo and Otakore, 2020],

social sciences [Rigosi et al., 2015, Hudson et al., 2005], econometrics [Tsagris, 2020,

Leong, 2016], and more.

In this chapter, we focused on applying the BN to 311 data from one local government:

Miami-Dade County in the United States. The county was among the early implementers

of a 311 call center in the country. The county’s 311 system is operational for all of the

unincorporated part of the County (i.e. those areas which have not been incorporated as a

city) and most of the incorporated municipalities. For example, the City of Miami, which

is located within the county, is also served by the 311 center. Our selection of the county

to illustrate the causal model is appropriate since the 311 system is multi-jurisdictional

and is among the large well established systems in the country. The 311 center has fielded

over 200,000 calls every year in the last five years.

The rest of the chapter is structured as follows. Section 2 provides the necessary

background, highlighting the recent related literature. Section 3 outlines the fundamental

aspects of Bayesian networks. Section 4 shows the application of BN to the Miami-Dade

311 center data. Section 5 highlights the challenges of applying the BN framework. The

Section 6 concludes with the major lessons from the study.

4.2 Background

Local governments (such as cities, counties, school districts, etc.) provide direct public

services. Traditionally, residents could request these services only by contacting the

appropriate local government agency or department. For example, a resident would need

to call the public works department directly to report a pothole. Often, residents would

not know which agency should be contacted for obtaining a service. Consequently, the

local government services would be available to residents who have the means and the
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contacts to local government agencies. Inequities in local government services such as

street maintenance, lighting, trash pickup, etc. have been well documented. Wealthier

neighborhoods often get better services. Citizen engagement and satisfaction measures

were correspondingly substantially lopsided [Welch et al., 2005]. Studies show that

the citizens’ perceptions and satisfaction toward their government are correlated with

accessibility of public services.

With the advent of 311 call centers, any person can call the local government for a

service. The person does not need to know which agency fulfills a particular service,

and how to contact the agency. The service request is routed at the back end of the 311

CRM system to the appropriate department or jurisdiction. The 311 centers thus arguably

democratize the access to local government services, whereby anybody could request

services directly without having influential contacts. Residents could make the service

requests through multiple methods–over the phone, online (through an app or website), or

through social media. Although the 311 expands residents’ access to local government

agencies through a one-stop method, residents would have to be actually aware of the 311

system’s existence and use it. Thus, the empirical question of who calls the 311 center

and whether the calls are equitable across different demographic, socioeconomic groups,

and geographical areas remains an empirical question. On the flip side, another important

question is whether the government agencies provide the services equitably to all sectors

of the population. Even though wealthy and low-income areas may make the same service

requests, there could be inequities in fulfilling the requests (or their efficiency in doing so)

between wealthier and poorer neighborhoods.

Inferring incorrect causal relationships are especially problematic for policy-making in

social science since these assumptions often dictate how future investments are made and

which groups and areas are prioritized for obtaining public funds and services. The above

discussion leads to two crucial research questions. The first question is: Are the service
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requests originating equally from the different demographic groups, socioeconomic levels,

and geographical areas? This is a question from the demand side, looking at who makes the

311 service requests. The second question is: Are the service requests equitably fulfilled

across the groups? This is a question from the perspective of the local government agencies

that oversee the service requests. Extant studies have investigated facets of these questions

using traditional qualitative and quantitative methods [Clark et al., 2013, 2014, 2020,

Elliott and Pais, 2006]. Some of the studies performed hypothesis testing using survey data

[Clark et al., 2013, Elliott and Pais, 2006]. One of these papers examines these effects on a

wide range of responses, from evacuation timing and emotional support to housing and

job conditions and plans to return to pre-storm communities, using survey data from over

1200 Hurricane Katrina survivors. The findings show significant ethnic and socioeconomic

disparities. In [Clark et al., 2014], the authors look at service requests made to the City of

Boston over the course of a year (2010-2011) and use geospatial analysis and regression

analysis to look at potential inequities in service requests based on race, education, and

income. The results show that there is no concern that 311 systems (non-emergency

call centers) would favor one ethnic group over another. They included race/ethnicity,

median income, education, home ownership, and the population as independent variables.

Another study [Wang et al., 2017] demonstrated how the 311 service requests recorded

and categorized by type in each neighborhood might be used to establish a meaningful

classification of locations across the city, based on diverse socioeconomic characteristics,

using examples from New York City, Boston, and Chicago. They also show that these

traits can be used to forecast future developments in local real estate values. Furthermore,

the 311-based classification of urban districts can provide enough data to model. A 15-city

review of 311 systems (non-emergency service requests made by city residents) found no

systemic disparities in how cities respond that would suggest a bias against minorities and

lower-income residents including the independent variables like income, race/ethnicity,
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and education [Clark et al., 2020]. However, results were not consistent in all of 15 cities;

while some showed no bias, others did exhibit some bias. Based on in-depth interviews

with Philadelphia City government officials and managers responsible for creating and

operating the 311 center, Nam [Nam and Pardo, 2013] and Hartmann et al. [Hartmann

et al., 2017] argue that the program has resulted in a more efficient, effective, transparent,

and collaborative city government.

The 311 data has provided new opportunities to gain insights from the quantitative

observations [Li et al., 2020]. Open 311 is a standardized protocol which allows for

commensurate measurement of 311 service requests across different cities. Predictive

models have been applied to extract useful insights from 311 data [Zha and Veloso, 2014,

Kontokosta et al., 2017, Xu et al., 2017, Gao, 2018, Xu and Tang, 2020] of different

cities, i.e., New York City, Chicago, Philadelphia, etc. These models present analytical

frameworks to study overall or particular requests to help better resource allocation and

reduce the response time. These studies have shed light on the key features that affect the

different types of requests. Different approaches have also been applied to improve service

quality in terms of responsiveness at the time of disasters [Madkour, 2020, Zobel et al.,

2017]. Elliott et al.’s study of responses after Hurricane Katrina revealed strong biases in

providing services by government[Elliott and Pais, 2006]. Xu et al.’s study of 311 service

requests after Hurricane Michael in the City of Tallahassee, Florida, also showed similar

biases. To date, however, we are not aware of any study that has applied causal learning

algorithms to administrative data like 311. The application is important to understand

the causal factors that can have substantive policy impacts on how resources should be

allocated based on residents’ service requests.

It is in the above context that we took advantage of recent advances in machine learning

to apply causal learning algorithms to the 311 administrative data set. Since this was among

the first such studies to apply the causal methods, this chapter is exploratory in nature. Our
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aim was to examine the extent to which the causal methods are applicable to administrative

data like 311 for inferring causal relationships in a substantive way. In this process, we

also highlighted the challenges that arose in the application of causal methods to the

administrative data. As we explain in more detail below, we chose the Bayesian networks

method to understand the causal relations.

4.3 Causal Inferencing with Bayesian networks

Bayesian networks (BNs), a class of Probabilistic Graphical Models (PGMs) [Koller and

Friedman, 2009, Pearl et al., 1995], can be represented as a Directed Acyclic Graph (DAG)

along with a conditional probability table associated with each node of the graph. The DAG

is denoted by G = (V,A), where V is a set of nodes (or vertices) and A is a set of directed

edges connecting the nodes in V . Each node in V represents a random variable from a set

X = {Xi, i = 1, . . . , n}. A directed edge in A between two nodes reflects a dependency

between them. If (vi, vj) is a directed edge in G, then vi is said to be a parent of vj . The

conditional probability table associated with vi. describes the marginal distribution of Xi

given the joint distribution of the random variables represented by its parent nodes. Each

random variable, Xi follows a probability distribution P (Xi), which may be discrete or

continuous. The Bayesian network describes the relationships between these distributions.

For every node vi ∈ V , the local probability distribution of its random variable, P (Xi),

satisfies the Markov property, which states that when conditioned on its parents, Xi is

independent of all other variables [Korb and Nicholson, 2010]. An important consequence

of the Markov property is that the joint distribution can be written as a product of local

conditional probabilities as shown below:

P (X) =
n∏
i=1

P (Xi|Parents(Xi)) (4.1)
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The above joint probability distribution can be simplified if the BN can be made sparser

by eliminating edges. In particular, if two variables are independent or conditionally

independent (conditioned on other variables) of each other, then the corresponding edge

can be eliminated. Note that if all the variables are independent of each other, then the

joint probability distribution is simply the product of the individual distributions, reflecting

an empty BN. Also, note that BNs are assumed to be acyclic, i.e., the causal relationships

do not form cycles.

