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Abstract. We establish the local input-to-state stability of multi-valued evolutionary
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1. Introduction

Evolutionary systems without uniqueness play an important role in the general
infinite-dimensional systems theory because of the large number of applications:
3D Navier-Stokes system and other PDEs, where there is no results about unique-
ness of the initial-value problem in the natural phase spase: multidimensional
reaction-diffusion systems, nonlinear PDEs with non-smooth nonlinear term, and
evolutionary equations with set-valued right-hand part, where it is known that
for some initial data more than one solution exist [1–3]. For dissipative infinite-
dimensional systems one of the main tools for investigation their qualitative be-
havior is the global attractors theory [3–5]. The first results on transferring the
theory of attractors to evolutionary systems without uniqueness belong to an
outstanding Ukrainian mathematician Valery Melnik [6–9]. Later, the theory of
global attractors of multi-valued systems was applied to a wide classes of infinite-
dimensional problems without uniqueness, including impulsive [10–12], stochas-
tic [13], and general non-autonomous problems [14–16].

One of the important properties of the global attractor is its stability. It is
known [4], [9] that under rather general assumption global attractor is stable in
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Lyapunov sense. But from the application point of view it is important to prove
robust stability, i.e., stability with respect to disturbances so called Input-to-State
Stability (ISS) [17–20]. For single-valued evolutionary systems with non-trivial
global attractors ISS theory was developed in [21–23]. In the present paper we
generalize these results to general multi-valued case.

2. Setting of the problem

We consider an abstract evolutionary (autonomous) system, which is char-
acterized by a normed phase space (X, � · �) and a family of maps (solutions)
K ⊂ C([0,+∞);X) such that the following conditions hold:

(K1) ∀x ∈ X ∃ϕ ∈ K such that ϕ(0) = x;
(K2) ϕτ (·) := ϕ(·+ τ) ∈ K, ∀τ ≥ 0, ∀ϕ ∈ K.
Than the multi-valued map G : R+ ×X �→ 2X

G(t, x) = {ϕ(t)| ϕ ∈ K, ϕ(0) = x} (2.1)

is called m-semiflow.

Definition 2.1. A compact set Θ ⊂ X is called a global attractor of m-semiflow
G if

(Θ1) Θ ⊂ G(t,Θ), ∀t ≥ 0 (semi invariance),
(Θ2) for all bounded B ⊂ X

�G(t, B)�Θ → 0, t → ∞ (uniform attraction),

where here and after G(t, B) =
�
b∈B

G(t, b) and for Y ⊂ X

�Y �Θ := dist (Y,Θ) = sup
y∈Y

inf
θ∈Θ

�y − θ�.

It is known [9] that in the most cases global attractor, if it exists, is stable,
i.e.,

∀ε > 0 ∃δ > 0 ∀t ≥ 0 G(t, Oδ(Θ)) ⊂ Oε(Θ), (2.2)

where here and after

Oδ(Y ) = {x ∈ X| dist (x, Y ) < δ}, for Y ⊂ X.

In addition to «ε-δ» language, stability property (2.2) can be described in
terms of comparison functions [24]. We introduce the following classes:

K := {γ : [0,+∞) �→ [0,+∞) | γ is continuous, strictly increasing, γ(0) = 0},
K∞ := {γ ∈ K | γ is unbounded},
L := {γ : [0,+∞) �→ [0,+∞) | γ is continuous, strictly decreasing, γ(t) →

0, t → ∞},
KL := {β : [0,+∞)× [0,+∞) �→ [0,+∞) |β is continuous, β(·, t) ∈ K, ∀t ≥

0, β(s, ·) ∈ L, ∀s > 0}.
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Under rather general assumptions we will show that for the m-semiflow G
with global attractor Θ ∃β ∈ KL ∀x ∈ X, ∀t ≥ 0

�G(t, x)�Θ ≤ β(�x�Θ, t). (2.3)

This property helps us to prove the main result about ISS property of disturbed
system. More precisely, we assume that the initial evolutionary system undergoes
non-autonomous bounded disturbances u ∈ U , where

(U) U ⊂ L∞(R+), 0 ∈ U , U is translation-invariant, i.e.,

uh(·) = u(·+ h) ∈ U, ∀h ≥ 0, ∀u(·) ∈ U.

Denote by {Su : R2
≥ × X �→ 2X}u∈U , where R2

≥ = {(t, s)| t ≥ s ≥ 0},
the family of m-semiprocesses (see (3.1) below) generated by solutions of the
disturbed evolutionary system (the case u ≡ 0 corresponds to the undisturbed
system).

Under some additional assumptions we will prove that {Su}u∈U is local ISS
w.r.t. the global attractor Θ of the undisturbed system, i.e., ∃r > 0, ∃β ∈
KL, ∃γ ∈ K such that

�x�Θ ≤ r, �u�∞ ≤ r ⇒ ∀t ≥ 0 �Su(t, 0, x)�Θ ≤ β(�x�Θ, t) + γ(�u�∞), (2.4)

where �u�∞ = ess sup
t≥0

|u(t)|.

