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ABSTRACT

Autonomous close proximity operations are an arduous
and attractive problem in space mission design. In partic-
ular, the estimation of pose, motion and inertia properties
of an uncooperative object is a challenging task because
of the lack of available a priori information. In addition,
good computational performance is necessary for real ap-
plications. This paper develops a method to estimate the
relative position, velocity, angular velocity, attitude and
inertia properties of an uncooperative space object using
only stereo-vision measurements. The classical Extended
Kalman Filter (EKF) and an Iterated Extended Kalman
Filter (IEKF) are used and compared for the estimation
procedure. The relative simplicity and low computational
cost of the proposed algorithm allow for an online im-
plementation for real applications. The developed algo-
rithm is validated by numerical simulations in MATLAB
using different initial conditions and uncertainty levels.
The goal of the simulations is to verify the accuracy and
robustness of the proposed estimation algorithm. The ob-
tained results show satisfactory convergence of the esti-
mation errors for all the considered quantities. An analy-
sis of the computational cost is addressed to confirm the
possibility of an onboard application. The obtained re-
sults, in several simulations, outperform similar works
present in literature. In addition, a video processing pro-
cedure is presented to reconstruct the geometrical prop-
erties of a body using cameras. This method has been ex-
perimentally validated at the ADAMUS (ADvanced Au-
tonomous MUltiple Spacecraft) Lab at the University of
Florida.

1. INTRODUCTION

Over the past few decades, spacecraft autonomy has be-
come a very important aspect in space mission design. In
this paper, autonomous spacecraft proximity operations
are discussed with particular attention to the estimation of
position and orientation (pose), motion and inertia prop-
erties of an uncooperative object. The precise pose and
motion estimation of an unknown object, such as a Res-
ident Space Object (RSO) or an asteroid has many po-

tential applications. In fact, it allows autonomous inspec-
tion, monitoring and docking. However, dealing with an
uncooperative space body is a challenging problem be-
cause of the lack of available information about the mo-
tion and the structure of the target. Relative navigation
between non-cooperative satellites can become a power-
ful tool in missions involving objects that cannot provide
effective cooperative information, such as faulty or dis-
abled satellite, space debris, hostile spacecraft, asteroids
and so on. In particular, the precise pose and motion es-
timation of an uncooperative object has possible applica-
tions in the space debris removal field. The pose and the
inertia matrix estimation is the first step to implement a
system to recover and remove elements harmful to op-
erational and active satellites. Additionally, the obtained
algorithm can be installed on autonomous spacecraft for
close-proximity operations to asteroids or for rendezvous
manoeuvres. This work focuses on the problem of how
to estimate the relative state and the inertia matrix of an
unknown, uncooperative space object using only stereo-
scopic measurements.

2. DYNAMICAL MODEL

The accurate description of the relative motion is a key
point in space systems involving more than one object.
Correct modeling of relative translational and rotational
motion is essential for autonomous missions. In litera-
ture, a large number of studies about point-mass models
for relative spacecraft translational motion can be found.
The most famous and used model is the one presented by
Clohessy and Wiltshire [1]. Usually, these models are not
sufficiently accurate when the faced problem deals with
multiple cooperative spacecraft. For this reason, a differ-
ent model is here considered.

The location of a point in a three dimensional space must
be specified with respect to a reference system. An ap-
propriate description of the used coordinate systems is
provided in this section. Two objects are considered: a
leader L and a target T. In this work, the leader is the
inspecting spacecraft and the target is the unknown, un-
cooperative object. The standard Earth-centred, inertial,
Cartesian right-hand reference frame is indicated with the



letter I. L is the local-vertical, local-horizontal (LVLH)
reference frame. It is fixed to the leader spacecraft’s cen-
tre of mass, the x̂ unit vector directed from the spacecraft
radially outward, ẑ normal to the leader orbital plane, and
ŷ completing the frame. Then with J , a Cartesian right-
hand body-fixed reference frame attached to the leader
spacecraft’s centre of mass is denoted. Finally T , a Carte-
sian right-hand body-fixed reference frame centred on the
target spacecraft’s centre of mass. It is also assumed that
this frame is coincident with the principal axis of iner-
tia. In this work, the frames J and L are assumed to be
aligned. From now on, only the letter L is used to refer
to both of them.

Figure 1: Leader - Target Reference Frames

The notation that is used in the formulation is now pre-
sented. The vector ρ0 is the vector connecting the leader
center of mass with the target center of mass, expressed in
the leader frame. Analogously, ρi can be defined as the
position vector, in the leader frame, between the leader
center of mass and a feature point Pi on the target. Con-
sequently, ρ̇0 and ρ̇i are the translational velocities of the
target centre of mass and of a generic feature point, ex-
pressed in L. The relative angular velocity is expressed
as ω. This vector is the difference of the angular veloci-
ties of the leader and target respectively, expressed in the
leader frame:

ω = ωT |L − ωL|L (1)
The relative attitude is described using the rotation
quaternion q = [q0, q1, q2, q3]T where the first compo-
nent is the scalar part and the other three are the vector
one. The classical formulation for the dynamical model
in a Kalman Filter dealing with non-linear equations is:

ẋ = f(x) + w(t) (2)

where x is the state vector, f(x) is a non-linear func-
tion describing the process and w is a random zero-mean
white noise. In our case, the state vector is defined as:

x = [ρT0 , ρ̇
T
0 , ω

T , qT , PiT ]T (3)

This is a 13 + 3N elements vector where N is the number
of feature points. The relative dynamics is modelled con-
sidering the translational and the rotational motions de-
coupled. The relative translational dynamics is described

by a set of non-linear ordinary differential equations. In
particular:

ẍ−2ϑ̇Lẏ−ϑ̈Ly−ϑ̇2Lx =
µ(rL + x)

[(rL + x)2 + y2 + z2]
3
2

+
µ

rL2

(4)
ÿ+2ϑ̇Lẋ+ϑ̈Lx−ϑ̇2Ly = − µy

[(rL + x)2 + y2 + z2]
3
2

(5)

z̈ = − µz

[(rL + x)2 + y2 + z2]
3
2

(6)

with rL being the norm of the position vector of the
leader, µ is the Earth’s gravitational constant and ρL =
[x, y, z]T . ϑ̇L and ϑ̈L are the orbital angular velocity and
acceleration of the leader and are equal to

ϑ̇L =

√
µ

aL3(1− eL2)3
(1 + eL cosϑL)2 (7)

ϑ̈L =
−2ṙLϑ̇L
rL

(8)

The rotational dynamics is described exploiting the Euler
equation. Combining the Euler equations for both leader
and target object, the following result is obtained:

IL
dω

dt

∣∣∣∣
L

L

= ILDI−1T [NT − ωT |T × ITωT |T ]

− ILωL|L × ωL|L − [NL − ωL|L × ILωL|L]
(9)

where IL and IT are the inertia matrices of the leader and
target, ωL and ωT the corresponding angular velocities,
D is the rotation matrix and NL and NT are the external
torque that are assumed to be zero in this case. It is also
possible to describe the relative attitude kinematics, using
the quaternion kinematic equations of motion:

q̇ =
1

2
Qω|T (10)

with

Q(q) =

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


The motion of the feature points can be defined as:

Ṗ
i

T |L = Ṗ
i

T |T + ω × PiT |L = ω × PiT |L (11)

This is expressed in leader frame. However, the dynamics
of the feature points is simpler if expressed in the target
frame. In fact, due to the rigid body assumption, a feature
point cannot change its relative position with respect to
the target center of mass. This leads to:

Ṗ
i

T |T = 0 (12)

Considering that the center of mass dynamics is described
by eqs. (5) to (7), the position of a single feature point can
be described as follows:

ρi = ρ0 + PiT |L (13)



3. OBSERVATION MODEL

The purpose of this section is to describe the observa-
tion model that allows to obtain information from the col-
lected stereoscopic images. Suppose to have two cameras
in a stereo configuration mounted on the leader spacecraft
L. The center of projection of the right camera is as-
sumed to coincide with the centre of mass of the leader.
It is also the origin of the Cartesian right-hand camera
frame [X, Y, Z]. The left camera is separated by a baseline
b from the right camera. Using a pinhole camera model
and exploiting the perspective projection model, a point
in a 3D frame is described in the 2D image plane. With
this method all the selected and tracked feature points are
expressed in the 2D camera plane. For the line-of-sight
ρi between a generic feature point and the leader centre
of mass, assuming to have a focal length equal to 1, the
following expressions are derived:

For the right camera

uR(i) =
xi
yi

vR(i) =
zi
yi

(14)

and for the left camera

uL(i) =
xi − b
yi

vL(i) =
zi
yi

(15)

where ρi = [xi, yi, zi] is expressed in the camera frame.
We can also define wR = [uR vR] and wL = [uL vL].
Further information can be recovered from the acquired
images, exploiting the optical flow. A formulation of the
relation between the 3D motion and the optical flow is
derived in [2]. This relationship is expressed by the fol-
lowing equations:

ẇR i =

[
1

yi
A(wR i) B(wR i)

][
ρ̇0
ω

]
(16)

and

ẇL i =

[
1

yi
A(wL i) B(wL i)

][
ρ̇0
ω

]
(17)

with

A =

[
1 0 w1

0 1 w2

]
(18)

and

B =

[
−w1w2 1 + w1

2 −w2

−1− w2
2 w1w2 w1

]
(19)

where w1 and w2 are the first and the second component
of the vector w. It is important to underline that, in real-
ity, cameras collect images at a given sampling frequency.
Using two subsequent frames, the optical flow can be es-
timated and the image velocity computed. However, in
the presented observation model, it is assumed that the
information about the image velocity is recovered at each
time step. Another problem is to determine the different
location of the same point in the left and right image plane

respectively. The resulting difference is called disparity
and it is defined as:

di = uL − uR (20)

The disparity allows to reconstruct information about the
depth. The human brain does something similar, inter-
preting the difference in retinal position. In stereo vi-
sion applications, this can be performed exploiting the so
called triangulation. A set of feature points is chosen and
it is assumed that they are always in the view of the cam-
eras. Therefore, according to our assumptions, the initial
set of points is always traceable. At each time step, the
discrete measurement vector provided by the cameras is:

Zi = [wRi, wLi, ẇRi, ẇLi, di] (21)

Therefore, the observation equation is:

Zi = h(x) + v(t) (22)

with v random zero-mean white noise.

4. INERTIA RATIOS ESTIMATION

For the presented model, an a priori knowledge of the
target inertia matrix is necessary. This is not a realistic
assumption since we are dealing with a completely un-
known and uncooperative space object. To overcome this
contradiction, an estimation of the basic inertial proper-
ties is necessary. A torque free motion is assumed. In
this condition, the inertia matrix is not fully observable.
In fact, only two of three degrees of freedom are observ-
able. Thus, two parameters are sufficient to represent the
inertia matrix. With a parametrized inertia matrix, the
motion can be propagated in the correct way. However,
no geometrical or mass properties can be recovered.

A proper parametrization of the inertia matrix is neces-
sary. The selected formulation is the one proposed by
Tweddle [3]. In particular:

k1 = ln

(
Ix
Iy

)
k2 = ln

(
Iy
Iz

)
(23)

This formulation relies on the minimum number of pa-
rameters, equal to the number of degrees of freedom. k1
and k2 do not have any additional constraints. The inertia
ratios have to be greater than zero and they can be each
value up to infinite. This is a consistent parametrization
because the natural logarithm has the same validity do-
main. Using this parametrization, the target inertia matrix
can be expressed as:

IT =

 IxIy 0 0

0 1 0
0 0 Iz

Iy

 =

ek1 0 0
0 1 0
0 0 e−k2

 (24)

At this point, these two parameters must be estimated by
the filter. Therefore, a new augmented state can be de-
fined as:

x = [ρT0 , ρ̇
T
0 , ω

T , qT , PiT , k1, k2]T (25)



Also the dynamical model is different. In fact, the
parametrized inertia matrix will substitute the previous
value of the target inertia matrix in the rotational dynam-
ics expression. Additionally, two equations for k1 and k2
are considered.

∂k1
∂t

= 0 (26)

∂k2
∂t

= 0 (27)

Equation (26) and (27) are valid under the assumption
of rigid body motion and without considering any mass
variation. In order to improve the convergence of the filter
a pseudo measurement constraint can be added. With this
equality constraint, the value of the inertia matrix can be
forced to converge to the correct value. In particular:

0 = ω̇T + IT−1(ωT × ITωT ) (28)

This is the new pseudo measurement. It is the classical
Euler equation for the rotational dynamics of the target.
A fundamental aspect to take into account is that in the
pseudo measurement equation, the target angular accel-
eration is present. Information about this quantity have
to be recovered from the actual measurement. However,
with knowledge of ωL, ω̇L and ω, there is not an analyt-
ical expression independent on IT to compute ω̇T . This
implies that the angular acceleration of the target has to
be measured. With the knowledge of the optical flow,
the value of ω at each time step can be recovered. Then,
a numerical differentiation can be performed to find the
relative angular acceleration.

5. NUMERICAL SIMULATIONS

In this section, an evaluation of the performance and ro-
bustness of the filter is presented. Monte-Carlo simula-
tions are performed for different values of the initial error
covariance and initial relative position. Each simulation
is performed considering a satellite and an object in low
Earth orbit. In particular, the leader orbit is known. It
is assumed that the orbit of the leader has eccentricity
eL = 0.05, semi-major axis aL = 7170 km, inclination
iL = 15 deg, argument of the perigee ω = 340 deg and
right ascension of ascending node Ω = 0 deg. According
to our parametrization, the leader inertia is

IL =

[
0.83 0 0

0 1 0
0 0 1.083

]
kgm2 (29)

In addition, two parallel cameras, in a stereo configura-
tion and pointing in the same direction are mounted on
the leader spacecraft. The baseline between the cam-
eras is assumed equal to 1m. Moreover, only five fea-
ture points are supposed to be measured. This is an ex-
treme case, in fact, more than five points are usually vis-
ible and detectable. However, this condition may occur
when the object is not properly illuminated or if it is too
bright. Additionally, considering only a small number of
points, the robustness and convergence of the filter are

tested also with poor available measurements. The de-
tected features are assumed to be spread over the body
of the target with a distance from the centre of mass in
the order of 1.5m. This can be varied according to the
dimension of the target object. After defining the initial
condition for the leader orbit, the state has to be initial-
ized. The initial state vector is:

x0 = [ρ0, ρ̇0, ω, q0, PT i, k1, k2] (30)

This vector will be defined for each simulation. At this
point, the filter parameters have to be selected. In par-
ticular, the covariance matrices Q, R, P have to be cho-
sen. R represents the measurement noise and it can be
determined whenever the sensor accuracy is given. In the
following simulations, the measurements noise of the and
of the process is modelled as a zero-mean Gaussian with
standard deviation of 10−5. Q, the process covariance
matrix, has to be selected to ensure the convergence of
the filter. Finally, the initial value of P, the error covari-
ance matrix, represents the uncertainties in the initial es-
timation of the state. For each time step, the quaternion
is normalized. According to the IEKF formulation, after
the initial condition initialization, the predicted value of
the state has to be computed using the dynamical model.
The function ode45 is used in MATLAB to integrate the
set of dynamical equations for each time step. Then, a
centred difference method is used to compute the Jaco-
bian of the process model. With this value, the transition
matrix is computed and the new error covariance is pre-
dicted. At this point, a while cycle is used to implement
the iterative procedure of the Iterated Extended Kalman
Filter. A tolerance equal to 0.01 and a maximum num-
ber of iterations equal to 10 is used. For the observation
model, the equations are solved and linearised with the
same approximate method. Finally, the filter innovation,
innovation covariance and gain are iteratively computed
and state and covariance are updated. In our simulations,
a time step of 1 second is used and the total time of the
simulation is 100 seconds. The computed errors are de-
fined as:

eρ =
√

(ρx − ρx)2 + (ρy − ρy)2 + (ρz − ρz)
2 (31)

with eρ being the error of the estimation of the centre of
mass. In this notation, ρ denotes the estimated value of ρ.
In the same way the relative translational velocity error
can be defined:

eρ̇ =
√

(ρ̇x − ρ̇x)2 + (ρ̇y − ρ̇y)2 + (ρ̇z − ρ̇z)
2 (32)

And the relative angular velocity error:

eω =
√

(ωx − ωx)2 + (ωy − ωy)2 + (ωz − ωz)2 (33)

For k1 and k2 the error is simply:

ek1 =
√

(k1 − k1)2 ek2 =
√

(k2 − k2)2 (34)

The attitude error is defined in a different way. Recalling
the definition of the inverse of a quaternion:

q−1 =
q∗

||q||2
(35)



where q∗ is the conjugate of q, the error quaternion is
equal to:

qe = q⊗ q−1 (36)

The symbol ⊗ is defined as the product of two quater-
nions. Finally, the attitude estimation error can be defined
as:

eθ = 2 cos−1(qe0) (37)

where in out notation, qe0 is the scalar part of the error
quaternion. In the following examples, the performance
of the filter is analysed.

5.1. Case A - with pseudo-measurement constraint

In the first case scenario, the filter is tested with the fol-
lowing initial conditions:

• ρ0 = [10, 60, 10] m

• ρ̇0 = [0.01, −0.0225, −0.01] m/s

• ω0 = [−0.1, −0.1, 0.034] deg/s

• q0 = [0, 0, 0, 1]

The components of the covariance matrix are cho-
sen to represent a realistic situation. In particular,
P is composed by: σρ

2 = [1, 1, 1] m2; σρ̇
2 =

[1, 1, 1] m2/s2; σω
2 = [1, 1, 1] deg2/s2; σq

2 =
[1, 1, 1, 1] · 10−5; σP

2 = [1, 1, 1] m2; σI
2 =

[1, 1].

These values approximate the uncertainties in a real ap-
plication. For this case, 100 simulations are considered.
The mean relative errors after 10 seconds are evaluated
according to eqs. (31) to (33) and (37). In this work, both
EKF and IEKF are used. However, only the results corre-
sponding to the IEKF are here reported. In fact, it results
to perform better and to be more robust with respect to
the simple Extended Kalman Filter. The presented results
show robust convergence in all the analysed simulations.
Very good results are obtained for the relative angular and
translational velocity in fig. 3 and fig. 4. This is proba-
bly connected to the fact that the optical flow equation is
exploited. The relative attitude is always difficult to esti-
mate in a proper way and with good convergence. fig. 5
shows poor convergence of the relative angle error. The
error tends to remain close to the initial value. The two
inertia ratios have good convergence thanks to the im-
posed equality constraint, as reported in fig. 6 and fig. 7.
In table 1, the results are summarized.

5.2. Case B - without pseudo-measurement con-
straint

In this case, the equality constraint is removed. There-
fore the filter performance is evaluated with no precise
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Figure 2: Relative Position Error- Case A
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Figure 3: Relative Translational Velocity Error - Case A
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Figure 4: Relative Angular Velocity Error - Case A
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Figure 5: Relative Attitude Error - Case A



Table 1: State Errors - Case A

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.51 0.0062 0.0035 0.49 0.067 0.037
70 0.64 0.0067 0.0036 0.61 0.13 0.051
90 0.73 0.0073 0.0039 0.77 0.24 0.23
100 0.90 0.011 0.0043 0.87 0.53 0.23
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Figure 6: k1 Inertia Ratio Error - Case A

knowledge about the inertia properties. The Case A ini-
tial conditions are applied :

• ρ0 = [10, 60, 10] m

• ρ̇0 = [0.01, −0.0225, −0.01] m/s

• ω0 = [−0.1, −0.1, 0.034] deg/s

• q0 = [0, 0, 0, 1]

For the covariance matrix, a smaller value is assumed
for the inertia ratios: σρ

2 = [1, 1, 1] m2 σρ̇
2 =

[1, 1, 1] m2/s2 σω
2 = [1, 1, 1] deg2/s2 σq

2 =
[1, 1, 1, 1] · 10−5 σP

2 = [1, 1, 1] m2 σI
2 =

[1, 1]/2.

The filter keeps being robust under these new conditions
too, and almost always converges. The position and trans-
lational velocity error trends do not change. Actually the
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Figure 7: k2 Inertia Ratio Error - Case A

rotational dynamics does not affect the translation. The
angular velocity and attitude errors trends are comparable
to the Case A outputs. The small values for the angular
velocity are the reason why for these similarities. From
the presented results, the inertia ratios errors seem to con-
verge to zero. However, this is only due to the fact that the
initial covariance is small. In fact, looking at the trend of
the error in fig. 8 and fig. 9, it is clear how the error tends
to be constant. This means that the estimated inertia ratio
remains constant and does not converge.
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Figure 8: Inertia Ratio Error - Case B
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Figure 9: Inertia Ratio Error - Case B

In table 2, the error results are summarized.

Table 2: State Errors - Case B

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.51 0.0081 0.0058 0.59 0.33 0.35
70 0.6 0.009 0.0059 0.74 0.6 0.55
90 0.77 0.011 0.0063 0.88 1.4 1.6
100 0.96 0.013 0.0069 1.2 3.2 2.6

5.3. Case C - without constraint, high angular veloc-
ity

So far, only small values for the relative angular veloc-
ity have been considered. In this simulation, the perfor-



mance of the filter without equality constraint is evalu-
ated in a case with larger initial relative angular velocity.
In particular:

• ρ0 = [10, 60, 10] m

• ρ̇0 = [0.01, −0.0225, −0.01] m/s

• ω0 = [−1, −1, 0.934] deg/s

• q0 = [0, 0, 0, 1]

The value of ω0 is obtained increasing the value
of ωT . The covariance matrix is, as before:
σρ

2 = [1, 1, 1] m2 σρ̇
2 = [1, 1, 1] m2/s2 σω

2 =
[1, 1, 1] deg2/s2 σq

2 = [1, 1, 1, 1] · 10−5 σP
2 =

[1, 1, 1] m2 σI
2 = [1, 1]/2

Table 3: State Errors - Case C

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.53 0.01 0.012 1.8 0.035 0.021
70 0.64 0.013 0.013 2 0.043 0.024
90 0.76 0.017 0.014 2.2 0.069 0.032
100 0.94 0.02 0.016 2.5 0.15 0.043

Table 3 shows how the estimation of the relative posi-
tion and translational velocities is slightly affected by
the change in the angular velocity. The relative angular
velocity and primarily the relative attitude are badly af-
fected by this change. In fact, in this case, the error in the
estimation of the inertia matrix strongly affects the dy-
namical model propagation. Therefore, the incorrect in-
ertia ratios lead to a decay in the estimation performance
for angular velocity and attitude. However, using a larger
value for the target angular velocity implies better results
in the inertia ratios estimation also without the equality
constraint imposed with the pseudo measurement. Fig-
ure 10 and fig. 11 show the converging trend of the inertia
ratios:
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Figure 10: Inertia Ratio Error - Case C

This is justified by the fact that, with a larger angular
velocity, the filtering process better performs in the es-
timation of the inertia components. Hence, the dynami-
cal model and the measurement equations of the angular
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Figure 11: Inertia Ratio Error- Case C

velocity, force the inertia ratios to converge to a ’consis-
tent’ and exact value. This estimation can be obtained,
in torque free motion conditions, only parametrizing the
inertia matrix in a proper way.

6. INERTIA RECONSTRUCTION

In the previous section, the estimation process of the in-
ertia ratios has been shown. However, the inertia param-
eters, with small relative angular velocity, are correctly
recovered only if information about the angular acceler-
ation of the target is provided. This implies to numeri-
cally derive the available measures of the angular veloc-
ity. Numerical derivatives of a quantity that is usually
noisy, can introduce instabilities and produce inaccurate
results. In this section, a method to recover all the iner-
tia components is described, without relying on any nu-
merical method. A video and image process to recover
mass properties is presented. This method is not compu-
tationally efficient and, in our application, relies on free
and not optimized video/image processing software. The
main idea is to collect a video or images of the observed
body. From this set of images, a point cloud can be con-
structed according to video processing algorithms. Once
a point cloud is available, a triangulate mesh can be built.
The mesh gives us information about the geometry of the
object. At this point, an assumption has to be done. In
fact, knowing the geometry, the unknown density prop-
erties of the object do not allow a complete reconstruc-
tion of the mass properties of the body. However, gen-
eralizing the problem, the density can be assumed con-
stant. This procedure has been experimentally validate at
the University of Florida to demonstrate the validity of
this method also with complex geometries. A very sim-
ple experimental setup is used. The video of a 3-DOF
simulator (fig. 12) are collected using a Sony HandyCam
HDR-CX110. The obtained images are imported with Vi-
sualSFM [4] and the point cloud is extracted. Then, with
MeshLab [5] a mesh is created. This mesh is exported to
MATLAB (fig. 13) and the mass properties are recovered.
The computer used for the video processing mounts an
Intel Xeon E5-2609 2.5 Ghz 10Mb cache Ivy Bridge Pro-
cessor, 16Gb DDR3 SDRAM and a PNY Quadro K620



2Gb Video Card. The obtained results show how the vol-
ume of the object can be reconstructed with this proce-
dure. In particular, the resulting errors of the compo-
nent of the inertia matrix are always lower than 20% with
respect to the reference value. This is obtained using a
CAD model of the 3-DOF simulator, imposing the same
constant density.

Figure 12: 3-DOF Simulator

Figure 13: MATLAB mesh

7. CONCLUSION

This work proposes a new algorithm for estimating the
pose, motion and inertia properties of an unknown, unco-
operative space object. The presented results show how
the algorithm, exploiting the equality constraint, allows
for a precise estimation of the complete relative state and
the inertia components. Moreover a quick convergence
and a satisfactory accuracy are guaranteed. Several sim-
ulations are presented to demonstrate the robustness of
the algorithm with different covariance matrix values and
initial conditions. Moreover, it has been shown how the
inertia components, in the filtering process, can converge
without the equality constraint but only with a sufficiently
high value for the target angular velocity. In most of the
cases, the presented algorithm shows better results with
respect to similar works. A novel approach to estimate
the inertia components with very limited computational
burden is proposed. In addition, it has been shown how
the inertia properties can be reconstructed with a video

processing procedure. In fact, the geometrical properties
of a body can be reconstructed collecting multiple frames
in time; the mass properties of the observed object can
be then reconstructed under a uniform density distribu-
tion assumption. The step further in the research asks for
the experimental campaign to validate the promising ob-
tained numerical results and to tune the algorithms.
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