The task of fitting a BN is called “model learning”. It involves two steps [Scutari, 2014,

Scutari and Denis, 2014] as follows:

Structure learning : learning the structure of the network from the data;

Parameter learning : estimation of the local probability distribution implied by the

structure learned.

Given a dataset D, if the parameters of the global distribution is denoted by θ, learning the

model, denoted by M , can be defined as follows for the graph G:

P (M |D) = P (G, θ|D)︸ ︷︷ ︸
model learning

= P (G|D)︸ ︷︷ ︸
structure learning

· P (θ|G,D)︸ ︷︷ ︸
parameter learning

(4.2)

Here our focus is mainly on structure learning. The objective is to find a network (BN)

that will encode all the conditional dependencies from the data. If the edges represent

relationships that are believed to be causal, we have a causal BN. Structure learning

approaches can be grouped into three broad categories: constraint-based, score-based

and hybrid. Constraint-based algorithms utilize the probabilistic relations defined by the

Markov property of BN, based on the Inductive Causation (IC) [Verma and Pearl, 1992]

algorithm, which provides a theoretical framework to learn the BN using conditional

independence (CI) test. The algorithm might not resolve all the directional dependencies

from the data; hence, may provide a partially directed acyclic graph (PDAG) [Kalisch et al.,
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2012]. A constraint-based IC approach was proposed by Spirtes et al. to learn the BN,

[Spirtes et al., 1993]. This approach is better suited for our purposes than the score-based

methods as it is known to generate networks with fewer false positives, resulting in a

conservative structure in terms of number of edges. PC-Stable is an improved order-

independent version of IC algorithm [Colombo and Maathuis, 2014, Colombo et al.,

2012].

Next we briefly describe the key features of the PC-Stable algorithm. The first step

in learning the structure using PC-Stable is to find the pairs of connected nodes in the

network. This step starts from a complete undirected graph and eliminates edges using

conditional independence tests. This results in a skeleton structure. A 3-node DAG is the

smallest structure that can be causally inferred. The basic idea is to use the Conditional

Independence (CI) test to distinguish between the three possible 3-node DAG structures

[Verma and Pearl, 1992]. Also, when the acyclic assumption is relaxed, the structure would

fail to generate a cause-effect relationship. The next step is to identify useful substructures,

one of which is an important structure called a v-structure. Depending on the conditional

dependencies between three random variables Xi, Xj, Xk, the useful substructures can be

categorized into three different types, as shown in Figure 4.1.

• Causal chain: This describes variables that affect each other sequentially. In a

BN G, for any three nodes vi, vj, vk, representing variables Xi, Xj, Xk, if there

exist directed edges (vi, vj) and (vj, vk), without the edge (vi, vk), then the path:

vi → vj → vk, is called a causal chain. This represents the case when once Xj is

known, Xi and Xk become independent of each other.

• Common cause: This represents the case where two variables are impacted by a

third variable. The causal structure for this case is as follows: vi ← vj → vk. Here,

as in the case of the causal chain, once Xj is known Xi and Xk become independent

of each other.
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• Common effect: If the edges are oriented as follows: vi → vj ← vk, then it is called

a v-structure. The variable Xj is considered to be a “common effect”. Here, Xi and

Xk are independent of each other, but become dependent when conditioned on Xj .

This property makes the v-structure distinguishable from the other two (described

above) with the help of a simple CI test.

Figure 4.1: Three important causal substructures between variables using the “Conditional
Independence” test involving three nodes. A Causal Chain suggests only an indirect
causation of Xi on Xk. The substructure in the middle is an example of a common effect
where one outcome is influenced by two different factors. The substructure on the right
is called a common cause structure where there exists two different effects from a single
cause.

As mentioned above, causal chains and common causes are not distinguishable with

CI tests. As a result, we start by identifying the v-structures and then orient the remaining

edges of skeleton to make the network acyclic and consistent. It is possible that the

available observational data may not have enough examples to conclude the direction of

some edges with statistical certainty. Some algorithms insist on directing all edges even

when the direction remains uncertain, while others leave them as undirected edges to

reflect the uncertainty.

Finally, the next step of Bayesian learning is parameter learning, where it does regres-

sion over the variables learned from the structure and can be used for prediction. Thus, the
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approach used in this chapter does use regression, but only on specific subsets suggested

by the structure learning step. Note that standard regression techniques do not have the

ability to determine the subset of variables on which to apply regression. Our primary

focus is to infer the causal structure from the observational data, which would provide us

with the subset of variables that affect the dependent variables.

4.4 Causal Inference

4.4.1 Dataset

311 dataset

For the analytics presented here, we downloaded the data from Miami-Dade County’s open

data portal [Miami-Dade County open data]. The data have been made publicly available

to promote quick access and transparency, thus enabling different case studies with the

aim of understanding the community better. The dataset includes the service requests from

2013 to present (Fig. 4.2) made by the community member to the 311 center.

The requests were made in one of many ways i.e., through a phone call, app, or

website. The breakdown of the volumes of the different types of service requests, mainly

dominated by trash pickup requests, is shown in Figure 4.3. Each request record contains

key information regarding the type of request, timestamp, and exact GPS location from

where the requests were made. This data was combined with the TIGER/Line files and

shapefiles from the U.S. Census Bureau for the County, thus associating each request with

the the geographic entity codes (GEOIDs) at two different geographical granularity levels,

i.e., block group and Census tract. The dataset has the Zip code level. We also used the

timestamp to calculate the service completion time (number of days taken to complete

servicing a request since its initiation). We excluded the observation for which either the

70



Figure 4.2: Total number of service requests made to the 311 call centers by the local
residents aggregated by year ranging from 2013 to 2019 in Miami-Dade County.

request was never closed or the completion time was negative (suggesting a recording error

on the timestamp). The services requested were divided into four broad types: requests,

complaints, issues, and others. This was based on a keyword search on the issue type. We

focused our analysis on the records labeled as “Requests”. Records labeled as “complaints”

or “issues” typically have longer completion times. Then, we aggregated the total number

of requests and the average completion time for each geographic unit. There were 520

and 1, 595 entries in the dataset for the most recent year. Requests aggregated at the Zip

Code level were excluded from further analysis since the number of different zip codes in

Miami-Dade was too small for useful analyses (79 entries for the latest year).

Census dataset

The 311 dataset does not contain the identity of the person who requested the services.

As a result, we combined the geocoded data with the available demographic information

for the geographical unit. The demographic information is collected from the 5-year
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Figure 4.3: Bubble clouds showing all types of service requests for the year 2019 in
Miami-Dade County. The count determines the sizes of the bubbles of each service request,
and the colors help to distinguish one type of request from the other. Bulky trash pickup
and green waste cart request are the top two requests made to the Miami-Dade County by
its residents.
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Table 4.1: Description of different types of services, i.e., requests, complaints, issues, and
others in Miami-Dade County 311 datasets ranging from 2013 to 2019. The completion
time (average) is aggregated across different geographical units, i.e., Block group, Census
Tract, and Zip code.

Total No. of records
Avg. Completion Time

Block group Census tract Zip code

Requests 860,254 (41.15%) 6.82 7.10 8.60
Complaints 133,035 (6.36%) 8.57 8.99 9.43

Issues 110,023 (5.26%) 14.15 14.78 15.32
Others 986,736 (47.2%) 24.02 25.31 27.60
Total 2,090,177 13.29 18.40 18.95

estimates of the American Community Survey (ACS). We conducted analyses of the

data at both the Census tract and the block group level to understand the relationships

between the measured variables. For this purpose, we included the percentage of the

demographic and socioeconomic condition variables from ACS for the year 2013-2019.

The average completion time and total request volume (aggregated at the appropriate

geographic unit) were used as the target variables. The independent variables considered

for this purpose were housing conditions (owner-occupied vs rentals, single unit vs multiple

units), race (black vs white), ethnicity (Hispanic vs non-Hispanic), gender distribution

(male vs female), and economic condition (unemployed vs employed and below poverty vs

above poverty). The details and statistics of the nine independent and dependent variables

are described in Table 5.2 and 4.2.

We also provide a matrix of scatter plots of all pairs of variables selected for study in

Fig. 4.4, illustrating the pairwise correlations between them. Histograms of all the variables

of interest are plotted along the diagonal of the grid (Fig. 4.4). Some of the variables,

i.e., ‘Owner-occupied units’, ‘Female population’ and ‘Unemployed population’, exhibit

a normal distribution. The derived variables from 311 data and some demographic and

socioeconomic variables (i.e., ‘Black population,’ ‘Poor population’) show right-skewed
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Table 4.2: Census (from ACS data) and derived (from 311 data) statistics of variables for
Miami-Dade County. The target variables, volume (total) and completion time (average),
were aggregated across different geographical units, i.e., Block group, Census Tract, and
Zip code and are separated from the dependent variables by a double horizontal line.