3. M-semiflows and m-semiprocesses

So, let us consider the family of solutions K of undisturbed system under
assumptions (K1), (K2). Then the map G : R+ × X �→ 2X , defined by (2.1),
satisfies semigroup proreties:

(G) G(0, x) = x, G (t+ s, x) ⊂ G (t, G(s, x)), ∀x ∈ X, ∀t, s ≥ 0.
Moreover,

ϕ(t+ s) ∈ G(t,ϕ(s)), ∀ϕ ∈ K, ∀t, s ≥ 0.

Additionally, if we assume that
(K3) ∀ϕ1,ϕ2 ∈ K such that ϕ2(0) = ϕ1(s) the function

ϕ(t) =

�
ϕ1(t), 0 ≤ t ≤ s,
ϕ2(t− s), t > s

belongs to K, then G is strict, i.e.,

G(t+ s, x) = G(t, G(s, x)).

The last equality allows us to state existence of invariant global attractor.
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Lemma 3.1. [25] Assume that (K1)–(K3) hold and
(G1) exists bounded B0 ⊂ X such that for all bounded B ⊂ X ∃T = T (B) ∀t ≥

T G(t, B) ⊂ B0 (dissipativity),
(G2) ∀tn � ∞, for all bounded B ⊂ X, ∀ξn ∈ G(tn, B) the sequence {ξn} is

precompact (asymptotic compactness),
(G3) ∀t > 0, ∀xn → x0, ∀ξn ∈ G(t, xn), ξn → ξ0 we have: ξ0 ∈ G(t, x0)

(closed graph).
Then m-semiflow G possesses invariant global attractor Θ, i.e.,

Θ = G(t,Θ) ∀t ≥ 0.

Moreover, if
(G4) ∀tn → t0 ≥ 0, ∀xn → x0, ∀ξn ∈ G(tn, xn) up to sequence ξn → ξ0 ∈

G(t0, x0)
holds, then Θ is stable in the sense of (2.2).

Now assume that our evolutionary system undergoes disturbances u ∈ U ,
where the set U satisfies (U). Denote by Kτ

u ⊂ C([τ,+∞);X) the family of maps
satisfying the following properties:

(S1) ∀x ∈ X, ∀τ ≥ 0, ∀u ∈ U ∃ϕ ∈ Kτ
u : ϕ(τ) = x,

(S2) ϕ|[s,+∞) ∈ Ks
u, ∀ϕ ∈ Kτ

u , ∀s ≥ τ ,
(S3) ϕ(·+ h) ∈ Kτ

u(·+h), ∀ϕ ∈ Kτ+h
u , ∀h ≥ 0.

Let us put
Su(t, τ, x) := {ϕ(t)| ϕ ∈ Kτ

u , ϕ(τ) = x}. (3.1)

Then [26] {Su}u∈U generates the family of m-semiprocesses, i.e., ∀u ∈ U, ∀t ≥
s ≥ τ ≥ 0, ∀x ∈ X, ∀h ≥ 0

Su(t, τ, x) = x,

Su(t, τ, x) ⊂ Su(t, s, Su(s, τ, x)),

Su(t+ h, τ + h, x) ⊂ Su(·+h)(t, τ, x).

It is easy to verify that {Su}u∈U satisfies cocycle property:

Su(t+ h, 0, x) ⊂ Su(t+ h, h, Su(h, 0, x)) ⊂ Su(·+h)(t, 0, Su(h, 0, x)),

and ∀ϕ ∈ Kτ
u

ϕ(t) ∈ Su(t, s,ϕ(s)).

In particular, ∀ϕ ∈ K0
u, ∀t, h ≥ 0

ϕ(t+ h) ∈ Su(t+ h, h,ϕ(h)) ⊂ Su(·+h)(t, 0,ϕ(h)). (3.2)

(S4) Moreover, if ∀s ≥ τ, ∀ψ ∈ Kτ
u , ∀ϕ ∈ Ks

u with ψ(s) = ϕ(s) the function

Θ(p) =

�
ψ(p), p ∈ [τ, s],
ϕ(p), p ≥ s
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belongs to Kτ
u , then inclusion Su(t, τ, x) ⊂ Su(t, s, Su(s, τ, x)) takes place.

(S5) If ∀h ≥ 0, ∀ϕ ∈ Kτ
u(·+h) we have that ϕ(· − h) ∈ Kτ+h

u , then inclusion
Su(t+ h, τ + h, x) ⊂ Su(·+h)(t, τ, x) takes place.

So, under conditions (U), (S1)–(S5) for the semiprocess family {Su}u∈U we
have that {Su}u∈U is strict, i.e.,

Su(t, τ, x) = Su(t, s, Su(s, τ, x)),

Su(t+ h, τ + h, x) = Su(·+h)(t, τ, x),

Su(t+ h, 0, x) = Su(·+h)(t, 0, Su(h, 0, x)).

