brought to you by

Towing Tethers Towing Tethers' Dynamics and Control Simulations Mission Overview Fundamental influence of tether elasticity on dynamics behavior MODEL **Operations sequence** GNC TETHER: long thin cable – mechanical **Tethers' exploitation for** Closed-loop GNC with for high-thrust 6 DOF end-bodies with **Stiffness Damping** connection – not withstanding space debris CASE PROS CONS flexible appendages controlled re-entry feedback on tether compressive loads [Ns/m] [N/m] mitigation/remediation Stabilization/Pre-Discretized viscoelastic tension and relative Stronger Pre-tensioning MITIGATION: tethered devices installed model for flexible tether tensioning distance needed control Stiff 1.57e3 GEO on-board (drag augmentation, EDTs) authority on Perturbations: air drag, RCS (PWM) for Dragging Harder poststack pose Post-burn control burn control solar pressure, gravity relative maneuvering 0.3 **REMEDIATION:** elastic connection • Greater tail-Tether cut and CAM No control on tether Easier postwagging effect established in-orbit by means of different Thrust (if needed) burn control length (fixed-length Non-stiff 1.57e1 Drag_{Chaser} (strongly capture strategies: nets, harpoons, CHASER Limited dependent on Chaser-Target centre of mass distance Altitude as a function of thrust for different whiplash effect tentacles, grasper, etc. connections) I these, only 900 active s — BT=80ka/m - BT=100kg/m2 **STIFF TETHER CASE** Chaser-Target centre of mass distance **Debris Tethered-Disposal Options** Relative **Tail-wagging** = target Chaser = 1300 Mass distance **Differential drag** Target = 5000 angular momentum [kg] Tether = 0.58during pulling **TOWING TETHERS:** effects Capture net and **towing tether** Stiff build-up, may lead to **Relative** Initial and post-burn Non-conductive entanglement orbit phases distance

de-orbiting concept

TETHER DESIGN FOR SPACE DEBRIS TOWING

R. Benvenuto, M. Lavagna

Department of Aerospace Science and Technology (DAER), Politecnico di Milano - Italia

600

Tether Design

Design Drivers and Requirements	Mechanical Properties of Candidate Materials					Thermal Analysis	
 Dynamics/Thermal simulations allow to set mechanical/thermal design drivers Synthetic fibers as Aramid/HPME identified as candidate materials 	Material	Breaking strength [GPa]	Young's modulus [GPa]	Density [Kg/m ³]	Melting/decomposing temperature [°C]	Function	 GAS PLUME IMPINGEMENT ON THE TETHER: Thrusters' exhaust plume impingement during disposal burns (limited time) Aramid fibers high retention of strength at high temperatures (depending on burning time) Thermal analysis have demonstrated that insulation is necessary for the first 5 to 10 meters of the tether Chemical resistance to plume impingement is also a requirement
 high tensile strength, high breaking tenacity high impact strength low density (lightweight) fatigue resistance, creep and shrinkage resistance dimensional stability 	Dyneema Kevlar Technora Sylramic (Silicon	3.7 3.6 3.4 2.6	116 130 73 350	970 1440 1390	150 500 500 Over 1400	Mechanical	
 heat resistance chemical resistance Other material requirements: 	carbide fibre) Nextel (alumina fibre)	2.0	190	3050	1800	Thermal insulation	Insulation's options: Technora heat resistance: • First part of the tether in Sylramic retention of strength • Good mechanical Heat resistance for long periods
 Stiffness (dynamic behavior): to be correctly tuned depending on expected dynamic behavior and control bandwidth 	Tether support system					 Properties at high temperatures Heavier solution 	

• Stress relaxation

Modern rope types (different strand #, braiding technique and covers/jackets, influencing thread final properties)

Functions:

- Storing, releasing, holding
- Winding/unwinding
- **Depend on control strategies**

Active reel mechanical design

ACTIVE REEL

- If variable length tether control
- Critical system, more complex
- **Actively controlled**

PASSIVE SPOOL

- If fixed length tether control
- Simpler system, more reliable
- Passive releasing system
- **Decoupled from chaser** dynamics to limit interactions

Tether Testing

Material Mechanical and Dynamical Tests Conclusions and Roadmap Technora braids Fiber mechanical properties are weakened by: **Benefits of Tethers for Active Debris Removal:** damping characteristics Braiding, weaving, twining Safety distance **Axial damping** Knotting, looping, splicing Lightweight payload 0.106 ratio [-] Centre of mass alignment with thrust axis not a constraint **Torsional damping** Splicing/Looping 0.079 Material testing: **Criticalities:** ratio [-] to characterize real parameters for design technological solutions System flexibility effects on the connected system (tether oscillations, Bending ratio [-] 0.014 to reduce the number of uncertain parameters in flexible entanglement and breakage) **Torsional Closed loop GNC &** dynamics model validation process Whiplash effect (pre-tensioning) rehometer thermal control have Post-burn bounce-back Material test campaign on 547 tex Technora braids and knotted proved to be Atmospheric re-entry – differential drag braids:

Subset of related references

- R. Benvenuto, S. Salvi and M. Lavagna, "Dynamics Analysis and GNC design of flexible systems for space debris active removal". Acta Astronautica, 2015.
- R. Benvenuto and M. Lavagna, "Towing tethers to control debris removal dynamics", 65th International Astronautical Congress, IAC-14-C1.6.09, Toronto, Canada, 2014.
- R. Benvenuto, M. Lavagna, A. Cingoli, C. Yabar and M. Casasco, "MUST: multibody dynamics simulation tool to support the GNC design for active debris removal with flexible elements", 9th International ESA Conference on Guidance, Navigation & Control Systems, Porto, Portugal, 2014.
- K. Wormnes, J.H. de Jong, H. Krag and G. Visentin, "Throw-nets and tethers for robust space debris capture". 64th International Astronautical Congress, IAC-13,A6.5,2x16445, Beijing, China, 2013.
- H. P. Menard, "Dynamic Mechanical Analysis A practical introduction". 2nd Edition, CRC Press, Taylor & Francis Group, 2008.
- A. McKenna, J.W.S. Hearle and N. O'Hear, "Handbook of fibers rope technology". The Textile Institute, Woodhead Publishing Limited, Cambridge, England, 2004.

- Tail-wagging tumbling target Gas plume impingement on tether
- necessary and effective

Design and testing:

- Detailed design and testing of support system/connections/insulation
- Tests to Validate dynamics models
- Tests to characterize real parameters and verify functional requirements
- Performances quantification, requirements verification in relevant environment

Proposed qualification roadmap:

- Friction-less table or underwater scaled dynamics + DMA
- Microgravity testing + thermo-vacuum
- Sub-orbital flight or I.O.D.