Variable name Block group Census tract Zip code

Mean SD Mean SD Mean SD

Volume 114 111 293 309 1627 1853
Completion Time 6.82 5.34 6.55 5.97 8.60 7.69

Owner-occupied units 0.57 0.26 0.59 0.23 0.52 0.20
One unit 0.59 0.35 0.49 0.32 0.47 0.29

Female population 0.51 0.06 0.51 0.04 0.51 0.04
Black population 0.20 0.28 0.19 0.26 0.17 0.21

Hispanic population 0.62 0.28 0.64 0.26 0.56 0.25
Unemployed population 0.42 0.11 0.42 0.09 0.44 0.07

Poor population [Def. by ACS] 0.15 0.12 0.16 0.10 0.14 0.08

long-tail distribution. On the other hand, ‘Single housing units’ and ‘Hispanic Population’

in M-DC show left-skewed long-tail distribution. The figure also includes the correlation

plots between a pair of variables. Several obersevations can be made from the correlation

plots, i.e., ‘Owner-occupied units’ and ‘Single housing units’ are positively correlated,

‘Owner-occupied units’ and ‘Poor population shows a negative correlation, ‘Unemployed’

and ‘Poor population’ have a positive correlation.

Note that for each type, only one variable was retained. For example, female population

was retained for gender, since the male population would be the remainder. Inclusion of

both variables introduced extraneous correlations into the network, making inferencing

more error-prone and noisy. As another example, the total population is mostly composed

of black and white populations.
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Figure 4.4: Matrix of scatter plots of Census (from ACS data) and derived (from 311 data)
variables for Miami-Dade County. The target variables, volume (total) and completion
time (average), were aggregated by the block group.

4.4.2 Signed Bayesian network

To generate the Signed Causal Bayesian network (sBN) [Sazal et al., 2020a], we followed

a two-step approach. First, we applied the PC-stable algorithm, a constraint-based BN

learning approach from the bnlearn R package [Scutari, 2009]. The algorithm generates

an inferred causal network. All the variables are represented as nodes in the network,

and each edge is believed to represent a causal dependency. As suggested by Sazal et al.

[2020a], we augmented the edges of the network with the help of a co-occurrence network

(CoNs) [Fernandez et al., 2015]. In CoNs, the edges are colored using a correlation

coefficient between the variables (e.g., the Pearson correlation coefficient). A green (red)

colored edge means that the correlation between the variables represented by the endpoints

is positive (negative, resp.). Finally, the thickness of the edges are determined by the

bootstrap strength score [Friedman et al., 2013]. This counts the fraction of times the
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edge appears in the network out of a large number of runs. (We used 100 runs for our

experiments.) As suggested by Sazal et al. [2020a], we refer to this augmented network as

a Signed Bayesian network (sBN).

Block group:

The first set of analyses was performed on block level data. The variable representing the

volume of requests was categorized as low, medium, or high. The levels were determined

using a histogram of values, which suggested a trimodal distribution, as shown in Figure 4.6.

Finally, we use the one-hot encoding for the three different categories. No transformation

was performed on the other target variable (completion time) since the variable exhibited a

unimodal distribution after the outliers were excluded.

Figure 4.5: Histogram of service request volumes aggregated by the block group level in
Miami-Dade County for 2013. The number of bins is 30, and the records having a volume
of more than 300 have been discarded.

There were a total of 15 directed edges in the network (Fig. 4.7). The edges were

augmented in terms of their color and thickness as described earlier. The target variables

had no incoming edges suggesting that none of the variables influenced the volume or

completion time. The edge between Completion time and Low volume is undirected. There
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Figure 4.6: Categorical assignment on top of the histogram of service request volumes
aggregated by the block group level in Miami-Dade County for 2013. The categories were
labeled as low, medium, and high call volumes. The number of bins used was 30, and the
records having a volume of more than 300 were discarded.

were two undirected edges between the target and independent variables, one between

the Medium Volume and Female population node, and another between Low volume and

Owner-occupied units. There were a total of 3 directed edges from the target variables to

independent variables. These edges do not support our intuition since, in general, we do

not expect an edge from the target variables to the independent variables. These spurious

relationships may be caused by the presence of latent variables (confounders) as described

in Section 4.5. A confounder is a variable that is either not measured or not used in the

analysis, but causally impacts the two variables that are connected by an edge. Knowledge

of confounders can help correct the dependencies between two variables, but are often a

challenge to identify and measure. Since call volumes are considered as outcome variables,

the following edges are potentially spurious: Low Volume→ Single Unit; High Volume

→ Single Unit; and High Volume→ Black Population.

Next, we narrowed down our analysis (Fig. 4.8) to only include the largest request

type (i.e., Bulky trash request), since this category of request is dominant (501,972 out

of 860,254, 58% of the total requests) in the data. As before, the nodes representing call
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Figure 4.7: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using all requests. The variables are aggregated
across the block group. The network shows no incoming edges for the target variables
(i.e., Low Volume, Medium Volume, High Volume, and Completion Time), suggesting no
socioeconomic bias regarding citizen engagement and government responsiveness.
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Figure 4.8: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using the largest request type (bulky trash pickup)
only. The variables were aggregated across the block group. The network showed no
incoming edges for the target variables (i.e., Low Volume, Medium Volume, High Volume,
and Completion Time), suggesting no socioeconomic bias regarding citizen engagement
and government responsiveness.
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volumes have no incoming edges suggesting that none of the independent variables affect

the volume. Completion time has two incoming edges, one from a gender node (Female

population) and another from an ethnicity node (Hispanic population). Both edges have

negative Pearson correlation coefficients. Inspecting the inferred regression formula at the

nodes suggests that the weights of these two edges are relatively low compared to the others

in the network. There is one undirected edge connecting two independent variables, i.e.,

Poor population and Owner-occupied units, and which cannot be supported by intuition.

There are a total of 8 directed edges from the target variables to independent variables that

are also likely to be spurious. These edges include the following: Low Volume→ Single

Unit; Low Volume→ Owner-occupied units; High Volume→ Single Unit; High Volume

→ Black population; Medium Volume→ Single Unit; Medium Volume→ Unemployed

population. Completion time→ Single unit; and Completion time→ Owner-occupied

units.

Some edges are intuitive in the network, i.e., Unemployed population→ Poor popula-

tion, Single unit→ Owner-occupied units, Single unit→ Poor population. It is well known

that unemployment contributes to the increase in poverty. The other two edges suggest that

the single unit is a common cause in this network, influencing both owner-occupied units

and poverty. Usually, the single units are owner-occupied, and it is less likely the owner

will suffer from poverty. Also, the edge from Female to Black population is supported by

the literature [Female-headed black family statistics in the US].

Census tract:

Next, we generated the sBNs for the Census tract level. We combined the census data

with the aggregated completion time and categorized requested volume on the Census

tract level for this task. First, we analyzed the dataset of all requests. The network (Fig.

4.9) generated from this set had comparatively fewer number of edges compared to the
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network from the block level. As we aggregate larger geographic regions, the data exhibits

less diversity in terms of community characteristics. This may explain why we find fewer

interactions among the variables.

Figure 4.9: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using all requests. The variables are aggregated
across the census tracts. The network shows no incoming edges for the target variables
(i.e., Low Volume, Medium Volume, High Volume, and Completion Time), suggesting no
socioeconomic bias regarding citizen engagement and government responsiveness.

The network has no undirected edges. The target nodes have no incoming edges. There

are a total of 5 directed edges from the target variables to independent variables that are

also likely to be spurious. These edges include the following: Low Volume→ Single Unit;
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Low Volume→ Owner-occupied units; Low Volume→ Black population; High Volume

→ Single Unit; and Completion time→ Poor population.

As before, we also generated the sBNs for the largest request group only (Fig. 4.10).

This network has one undirected edge between the Black and Unemployed population.

The target nodes have no incoming edges. There are a total of 6 directed edges from the

target variables to independent variables. These include: Low Volume→ Single Unit; Low

Volume→ Hispanic population; Completion time→ Hispanic population; Completion

time → Owner-occupied units; High Volume → Single Unit; and Medium Volume →

Single Unit.

4.4.3 Discussion

From the resulting networks, we observe that the potentially spurious edges Low Volume

→ Single Unit and High Volume → Single Unit are present in all the networks. The

directions are also consistent. It is unusual for target variables to have such outgoing edges

to other variables in the network. The algorithms generating these networks are based

on heuristics and assumptions, which could lead to wrong inferences. One of the issues

with algorithms based on the CI test is that an edge might appear between two variables

if a variable (confounder) that affects both these variables is not included in the analysis.

Therefore, there is a possibility that confounding variables (common causes) exist for this

dataset. A spurious edge may also lead to spurious chains and other spurious substructures

of importance.

v-structures

If the dataset has no hidden confounders, then we can be most confident about the directions

of the edges in v-structures in the network. The directions of the rest of the edges are
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Figure 4.10: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using the largest request type (Bulky trash pickup)
only. The variables are aggregated across the census tracts. The network shows no
incoming edges for the target variables (i.e., Low Volume, Medium Volume, High Volume,
and Completion Time), suggesting no socioeconomic bias regarding citizen engagement
and government responsiveness.
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not uniquely determined by the CI tests as explained in Section 4.3. Although any two

edges incoming into a node may appear to be a v-structure, they are labeled as v-structures

only after they can be confirmed using the CI test. Our analyses identified three different

v-structures, some of which appeared in more than one of these networks.

(a) The v-structure, Hispanic population→ Completion Time← Female population, is

an excellent example of a target variable identified as the “common” effect of two

independent variables. Both the Hispanic and Female population is inferred to affect

Completion time. This structure is only present in the block group data with bulky

trash pickup requests. The correlation is negative for both the edges which indicates

that the Completion Time decreases with an increase in the Hispanic and Female

populations. Neither demographic group can be considered as “minority” in the

context of Miami-Dade County (Table 4.2).

(b) The v-structure, Hispanic population→ Black population← Female population,

suggests that a rise in the Hispanic population causes the size of the Black population

to decrease. This is consistent with the data that the Hispanic population in Miami-

Dade County is predominantly white; The other edge suggests that a rise in the

female population results in an increase in the percentage of the Black population.

This is consistent with published results from the literature that suggest that female-

Headed black families has seen an increase in the USA over the years [Female-

headed black family statistics in the US]. This structure was inferred in all structures,

using both block and Census tract data.

(c) The v-structure, Unemployed population→ Poor population← Single unit, suggests

that the size of the unemployed population results in a rise in the indigent population,

which makes intuitive sense. In contrast, the percentage of the Single units in

the community affects the Poor population percentage. It is reasonable that the
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Figure 4.11: A v-structure involving only demographic and target variables (i.e., the
percent of Hispanic population, female population, and average completion time in the
community aggregated across the block group) appearing in the Signed Bayesian network
generated from Miami-Dade County 311 datasets for the years ranging from 2013 to 2019
using the largest request type only (Bulky trash pickup).
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Figure 4.12: A v-structure involving only demographic and socioeconomic variables (i.e.,
the percent of Hispanic, female, and black population in the community aggregated across
the block group) appearing in the Signed Bayesian network generated from Miami-Dade
County 311 datasets for the years ranging from 2013 to 2019 using all requests.

correlation is negative, however the direction of the edge may be spurious. This v-

structure is only inferred from the block group data with bulky trash pickup requests.

Analyzing calls of type “Complaints”:

We also examined another type of request, namely complaints. “Complaints” usually take

longer (8.5 days on average for block group level) than “Requests”. The results from

Figure 4.14 indicate that there is no effect of demographic or socioeconomic status on

completion time for this dataset.

This network also has the v-structure, Hispanic population→ Black population←

Female population we identified in 4.12. The nodes representing the target variables are

disconnected from all the others except the Low volume. Low volume is affected by both
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Figure 4.13: A v-structure involving only demographic and socioeconomic variables (i.e.,
the percent of unemployed population, single housing unit, and poor population in the
community aggregated across the block group) appearing in the Signed Bayesian network
generated from Miami-Dade County 311 datasets for the years ranging from 2013 to 2019
using the largest request type only (Bulky trash pickup).
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Figure 4.14: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using all “complaints”. The variables are ag-
gregated across the census tracts. The network shows “Low Volume” affected by the
percentage of female population and owner-occupied units. This suggests some socioe-
conomic bias regarding citizen engagement, but not strong enough as the weights of the
edges for those are very low.
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the Owner-occupied units and Female population. One of the findings is that completion

time is not affected by any other variables indicating no bias induced by community

characteristics.

4.5 Challenges with causal Bayesian networks

The main challenges in inferring causal relationships from observational data arise from

the fact that there are several assumptions made in applying causal inferencing. Real-world

observations may not always follow those assumptions; hence, it introduces challenges in

applying the method successfully.

4.5.1 Missing and impure data

The process of data acquisition process often results in incomplete administrative datasets.

Administrative datasets may contain missing data points, and may have recording errors.

For example, in the 311 data, we found records whose request status had never been closed.

Other records show the closing date recorded to be prior to the open date. Such inaccurate

records (16.28% of the total) must either be manipulated or ignored, thus reducing the

number of accurate observations available for analysis. When we excluded the inaccurate

data points, the number of total observations decreased.

4.5.2 Inadequate data

The accuracy of AI models also depend on the quantity of available data. Large amounts of

good data can help develop more robust models as they can better capture the underlying

relationships under investigation. This requirement becomes higher for high-dimensional

data.
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Even though the total number of observations may be large for some 311 datasets,

a single record is not associated with the features of the individual who requested the

service; this is done to ensure anonymity in public datasets. As a result, we considered

the community characteristics rather than metadata associated with individuals, obtained

by aggregating the data on an appropriate geographic unit, such as a block group or a

census tract. When we aggregated the data on a geographical unit, the resulting number of

observations is reduced while the geographical location data gets coarser. For example,

when we aggregated the Zip code level observations, the number of records becomes

considerably smaller (5-fold reduction from the Census tract level). Inadequate data tends

to produce a misleading model. Barring such fine-grained information from the 311 data,

there is a greater possibility for biases in the data (e.g., by a small set of individuals making

most of the requests). An alternative data collection approach that collects demographic

data of each individual requester could add valuable richness to the analysis proposed here.

4.5.3 Latent confounders

Finally, there exist variables that are missing in the dataset, either because they were not

included in the analysis, not measured, or because there was no known way to measure

them. These confounders can impact the analyses by creating incomplete models, and

leading to potentially incorrect inferences. These variables are called latent “confounders”.

Structure learning models are based on the assumption that all the independent variables

affecting the target variables are present in the observation, which may not be true. In

such cases, the model cannot discover the real cause-effect relationships accurately. It is

often impossible to avoid the possibility of having unobserved variables in the real world

because they are often unknown. When the data fails to capture the key factors of interest,

the model will also be inadequate in explaining the findings. Our analysis discovered that
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Low Volume→ Single Unit and High Volume→ Single Unit are recurring edges in many

of the inferred networks. Intuitively, the requested volume should not cause the housing

conditions to change. We can explain this edge with the help of confounding variables.

We assume that a latent variable, not included in the network, affects both the requested

volume and housing condition resulting in a directed edge between them. We used a

limited number of demographic and socioeconomic information. Our analysis did not

include any information regarding the department (a specific unit that handles particular

types of requests), infrastructure, and resources. Excluding that information may result in

an incomplete model since the available resources may impact the efficiency while also

being correlated to the types of homes in that block.

Also, since the structure learning algorithms are based on heuristics, more than one

structurally equivalent BN can be obtained from the same observations. Once the v-

structures are identified, the structure learning algorithm’s last step assigns the remaining

directions based on some predefined rules. These rules may still leave some edges to

be undirected. Also, the directions inferred may be inconclusive in some cases due to

ambiguity in determining the causal chain and common cause structures. We tried to

overcome this limitation with bootstrapping by generating several models, and assigning

weights to each edge.

We applied causal inference resulting in causal Bayesian network models, which helps

to determine the demographic and socioeconomic factors that have a causal impact on the

target variables such as completion time and call request volumes. We concluded that the

results do not support any claims of demographic and/or socioeconomic bias in providing

non-emergency services to the residents of Miami-Dade County. The case study using data

from just one city cannot ensure that data from other cities or municipalities will result

in the same conclusion. However, the findings are consistent with extant research on 311

data from other cities, as will be discussed in Chapter 5. More importantly, this chapter
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provided a framework to apply causal inference on 311 datasets, which can be readily

extended to data from other cities or regions. Finally, we also provided a discussion on the

challenges in applying the causal approach to this type of dataset.
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CHAPTER 5

COMPARATIVE ANALYSIS OF 311 DATA FOR DIFFERENT CITIES

5.1 Motivation

Citizens and government have been able to work together to improve services and citizen

satisfaction because of advancements in e-governance. The 311 systems deal with non-

emergency service requests from the local community and complement the 911 emergency

services. A resident can report a problem, a complaint, or a request for local government

services. Examples of reports include a tree branch blocking a sidewalk, a stoplight

malfunction, and garbage pickup requests. Depending on the city, citizens report by

calling, visiting the website, or by using a smartphone-based application. Although not

every city offers the services, it has grown in popularity over time, and more communities

are embracing the 311 concept, and has been adopted by around 100 cities [Thomas, 2013].