In particular, in the undisturbed case (u ≡ 0)

S0(t+ h, 0, x) = S0(t, 0, S0(h, 0, x)),

so S0 is a strict m-semiflow.
In the next section we investigate stability property of {Su}u∈U with respect

to the global attractor Θ of m-semiflow G of the undisturbed system, i.e.,

G(t, x) := S0(t, 0, x).

4. Stability of global attractors

Lemma 4.1. Assume that G : R+ ×X �→ 2X is a strict m-semiflow, which has
an invariant stable global attractor Θ. Also, assume that

for all bounded B ⊂ X the set
�

t≥0

G(t, B) is bounded. (4.1)

Then ∃β ∈ KL ∀x ∈ X, ∀t ≥ 0

�G(t, x)�Θ ≤ β(�x�Θ, t). (4.2)

Proof. First let us show that ∃α ∈ K∞ such that

∀x ∈ X, ∀t ≥ 0 �G(t, x)�Θ ≤ α(�x�Θ). (4.3)

Using (2.2), let us denote

δ̄(ε) :=

�
0, ε = 0,
sup δ, (ε, δ) satisfies (2.2).

Then δ̄(ε) > 0, ε > 0, δ̄(0) = 0, δ̄ is increasing, but not necessary continuous.
So, we put for κ ∈ (0, 1)

ξ(ε) :=





κ

ˆ ε

0
δ̄(s) ds, ε ∈ [0, 1],

κ

ε

ˆ ε

0
δ̄(s) ds, ε > 1.
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Then ξ ∈ K and ∀ε > 0 ξ(ε) ≤ κδ̄(ε) < δ̄(ε). Let us prove that ξ ∈ K∞. It is
sufficient to show that δ̄(ε) → ∞ as ε → ∞, i.e.,

∀R > 0 ∃r ∀ε > r δ̄(ε) > R.

Suppose the contrary:

∃R0 > 0 ∀r ∃ε > r : δ̄(ε) ≤ R0. (4.4)

Due to assumption (4.1) ∃r0 ∀ε > r0

∀t ≥ 0 G(t, OR0+1(Θ)) ⊂ Oε(Θ),

so, δ̄(ε) ≥ R0 + 1, which contradicts (4.4). Now let us put

α(r) = ξ−1(r).

Then ∀x ∈ X we put in (2.2) ε = α(�x�Θ). Therefore, �x�Θ < δ̄(ε) and ∀t ≥ 0

�G(t, x)�Θ < ε = α(�x�Θ).

According to (Θ2) ∀r > 0, ∀x ∈ X : �x�Θ ≤ r and ∀η > 0

∃T = T (η, r) > 0 ∀t ≥ T �G(t, x)�Θ < η. (4.5)

We introduce functions

T (η, r) = inf T (η, r), (η, r) satisfies (4.5),

Wr(η) =
r

η

ˆ η

η
r

T̄ (s, r)ds+
r

η
,

Ur = W−1
r ,

ψ(r, s) = min{α(r), inf
ρ>r

Uρ(s)}.

After that we can repeat without any changes arguments from [24, p. 665] and
obtain (4.2) with

β(r, s) =

ˆ r+1

r
ψ(λ, s) dλ+

r

(r + 1)(s+ 1)
.

Statement of this lemma allows us to prove the main result of the paper.

Theorem 4.1. Assume that m-semiflow S0 is generated by family of maps K
satisfying (K1), (K2), S0 is strict, has compact values, and possesses invariant
stable global attractor Θ.
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Additionally, exists locally bounded function c : R+ → R+ such that ∀r >
0, ∀t ≥ 0

�x1� ≤ r, �x2� ≤ r ⇒ dist(S0(t, 0, x1), S0(t, 0, x2)) ≤ ec(r)t�x1 − x2�. (4.6)

Assume that {Su}u∈U is the family of m-semiprocesses satisfying (U), (S1)–
(S3), where u ∈ U is disturbances of the initial system S0.

Assume that ∃σ ∈ K, exists continuous function d : R2
+ → R+ such that

∀r > 0 lim
t→0+

d(r,t)
t < ∞, and ∀t ≥ 0

�u�∞ ≤ r, �x� ≤ r ⇒ dist(Su(t, 0, x), S0(t, 0, x)) ≤ d(r, t)σ(�u�∞). (4.7)

Assume, that

∀r > 0 the set
�

t≥0

�

�u�∞≤r

�

�x�≤r

Su(t, 0, x) is bouded. (4.8)

Then {Su}u∈U is local ISS w.r.t. Θ, i.e., inequality (2.4) holds.

Proof. First let us prove that ∀r > 0 ∃ψ,ψ,α ∈ K, exists Lipschitz continuous
function V with Lipschitz constatnt equals 1, such that

ψ(�x�Θ) ≤ V (x) ≤ ψ(�x�Θ) ∀�x�Θ ≤ r, (4.9)

V̇0(x) := lim
t→0+

1

t
dist(V (S0(t, 0, x)), V (x)) ