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Abstract 

Customer is an important asset in a company as it is the lifeline of a company. For a company to get a new 

customer, it will cost a lot of money for campaigns. On the other hand, maintaining old customer tend to be 

cheaper than acquiring a new one. Because of that, it is important to be able to prevent the loss of customers 

from the products we have. Therefore, customer churn prediction is important in retaining customers. This 

paper discusses data mining techniques using XGBoost, Deep Neural Network, and Logistic Regression to 

compare the performance generated using data from a company that develops a song streaming application. 

The company suffers from the churn rate of the customer. Uninstall rate of the customers reaching 90% 

compared to the customer’s installs. The data will come from Google Analytics, a service from Google that 

will track the customer’s activity in the music streaming application. After finding out the method that will 

give the highest accuracy on the churn prediction, the attribute of data that most influence on the churn 

prediction will be determined. 
Keywords: Churn Prediction, XGBoost, Deep Neural Network, Logistic Regression, Data Mining. 

Abstrak  

Pelanggan merupakan aset penting dalam sebuah perusahaan karena merupakan nyawa dari sebuah 

perusahaan. Bagi perusahaan untuk mendapatkan pelanggan baru, itu akan menghabiskan banyak uang untuk 

kampanye. Di sisi lain, mempertahankan pelanggan lama cenderung lebih murah daripada mendapatkan 

pelanggan baru. Karena itu, penting untuk dapat mencegah hilangnya pelanggan dari produk yang kita miliki. 

Oleh karena itu, prediksi churn pelanggan penting dalam mempertahankan pelanggan. Makalah ini membahas 

teknik data mining menggunakan XGBoost, Deep Neural Network, dan Logistic Regression untuk 

membandingkan performa yang dihasilkan menggunakan data dari perusahaan pengembang aplikasi streaming 

lagu. Perusahaan menderita dari tingkat churn pelanggan. Tingkat uninstall pelanggan mencapai 90% 

dibandingkan dengan instalasi pelanggan. Data tersebut akan berasal dari Google Analytics, sebuah layanan 

dari Google yang akan melacak aktivitas pelanggan di aplikasi streaming musik tersebut. Setelah mengetahui 

metode yang memberikan akurasi tertinggi pada prediksi churn, akan ditentukan atribut data yang paling 

berpengaruh terhadap prediksi churn. 

Kata kunci: Prediksi Churn, XGBoost, Deep Neural Network, Regresi Logistik, Data Mining 
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INTRODUCTION  

Customers are one of the important aspects of a company. A company costs a lot of money 

just to get a customer. Compared to getting new customers, retaining existing customers costs much 

less. A song streaming company that has been around since 2010 and has over five million installs on 

the Google Play Store has high number of installs but accompanied by a high number of users who 

are not active, becoming churn, and then uninstall the app. The company define users who churn as 

users who last login on more than 30 days from current date. The average monthly install of the 

application is 369,917 installs, but on the same time there will be 330,051 uninstall each month. The 
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high number of users who uninstall causes the company's revenue to decrease. Realizing this, the 

company is looking for ways to retain existing customers through data mining technology. 

Company that generates a lot of data can utilize its data to a lot of uses with data mining. One 

of its uses is customer churn prediction. Previously, data mining to detect customer churn was mostly 

done by telecommunication companies (Keramati et al., 2014). By using methods like Decision Tree, 

Artificial Neural Network, K-Nearest Neighbour, and Support Vector Machine, researchers predict 

customer churn rates. The results of this study can be used to make business decisions to be able to 

retain customers who are going into churn status. Data mining also can identify which factor is the 

main reason for customer to go into churn (Ullah et al., 2019).  

This research is intended to detect signs of customer churn in music streaming company using 

data from Google Analytics, a service that will track behaviour of users in the application. The data is 

user level data from January 1st, 2020 – December 31st, 2020. The experiment will be conducted 

using three methods, XGBoost, a method used SyriaTel reaching 93.301% AUC (Ahmad et al., 2019), 

Deep Neural Network, a popular classifier algorithm (Yu et al., 2017), and Logistic Regression, 

another popular algorithm in customer churn prediction with strong predictive performance and good 

comprehensibility (De Caigny et al., 2018). It is hoped that with this research, we can find the right 

data mining method on existing customer datasets. After obtaining the method with the best 

performance on this research, attributes from the data that most affect the churn rate from customers 

will be weighted. 

Studies for churn prediction can use customer data from various company like telecom (Hung 

et al., 2006), landline (Huang et al., 2012), internet service provider (Liao & Chueh, 2011), or even a 

bank (Shirazi & Mohammadi, 2019). Even another data source like online media (E.-B. Lee et al., 

2017) or game log from a game company (E. Lee et al., 2018) that rarely contain personal data of the 

customer can be used to predict customer behaviour that’s starting to churn. Aside from customer’s 

likelihood of churning, employee’s likelihood of churning in a company can also be predicted (Yiğit 

& Shourabizadeh, 2017).  

Based on those various datasets, studies for churn prediction used a lot of algorithms to use as 

a comparison. For example, Dolatabadi used decision tree, naïve bayes, SVM and neural network 

which resulted in 99.83% accuracy for SVM (Dolatabadi & Keynia, 2017), just like Karvana’s 

research on a private bank in Indonesia which resulted in SVM with a comparison of 50:50 class 

sampling data is the best method (Karvana et al., 2019). Osowski also comparing SVM with 

Multilayer Perceptron with 99.6% accuracy on SVM (Osowski & Sierenski, 2020). On another 

studies, random forest algorithm reaching 94.4% accuracy (Preetha & Rayapeddi, 2018). XGBoost 

gives the highest performance and seems to become a favourite in many machine learning challenges 

(Chen & Guestrin, 2016; Do et al., 2017). Jain and Dalvi used Logistic Regression on their research 

comparing it with Logit Boost and Decision Tree, which resulted in Logistic Regression giving higher 

accuracy (Dalvi et al., 2016; Jain et al., 2020). Yanfang also uses Logistic Regression in ecommerce 
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using user’s online duration, number of logins, attentions, and other user’s behaviour (Yanfang & 

Chen, 2017). On research for Deep Neural Network there is research using three model architectures 

with data from telecom company (Umayaparvathi & Iyakutti, 2017) and research using twitter of 

telecom company (Gridach et al., 2017). Artificial Neural Network significantly outperformed K-

Nearest Neighbours, Decision Tree and SVM in a telecommunication industry on Keramati’s research 

(Keramati et al., 2016). On another research, Decision Tree with three architectures is used on 

telecommunication company data (Odusami et al., 2021). Based on these related works, this study will 

use user’s behaviour in a music streaming application data using three methods, which is XGBoost, 

Logistic Regression, and Deep Neural Network. 

 

METHOD 

The research will begin by collecting data owned by the company. The data will be retrieved 

from the Google Analytics platform, where user activity from the application is recorded and stored. 

Data recorded by Google Analytics contains user's daily activities. 

The data will be retrieved and processed with Google BigQuery. In this process, attributes 

with invalid value and users who do not have a user ID will be filtered out. After the data is processed, 

the data will be divided into two parts, namely training data and test data. Training data is used to 

train the method used, and then tested using test data. 

The results of data mining from the decision tree will then be tested for the level of accuracy, 

precision, recall, and F1-score. Then it will look for what data attributes most influence the churn rate 

from customers. 

 

FIGURE 1. Proposed Methodukan 

 

RESULT AND DISCUSSION 

Data is collected through Google BigQuery from Google Analytics data. Data collected are 

daily individual user’s activity from January 1st – December 31st, 2020. Data consisted of 10 

attributes, which are user id, date, mobile device brand, city, app version, time on site, visits, success 
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play, failed play, and failed login. There 38,005,447 rows of data collected for this experiment. 

Details of data attribute collected can be seen from Table 1. 

Table 1. Data Attributes 

Attribute Description 

uid User Id of the customer 

date Date of users accessing the app 

mobileDeviceBranding Mobile device used for accessing the app 

city City the users accessing the app from 

appVersion Version of app the user is accessing from 

timeOnSite The number of time users accessing per session (seconds) 

visits Number of visits 

successPlay Number of plays the users successfully do 

failedPlay Status of users ever failed to play songs 

failedLogin Status of users ever failed to login 

 

Data that’s been collected will be filtered from attributes with invalid value and users who do 

not have a user ID. After that, data will be aggregated per user id activity and creating new attributes 

in the process. The new attributes can be seen in Table 2. 

Table 2. Data Attributes After Cleansing 

Attribute Description 

uid User Id of the customer 

firstDate First date of users accessing the app 

lastDate Latest date of users accessing the app 

dayDuration Number of days from firstDate to lastDate 

sessionPerDay Average number of visits user do in a day 

mobileDeviceBranding Mobile device used for accessing the app 

city City the users accessing the app from 

appVersion Version of app the user is accessing from 

timeOnSite The total number of time users accessing (seconds) 

visits Number of visits 

avgSessionDuration Average number of time users visiting the app in a visit (seconds) 

successPlay Number of plays the users successfully do 

failedPlay Status of users ever failed to play songs 

failedLogin Status of users ever failed to login 

churnStatus Status churn of a user (1 and 0 where 1 is churn and 0 is not churn) 

 

Numerical attribute data then standardized. Data that has been processed is shrunk to 

3,941,713 rows. The standardized Table then divided to two parts. 80% training data consisting of 

3,154,069 rows of data and 20% testing data consisting of 787,644 rows of data. 

This research will use three machine learning methods as comparison. The first method is 

XGBoost, Deep Neural Network, and Logistic Regression. The models will be trained using the 

training data, and then we will evaluate the model using the testing data. 

After we evaluate the model, we will calculate each the performance metrics of every method. 

We will calculate the accuracy, precision, recall, and F1-score. After that we will calculate attribute 

importance of the winning method. 

The performance of each method can be shown in confusion matrix below. 
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Table 3. Confusion Matrix by Values 

Method TP FN FP TN 

XGBoost 619,914 60,206 9,553 97,971 

XGBoost with Tuning 621,515 58,605 9,682 97,842 

DNN 628,553 51,567 13,363 94,161 

DNN with Tuning 640,877 39,243 17,157 90,367 

Logistic Regression 636,453 43,667 15,372 92,152 

Logistic Regression with Tuning 673,870 6,250 34,976 72,548 

 

Table 4. Confusion Matrix by Percentage 

Method TP FN FP TN 

XGBoost 91.15% 8.85% 8.88% 91.12% 

XGBoost with Tuning 91.38% 8.62% 9.00% 91.00% 

DNN 92.42% 7.58% 12.43% 87.57% 

DNN with Tuning 94.23% 5.77% 15.96% 84.04% 

Logistic Regression 93.58% 6.42% 14.30% 85.70% 

Logistic Regression with Tuning 99.08% 0.92% 32.53% 67.47% 

 

Table 5. Experiment Result 

Method Accuracy Precision Recall F1 

XGBoost 91.14% 98.48% 91.15% 94.67% 

XGBoost with Tuning 91.33% 98.47% 91.38% 94.79% 

DNN 91.76% 97.92% 92.42% 95.09% 

DNN with Tuning 92.84% 97.39% 94.23% 95.79% 

Logistic Regression 92.50% 97.64% 93.58% 95.57% 

Logistic Regression with Tuning 94.77% 95.07% 99.08% 97.03% 

 
After evaluating the three methods, we got the above results. Using those confusion matrixes, 

we can calculate the performance metrics of the methods. Based on Table 3 and Table 4, Logistic 

Regression with Tuning gives the highest True Positives with 673,870 users and 99.08% of actual 

positives. But on the other hand, it also gives highest False Positives with 32.53% of actual negatives. 

If we want to get the highest number of True Negatives, XGBoost gives 97,971 users or 91.12% of all 

actual negatives. 

From the confusion matrix, we can get the calculation of the four important metrics. The 

highest accuracy with 94.77% is Logistic Regression with Tuning. On precision, XGBoost gives the 

highest number of precisions with 98.48%. As for recall and F1-score, Logistic Regression with 

Tuning gives the highest result with 99.08% and 97.03% respectively. Hyperparameter Tuning greatly 

affects Logistic Regression with increase of 2.27% of accuracy, 5.5% of recall, and 1.46% of F1 

score. Based on the condition of the company and the results of the experiment, Logistic Regression 

with Tuning is the best method for the company to get the highest number of churn customers. 

After the best method is decided, the most affecting attribute is calculated, and the result is 

shown on the Table below. 

Table 6. Attribute Weight 
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Processed_Input Category Weight 

appVersion 0 23.7639044 

appVersion 4.1.7 0.38086121 

appVersion 4.1.8 0.51607379 

appVersion 4.1.8.1 -2.6704006 

appVersion 4.1.8.2 0.62392512 

appVersion 4.1.8.3 0.40805272 

appVersion 4.1.9 0.80308194 

appVersion 4.1.9.1 0.34218876 

appVersion 4.1.9.2 1.75882559 

appVersion 4.1.9.3 1.82160327 

appVersion 5.0.0 1.22410201 

appVersion 5.0.1 0.80710692 

appVersion 5.0.1.1 1.71648231 

appVersion 5.0.2 1.58157278 

appVersion 5.0.3 1.75806296 

appVersion 5.0.4 1.30430462 

appVersion 5.0.7 1.74658981 

appVersion 5.0.8 1.30450263 

appVersion 5.0.9 1.48960225 

appVersion 5.1.0 1.47860932 

appVersion 5.1.1 0.83799971 

appVersion 5.1.2 -0.6331276 

appVersion 5.1.3 -2.6670381 

appVersion 5.1.4 -51.933396 

appVersion 5.1.5 -3.0190852 

appVersion 5.2.0 1.87683023 

appVersion 5.3.0 1.87105841 

appVersion 5.3.1 1.86911074 

appVersion 5.4.0 1.85660549 

appVersion 5.4.1 -114.66453 

appVersion 5.5.0 1.78017601 

appVersion 5.5.1 97.4685808 

appVersion 5.6.0 1.57690299 

appVersion 5.6.1 -0.1610149 

appVersion 5.7.0 -5.1716695 

appVersion 5.7.1 -5.1264378 

appVersion 5.7.2 -5.0930795 

avgSessionDuration 
 

0.09342136 

city Jakarta 0.76734085 

dayDuration 
 

-0.3220689 

failedLogin 
 

0.00239973 

failedPlay 
 

-0.0509372 

mobileDeviceBranding Samsung 0.76734085 

sessionPerDay 
 

0.29390708 

successPlay 
 

-0.0631738 

timeOnSite 
 

-0.0446155 

visits 
 

-0.2141609 

 
Based on Table 6, appVersion is the most affecting attribute in the model. appVersion 5.5.1 is 

the most affecting for the model to make the customer churn. On the other hand, the older 5.4.1 

version is most affecting for the customer to not churn. 
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CONCLUSION 

This study of data mining implementation for churn prediction on music streaming company 

shows that for the company use case, Logistic Regression with Hyperparameter Tuning is the best 

method to get the highest number of customer churn. But on different use case, XGBoost can be the 

method with the highest number of True Negatives and Precision. Hyperparamater Tuning can also be 

a solution to increase the performance of a model, but there can be a compromise on the other side. 

The dataset used also can affect the performance of the model. 

For future work, different methods can be used to get an even better performance. Tuning 

different parameters can also be a solution to increase the performance of the methods used. Lastly, 

bigger or different dataset can be used to on the model. 
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