Another welcome trend is referred to as “Open 311”, wherein cities have begun to make

the call data publicly available, thus making the 311 system more transparent, accountable,

effective, and efficient for the public. Understanding the citizens’ needs and demands

and the provision of appropriate services in response to such demands are of interest for

evaluating the responsiveness and effectiveness of the local government. These trends

have paved the way for cities and municipalities to adopt new technologies to transparently

collaborate with citizens and better manage their resources.

The main objective of the previous chapter was to provide a causal framework to

evaluate the local government’s response in providing non-emergency services [Yusuf

et al., 2021a]. The framework helped us to answer the question: is there any indication of

bias against a racial, ethnic, or under-privileged population in the community? A primary

motivation for studying Bayesian networks (BNs) comes from the fact that most statistical

modeling approaches can demonstrate correlations, but cannot establish causation. Instead
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of merely looking through the lens of correlation, we seek answers with the power of

causal inference.

BNs allow us to process a data set and represent probabilistic relationships between

the variables of the data set as a directed network and a set of conditional probability

tables. BNs provide a graphical depiction that is easy to understand and interpret. BNs

capture more complex and informative relationships between variables than traditional

models. Causal BNs allow us to model causal relationships between variables and provide

a framework for powerful predictions of situations not represented in the data. BNs

allow us to study interventions and counterfactuals. In short, they help us to do a wide

variety of causal inferencing and have a wide range of application domains. In the public

policy domain, they can help us understand the causal structure of our data, evaluate

probabilities of events, assess interventions (i.e., policies) before implementing them, and

even contemplate counterfactuals. Therefore, we applied the causal BN approach to the

311 data to shed some light on the questions regarding the equitable response of local

governments. In Chapter 4, we applied causality to the 311 data from Miami-Dade County.

In this chapter, we extended the framework to data from two more cities – New York City

and San Fransisco. In the process, we investigate several challenges related to inadequate

data, confounders, transfer learning, and the comparison of causal BNs.

5.2 Causal Bayesian networks

As described in Section 4.3, BNs are a structured and graphical representation of probabilis-

tic relationships between several random variables. Arcs encode conditional dependence.

BNs also satisfy a technical condition called the Markov condition. Causal networks

are special networks that connect two variables if and only if they have a direct causal

relationship. Causal networks are known to be BNs. Thus the theory of BNs helps us
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study causal networks and allows for causal inferencing to be performed. However, it has

several limitations while dealing with observational data. We will discuss some of these

limitations and ways to overcome those in the context of the 311 dataset.

5.2.1 Inadequate data

As discussed in 4.5.2, the accuracy of learned models is influenced by both the quantity

and quality of the available observations. Not only do they have to be reliably measured

(i.e., accurate), but they must also reflect the large number of combinatorial possibilities in

the data. Large amounts of good data can enhance the quality of the learned models by

capturing the underlying relationships. If the data is not adequate, the network learned

might be misleading.

Even though we have access to data on a large number of 311 calls, the data does

not include important characteristics of the individuals making the request (gender, race,

ethnicity, economic status, household characteristics, etc.) in the interest of anonymity.

As a result, rather than considering metadata connected with individuals, we evaluated

community characteristics generated by aggregating data on an appropriate geographic

unit, such as a block group or a census tract. This weakens the causal approach, which

could otherwise have arrived at powerful relationships.

Figure 5.1 shows that the block group is a smaller geographic unit than the census tract

and is associated with more granular community characteristics compared to the census

tract level. As a result, we conducted all our subsequent experiments on the block group

level to retain more observations. Also, it explains more variability as the block level is

more granular compared to the census tract level.
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(a) Block groups. (b) Census tracts.

Figure 5.1: Maps of Miami-Dade County divided into (a) block groups, and (b) census
tracts.

5.2.2 Potential confounders

As discussed in 4.5.3, one of the challenges of learning BNS from observational data is

the possiblity of “latent confounders”. Confounding factors are missing from the dataset

and result in incomplete models and potentially inaccurate inferences, either because they

were measured but not used, not measured, or there was no known way to quantify them.

As an example, for the 311 data analysis, we have not included the time information. As

another example, analysis of the 311 data set for Miami-Dade County shows that call

volume is correlated with completion time (Fig. 4.7). However, proving whether or not

this relationship is causal requires much more than a correlation computation. Conditional

analysis with one or more additional variables may be needed. It turns out that when

conditioned on the day of the week or month of the year, call volume and completion time

is (conditionally) independent, thus showing that day/month variables are confounders for

the relationship between call volume and task completion time. Fortunately, the 311 data
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set did provide temporal information, thus allowing us to include this confounder. Other

potential confounders that are not included in the data set are the number of service crews

available and the budget of the department handling the requests. A well resourced 311

center can maintain task completion time even if it spikes for other reasons. At the same

time, such a 311 center can also encourage citizens to be more active in posting requests.

Figure 5.2: Latent confounder – the day of the week when the request was made is known
to affect the call volume as well as the completion time, and is latent confounder that limits
the accuracy of inferences from the 311 data analysis.

5.2.3 Integrating prior knowledge and adjusting the parameters

As mentioned above, structure learning allows us to determine which arcs are present

in the causal network, as evidenced by the data. In Chapter 4, we learned the causal

network using a completely data-driven approach. In many applications, we have domain

knowledge that helps us determine which arcs should be disallowed. For our case study,

we experimented with applying some prior knowledge.

Bayesian networks allow the integration of such prior knowledge in the network.

Whitelists and blacklists are one way to accomplish this. In the bnlearn package, both
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are implemented as follows: Whitelisted arcs are always retained, while blacklisted arcs are

always excluded from the network. For the 311 data set, we assume that the demographic

variables are not directly causally affected by the measured 311 variables. Therefore,

all edges leading from target variables (completion time and volume requests) to the

demographic and socioeconomic variables were put on the blacklist for the network. Also,

the CI test in ‘bnlearn’ package has an adjusting parameter alpha, denoted by α, which

is defined as the type I error threshold for the CI test and can improve the confidence

of the arcs in the network. We increased the confidence threshold from 95% to 99% for

the CI test, resulting in a network where we have more confidence in the edges. Also,

we generated 200 networks from the same observations as the learned structures can be

different at each run due to randomization in the algorithm (Pc-Stable) used. We then

used the 200 resulting networks to generate a final “consensus” network, where the edges

appear with their thickness proportional to the bootstrap strength score. The bootstrap

strength score is the count of the fraction of times the edge appears in the network out of

the N = 200 runs.

5.3 Improved casual Signed Bayesian network for Miami-Dade County

As mentioned in Section 4.4.1, we collected and processed data from 311 requests and

census data. Table 5.4 and Table 5.5 provide the details of all the columns available from

311 open data hub. Except for the ticket creation/update date, time, and location, all the

columns are either descriptive or categorical. Therefore, we only used the time and location

information to derive the Completion time and Block group id from the geolocation data.

We also included the Service request type for the filtering purpose. The main reason for

excluding the categorical variable is that the number of discrete types in each category

column is vast (i.e., more than 200 for service request type). “One hot” encodings of these
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categorical variables can result in a very high-dimensional dataset, which is not feasible

for structure learning. As a result, we excluded the categorical and descriptive columns

from our analysis. Location values were made discrete by assigning the same location

value to all GPS coordinates from the same block group level of Miami-Dade County.

Demographic data include the percentages of Black, Hispanic, and Female populations

from the ACS Census data for each block group. The percentages of single-family units

and owner-occupied units are all housing features. Housing characteristics can be used

to regulate community “quality” or service demands and capture differences in housing

stock across block groups. Unemployment rates and poverty rates are all economic

characteristics of a community. In addition, to account for possible capacity differences

between neighborhoods, the total number of service requests (call volume) received within

each block group was also considered. Table 5.1 summarizes the mean and standard

deviation of the variables under consideration in the dataset.

Table 5.1: Mean and standard deviation are shown for the variables used in the data set.
Data is from Miami-Dade County obtained from Census (ACS) data and derived from 311
data. The volume (total) and completion time (average) are aggregated for all requests
from the same block group

Variable name Block group

Mean SD

Volume 4.38 4.48
Completion Time 13.8 12.5

Owner-occupied units 0.57 0.26
One unit 0.59 0.35

Female population 0.51 0.06
Black population 0.20 0.28

Hispanic population 0.62 0.28
Unemployed population 0.42 0.11

Poor population 0.15 0.12
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Figure 5.3: Matrix of scatter plots of Census (from ACS data) and derived (from 311 data)
variables for Miami-Dade County. The target variables, volume (total) and completion
time (average), were aggregated by the block group, day of the week, and month of the
year.

100



In Fig. 5.3, we provide a matrix of scatter plots of all pairs of variables considered

for analysis, depicting the pairwise relationships between them. The plots along the

diagonal are histograms of all the variables of interest. We observe that some variables,

i.e., ‘Owner-occupied units’, ‘Female population’ and ‘Unemployed population’, exhibit

a normal distribution. The derived variables from 311 data and some demographic and

socioeconomic variables (i.e., ‘Black population,’ ‘Poor population’) show right-skewed

long-tail distribution. On the contrary, ‘Single housing units’ and ‘Hispanic Population’

in M-DC show left-skewed long-tail distribution. The other plots in the matrix show

the correlation between a pair of variables. From the plots, we observe some patterns,

i.e., ‘Owner-occupied units’ and ‘Single housing units’ are positively correlated, ‘Owner-

occupied units’ and ‘Poor population shows a negative correlation, ‘Unemployed’ and

‘Poor population’ have a positive correlation.

We fed the preprocessed data to the bnlearn R package [Scutari, 2009] and utilized

the “PC-stable” algorithm, a constraint-based structure learning method. We augmented

the edges of the generated network with colors based on the Pearson correlation coefficient

as suggested by [Fernandez et al., 2015, Sazal et al., 2020a]. The weights of the edges

are equal to the bootstrap value (equal to the percentage of the number of times the edge

appears in the network). The resulting network is referred to as the Signed Bayesian

network (sBN) [Sazal et al., 2020a].

Figure 5.4 shows the generated network. The target variables, i.e., completion time,

low volume, medium volume, have incoming edges. However, the weights of those edges

are very low compared to the other edges in the network, suggesting that the influence of

the variables on the outcome variables (volume or completion time) are not statistically

significant. Now focusing on interpretability of this particular AI technique, we begin

with the edges in the network (Fig. 5.4). From the network, we can see red outgoing arcs

from “Hispanic population” to Population living under the poverty line (“Poor population”)
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Figure 5.4: Signed Bayesian network generated from Miami-Dade County 311 datasets
for the years ranging from 2013 to 2019 using all requests. The variables are aggregated
by the block group, day of the week, and month of the year. The network suggests small
traces of socioeconomic bias (with low statistical significance) with regard to government
responsiveness, as indicated by the edges from the demographic and socioeconomic
variables to the target variables like “Completion time”, “Low Volume”, and “Medium
Volume”.
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and the “Unemployed population”. This is supported by the fact that in Miami-Dade, a

substantial fraction of the Hispanic communities have high socioeconomic status (SES)

and live well above the poverty line. Also, “Single unit” houses are usually “Owner-

occupied” and the edge connecting them indicates a strong positive correlation, including a

positive correlation with the Hispanic community. Also, we investigate the causal effect of

demographics and socioeconomic variables on the target variable. It can be concluded from

the generated network, that “Completion time” and call volumes (represented by “Low

Volume”, “Medium Volume”, and “High Volume”) are affected by different variables, but

these edges do not have strong bootstrap support, suggesting low confidence on a purported

causal relationship. In contrast, the edges from “Single unit” to “Owner-occupied units”

and from “Poor population to “Unemployed population” and “Owner-occupied units” are

quite thick, suggesting strong bootstrap support for these causal relationships.

5.4 Extension of the framework to New York City and San Francisco

Finally, we extended our experiment to include two major cities, i.e., New York City and

San Francisco. Both were early adopters of 311 and have data available from 2013 to 2019.

Given that as we go up in the hierarchy of geographical units, the number of aggregated

observations becomes less, we conducted all our experiments on a block group level. The

block group level is the smallest unit and results in a higher number of aggregated records

than either the census tracts or zip codes. New York City (NYC) has more than 6,000

block groups, and San Francisco (SF) has 2,332 block groups 5.5. The call volumes of

both the cities are larger than that of Miami-Dade County. Furthermore, both cities have

311 data available from 2013 to 2019. They are also geographically distant from each

other. Thus, the analysis of this data adds geographical diversity to the analysis. Finally, as
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with Miami-Dade, NYC and SF are also racially and ethnically diverse with distinctive

neighborhoods, adding additional examples to the study of inequity and diversity.

(a) Miami-Dade County.
(b) New York city.

(c) San Francisco city.

Figure 5.5: Maps of the three cities considered for our comparative analysis: (a) New York
City, (b) Miami-Dade County, and (c) San Francisco. The highlighted polygons represent
the block groups in each region.

We downloaded the publicly available 311 call data for New York City [New York

City open data], and San Francisco [San Francisco 311 data]. The total number of records

is approximately 4.8 and 21 million for New York City and San Francisco, respectively.

San Francisco has data available from 2008, whereas New York City provides the data

from 2010. However, ACS census data does not provide the estimate for all the considered

census variables until 2012. As a result, we only considered the dataset from 2013 to 2019

for these cities, thus matching the period analyzed for Miami-Dade County. The service

request volume plot aggregated by year can be found in Fig. 5.6

The New York City 311 data set has 41 columns (Tab. 5.4 and Tab. 5.5 from the

appendix) describing the complaint types, the department that handles the complaint,

opening date for the complaint (i.e., time complaint was lodged), closing date for the

complaint (i.e., time the complaint was fully serviced), location of request, and more . The

San Francisco 311 data set has 20 columns (Tab. 5.4 and Tab. 5.5), including the request
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(a) New York city. (b) San Francisco city.

Figure 5.6: Total number of service requests made to the 311 call centers by the local
residents aggregated by year ranging from 2013 to 2019 in two different cities.

type, opening and closing time for the request, and the location (i.e., latitude and longitude)

of the request. Following the same logic, we only considered the date, time, and location

information from these cities and excluded the descriptive and categorical variables. As a

result, we calculated the average completion time and total request volumes for both the

cities aggregated by day of the week, the month of the year and the block group. Table 5.2

summarizes the important variables and basic statistics of both the 311 and census data

variables.

Table 5.2: Relevant target and independent variables used from the 311 data sets of New
York City and San Francisco, and their summary statistics.

Variable name NYC Block group SF Block group

Mean SD Mean SD

Volume 5.51 1.42 8.25 11.43
Completion Time 165.54 1.06 21.68 63.97

Owner-occupied units 0.38 0.26 0.42 0.23
One unit 0.16 0.23 0.28 0.24

Female population 0.51 0.07 0.49 0.06
Black population 0.20 0.28 0.05 0.09

Hispanic population 0.23 0.22 0.14 0.13
Unemployed population 0.41 0.12 0.33 0.11

Poor population [Def. by ACS] 0.14 0.13 0.10 0.08
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Figure 5.7: Matrix of scatter plots of Census (from ACS data) and derived (from 311 data)
variables for New York City. The target variables, volume (total) and completion time
(average) were aggregated by the block group, day of the week, and month of the year.

Figures 5.7 and 5.8 show a matrix of scatter plots of all the considered variables.

We observe that some variables, i.e., ‘Female population’ and ‘Unemployed population,’

exhibit a normal distribution in NYC and SF (as in M-DC). However, ‘Owner-occupied

units’ have right-skewed distribution in NYC, unlike in M-DC and SF. All the other

variables exhibit right-skewed long-tail distribution in both NYC and SF. Also, ‘Owner-

occupied units’ and ‘Single housing units’ are positively correlated, ‘Owner-occupied units’

and ‘Poor population’ show a negative correlation, ‘Unemployed’ and ‘Poor population’

have positive correlation in M-DC.

Figures 5.9 and 5.10 represent the generated signed Bayesian network for New York

city and San Francisco. The target variable, completion time, has an incoming edge from

the temporal variable, month. However, the bootstrap support for this edge is very low,

suggesting that the causal influence on the target variables is negligible. There was little
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Figure 5.8: Matrix of scatter plots of Census (from ACS data) and derived (from 311 data)
variables for San Francisco. The target variables, volume (total) and completion time
(average) were aggregated by the block group, day of the week, and month of the year.

evidence in these studies to imply that systematic demand for 311 differed across a range

of socioeconomic and racial factors. Also, the findings suggest that there are no systematic

biases in how local governments deliver services to communities of color or those with

lower socioeconomic status in the three cities under study.

In NYC and SF, the majority of Hispanic communities have low SES, unlike in M-DC.

However, owner-occupied units are usually single units in NYC and SF, which is similar

to M-DC as we see from the correlation plots that single units and owner-occupancy are

positively correlated. Also, the month of the year the request was made has a weak effect

on the service completion time in all the cities. Cold winters in NYC and the hurricane

season in M-DC could account for this weak causal effect.
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Figure 5.9: Signed Bayesian network generated from New York city 311 datasets for the
years ranging from 2013 to 2019 using all requests. The variables are aggregated by the
block group, day of the week, and month of the year. The network suggests one weak
temporal bias (target variable, i.e., completion time affected by the temporal variable) with
regard to government responsiveness, but with very low statistical significance.

5.5 Performance analysis

Many disciplines of research are interested in understanding cause-effect relationships

between observed variables. Typically, experimental intervention (randomized controlled

trials) is employed to validate these connections, which are often hypothesized only after

gaining a lot of domain-specific knowledge and deep intuition. Experiments are, however,
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Figure 5.10: Signed Bayesian network generated from San Francisco 311 datasets for the
years ranging from 2013 to 2019 using all requests. The variables are aggregated by the
block group, day of the week, and month of the year. The network suggests one weak
temporal impact (target variable, i.e., completion time affected by the temporal variable)
with regard to government responsiveness, but with very low statistical significance.

109



impractical in many situations due to time, expense, and/or ethical concerns. It is therefore

natural to consider ways to infer causal relationships from observational data. Fortunately,

this is possible under certain assumptions using recent advances in causal inferencing.

The networks generated from the observational data suggest a structure for the network

of cause-effect relationships among the variables. These algorithms, however, often fail

to provide the magnitude of the causal impacts. Therefore, we first looked at the overall

score of the network to evaluate the fitness of the data and focus on the causal effect value

of other variables on the task completion time.

5.5.1 Bayesian Gaussian equivalent score

The maximum likelihood score for a network, computed as a posterior probability derived

from the priors can be used as a measure of goodness for the network. This is referred

as the Bayesian Gaussian equivalent(BGe) score [Geiger and Heckerman, 1994]. The

expression of BGe score is quite complex, and it will not be discussed here.

Table 5.3: Bayesian Gaussian equivalent scores of the generated sBNs for all the three
cities, i.e., Miami-Dade County, New York City, and San Francisco. Benchmark is the
generated network without integrating any piror knowledge (blacklisting) and temporal
variables i.e., day of the week and month of the year the request was made. Improved
networks incorporate the prior knowledege and temporal variables.

Miami-Dade County San Francisco New York City

Benchmark -10925 -325424 -231365
Improved -8655 -310442 -203610

We provide the BGe scores of the improved networks and the benchmark from Chapter

4) for comparison. We observe that including the improved networks fits the data better as

the value is higher than the benchmark (5.3). Therefore, we can conclude that integrating
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prior knowledge and adjusting the confidence interval can help us to improve the quality

of the network and the inference process.

5.5.2 Causal effect

Another issue in causal inference is the need to quantify the causal impact on one variable

on another directly from the sBN. While the edges and the conditional probability informa-

tion at each node can help quantify the causal effect on a neighboring node (along with the

statistical significance of the effect), the causal effect of one variable on another variable

that is not an immediate neighbor is unclear. The causal effect of variable Vx on Vy is

defined as the difference in Vy when Vx is changed by a unit amount [Sazal et al., 2020b]

without changing any other variable. If such conditions had been observed, the causal

impact could be readily computed. If that is not the case, it is impractical to run randomized

controlled trials due to time, expense, and/or ethical concerns. Fortunately, a data-driven

approach, IDA, was developed by Kalisch et al. [2012], which uses observational data to

estimate bounds on causal effects under certain assumptions.

To quantify the causal influence of a variable Vx on Vy, first the value of Vy is computed

by forcing Vx to take the value Vx = x. Next, the value of Vy is computed when the

values of Vx is forced to take either Vx = x+ 1 or Vx = x+ δ, where δ is a small change

to the value of Vx. If Vx and Vy are both random variables, imposing Vx = x could

change the distribution of Vy. The resulting distribution after modification is represented

by P [Vy|do(Vx = x)], as suggested by Pearl [2009]. Using the do operator, the causal

effect is defined as E[Vy|do(Vx = x + 1)] − E[Vy|do(Vx = x)], where E stands for the

expected value of multivariate Gaussian random variables.

We computed the causal effect of demographic and socioeconomic variables on all

three cities’ service completion time. From the causal effect plot (Fig. 5.11), it is possible
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Figure 5.11: Comparison of causal effect of demographic and socioeconomic variables on
“Completion time” for three different cities, i.e., Miami-Dade County, San Francisco, New
York City.
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to make several observations. The ‘Owner-occupied units,’ ‘Black population,’ ‘Hispanic

population,’ ‘Single units,’ and ‘Poor population’ have a positive causal effect on the

service completion time in NYC. The ‘Female’ and ‘Unemployed population’ negatively

affect the service completion time in all the cities. ‘Single units’ in M-DC and SF have a

negative causal effect on service completion time, unlike NYC. As a result, we observe

some impact of demographic and socioeconomic variables on service completion time for

all three cities from the causal effect analysis. However, the causal effect magnitudes are

comparatively small in M-DC and SF compared to that in NYC.

The publicly available 311 dataset offers the opportunity for researchers to investigate

the bias (if any) of government’s responsiveness in providing non-emergency services

to its citizens. The 311 centers provide an empirical case to assess the effectiveness of

organizational innovations. We looked at how governments participate in or respond to

requests, and in particular, how effectively they respond. We believe that looking into the

government’s response has ramifications beyond merely determining if one community

receives better service than another. Knowing that the government is not adequately

or fairly dealing with the neighborhood’s problems weakens public trust in government

institutions. As an example, emergency response failures following Hurricane Katrina

were widely criticized for favoring the wealthy and white inhabitants over the poor and

minority residents [Elliott and Pais, 2006]. We intended to learn more about whether

these engagements, when mediated by technical interfaces like 311, result in equitable

outcomes, with the goal of improving public trust in the institutions that serve them. This

chapter looked at the demographic and socioeconomic factors that might influence the 311

centers’ efficiency and equity in providing services. The main contribution was to examine

the 311 data to extract meaningful information, depict it for policy decision-making, and

propose a data analytics methodology and interpret descriptive results. We also reviewed

the limitations of the 311 data analytics: Processes, Potential Benefits, and Limitations
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of causal inference with the Bayesian network approach. We looked at data from three

different cities, i.e., Miami-Dade County, New York City, and San Francisco, to study how

effective the system was with regard to completion time. The causal (signed) Bayesian

network models generated showed little or no impact of demographic and socioeconomic

factors on the target variables, including completion time and call request volumes. We

concluded that the findings do not support the existence of demographic or socioeconomic

bias in providing non-emergency services to residents of these cities.
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Table 5.4: Common columns for the three cities, i.e., Miami-Dade County, New York City,
San Francisco 311 data.

Miami-Dade San Francisco New York Desciption

ticket id CaseID Unique Key Unique identifier of a
Service Request (SR) .

case owner Responsible Agency Agency Name Name of the responding
agency.

case owner description Agency Acronym of responding
agency.

issue description Request Details Descriptor Provides further details
of the SR.

issue type Request Type Complaint
Type

Fist level of a hierarchy
identifying the topic of
the SR.

method received Source Open Data
Channel Type

Medium used to submit
the SR. i.e., Phone, On-
line, Mobile, etc.

ticket created date time Opened Created Date Date SR was created.
ticket last update date time Updated SR closing date by

agency.
ticket closed date time Closed Closed Date SR closing date by

agency.
ticket year Opened Created Date SR created year.
ticket status Status Status Status of SR.
created year month Opened Created Date SR created month
goal days Due Date Expected date to update

the SR.
sr xcoordinate Point X Coordinate

(State Plane)
X coordinate of the lo-
cation (geo validated).

sr ycoordinate Point Y Coordinate
(State Plane)

Y coordinate of the lo-
cation (geo validated).

latitude Latitude Latitude Latitude of the location
(geo validated).

longitude Longitude Longitude Longitude of the loca-
tion (geo validated).

city Neighborhood City City of the location
(geo validated).

street address Address Incident Ad-
dress

House number of inci-
dent.

Zip code Incident Zip Incident location zip
code (geo validated).

Street Street Name Street name of incident
location.

location city Location lat & long of the inci-
dent location (geo vali-
dated).
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Table 5.5: Additional columns for the three cities, i.e., Miami-Dade County, New York
City, San Francisco 311 data.

City Column Description

Miami-Dade
state Name of the state.
actual completed days Time taken to complete the SR.

San Francisco

Media URL A URL to media associated with the request, i.e.,
an image.

Neighborhood SF Neighborhood.
Supervisor District SF Supervisor District.
Status Notes Explanation of status change or more details on

current status.
Category The human understandable name of the SR type.

New York City

Resolution Action Up-
dated Date

Date when responding agency last updated the
SR.

Resolution Description Describes the last action taken on the SR by the
responding agency.

Cross Street 1 First cross street based incident location (geo val-
idated).

Cross Street 2 Second cross street incident location (geo vali-
dated).

Intersection Street 1 First intersecting street incident location (geo val-
idated).

Intersection Street 2 Second intersecting street incident location (geo
validated).

Address Type Type of incident location information available.
Landmark Name of the landmark (If incident location is as a

Landmark).
Facility Type Type of city facility associated to the SR.
Community Board Provided by geovalidation.
BBL Borough Block and Lot, provided by geovalida-

tion.
Borough Provided by the submitter and confirmed by geo-

validation.
Park Facility Name Name of the facility (if the location is a Parks

Dept facility).
Park Borough The borough of incident (if the location is a Parks

Dept facility).
Vehicle Type Type of vehicle (If the incident is identified as a

taxi).
Taxi Company Borough Borough of the taxi company (if in taxi).
Taxi Pick Up Location Pick up location (if in taxi).
Bridge Highway Name Name of the Bridge (if in Bridge/Highway).
Bridge Highway Direction Direction where the issue took place (if in

Bridge/Highway).
Road Ramp Road or the Ramp (if in Bridge/Highway).
Bridge Highway Segment Additional information on the section (if in

Bridge/Highway).
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CHAPTER 6

CONCLUSION

As regulators, government agencies, and the general public become more reliant on

AI-based dynamic systems, better accountability for decision-making processes will be

essential to promote confidence and transparency in the field of public policy and admin-

istration. Many AI-based “black box” algorithms fail to be widely adopted due to their

lack of interpretability. In an effort to contribute to the field of interpretability of AI, this

dissertation focused on the adaptation of interpretable AI methods to problems from two

different fields, i.e., storage systems and public policy.

Cache Replacement Modeled as a Variant of the Multi-armed Bandit (MAB) prob-

lem with Delayed Feedback and Decaying Costs: In Chapter 2, we formulated a new

MAB variant with delayed feedback and decaying cost (MAB-DFDC) applicable to the

cache replacement problem. In this variant, we assume that feedback can be delayed, the

cost decreases with increasing delay in feedback, and the regret vanishes over time if the

expected delay crosses a certain threshold. As a solution, we proposed the EXP4-DFDC

algorithm and prove that expected regret is upper bounded by O(2
√
2KT lnN ) for any

learning rate η, where K is the number of possible actions, T is the number of rounds,

and N is the number of experts. The regret bound guarantees a vanishing regret per round

as T grows without bounds. Finally, we showed that the machine learning-based cache

replacement algorithm LECAR can be viewed as a simplified version of EXP4-DFDC.

If the static learning rate of η = 0.45 is replaced with the derived theoretical optimal

learning rate, ηOPT = min(1,
√

K lnN
2

), the associated regret will be upper bounded by

ROLeCaR(T ) ≤ 2
√
2KT lnN [Yusuf et al., 2020, 2021b].
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ALeCaR– adaptive version of LeCaR with learning rates adapting to the input: In

the first application we studied, we set the stage for theoretical analysis of reinforcement

learning applied to the cache replacement problem. The multi-armed bandit analogy

will help researchers find optimal hyperparameters for regret minimization and choose

an appropriate model. Even small improvements in cache optimization may lead to

a significant boost in storage systems performance. For storage systems researchers,

consistently designing high-performing caching algorithms remains an intriguing, but

elusive, goal. ALeCaR achieves this goal by introducing a new family of machine-learned

caching algorithms that are both lightweight and adaptive. ALeCaR is efficient because

it allows the use of exactly two, potentially complementary, experts. For a variety of

combinations of workload and cache size, ALeCaR with the suggested experts, LIRS and

LFU, is the most consistently performing method. Furthermore, ALeCaR made it simple

to combine a cutting-edge caching technique like ARC or DLIRS with a complementary

expert like LFU to better manage a broader range of workloads.

Causal Inferencing and its Challenges: The Case of 311 Data: The 311 administra-

tive dataset offers the opportunity for researchers to investigate the non-emergency services

provided by local governments to local residents. We analyzed the data from Miami-Dade

County to see how effective the system was in terms of completion time and call volume.

We concluded that the data showed no evidence of demographic and/or socioeconomic bias

in providing non-emergency services to Miami-Dade County residents. The case study

using only one city’s data cannot guarantee that data from other cities or municipalities

will yield the same results. The findings, however, are in line with the previous study based

on 311 data from other cities. Finally, we highlighted the difficulties of using the causal

method to analyze this sort of dataset due to missing, impure, and inadequate data [Yusuf

et al., 2021a].
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Comparative analysis of 311 data for different cities: Following our discussion on

the challenges of applying the causal (signed) Bayesian network approach to the 311

administrative datasets, we attempted to overcome those challenges in this task. First, we

added temporal variables to the network to address the issue of confounding variables

to a limited extent. Second, we added prior domain knowledge to blacklist edges going

from the demographic and socioeconomic variables to the completion time and request

volume variables. Next, we extended this framework to two more cities (New York City

and San Francisco), where the number of observations is 2 to 10 times larger than the

previous study (Miami-Dade County). We concluded that the data revealed no evidence of

demographic or socioeconomic bias in providing non-emergency services to residents of

all the three cities that we studied. More significantly, this research introduced a framework

for applying the causal inference method on 311 datasets that may easily be expanded to

data from other cities or similar types of administrative datasets, i.e., the N11 dataset.

6.1 Future work

6.1.1 Computer Systems

We envision putting ML into the hardware and improving hardware caches, thus bringing

ML-based algorithms to manage CPU caches, which can bring enormous speedups to all

computing systems. Other interesting problems include applying the methods developed

here to variant cache models, i.e., non-datapath caches, which work with the assumption

that caching every item accessed by a program can be counterproductive. Non-datapath

caches allow for the option of not caching some of the items, thus saving on cache space and

on cache writes and potentially improving speedups. When there is a cache miss, instead

of choosing from one of the two policies (i.e., LRU and LFU), we envision designing
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a variant of ALeCaR that will select from one of three choices: LIRS, LFU, or “avoid

caching the item altogether”.

Hierarchical Caches are organized in multiple levels. As we move up the hierarchy

away from the processor, the cache levels become larger in capacity, slower in terms of

access times, and less expensive. The resulting algorithm will be faced with many design

choices, including deciding (a) the policy to be applied at each level, (b) the parameter

choices for each level, and (c) choices of update functions for the parameters at each level.

We can design a 2-level cache, and assume that the new algorithm will apply ALeCaR at

each level with independent adaptation as the algorithm progresses. Hierarchical caches

represent yet another variant on which our ML-based algorithms can be applied in the

future.

6.1.2 Policy Analysis

Our approaches have far-reaching ramifications for government agencies, citizens, and

researchers. For starters, the study will immediately assist customer service centers i.e.,

211 and 311, to better understand the demand and needs of their citizens. The developed

framework is not only applicable to 311 datasets, but also to the analysis of other related

datasets, such as 211 and 911 datasets, and where causal inference can dramatically

impact policy decisions. Also, part of our endeavors was to create a single emphData

Hub for all the available 311 datatset. For this purpose, we collected data from many

cities and standardized them. The data hub will assist not only in the research process,

but also in distributing the study findings to a larger audience of professionals involved

in the service delivery process, as well as to concerned citizens. Third, by curating the

N11 “big data” repository, the project will help to enhance the sparse research on public

sector organizations. The information will be used to kick-start fresh studies on public
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and nonprofit sectors. Once the data hub is ready and fully functional, with our causal

framework we will be able to expand the inference process on more cities with less manual

intervention. We envision a local government that uses automated processes for all its

decision-making and forecasting.

Given that adequacy of good data is an important issue and often a shortcoming, we

can exploit the techniques of Generative Adversarial Networks (GAN) [Goodfellow et al.,

2014] to generate data where very little data exists. In machine learning, generative

modeling is an unsupervised learning approach that entails automatically identifying and

learning regularities or patterns in input data such that the model may be used to create or

output new instances that might have been drawn from the same dataset.
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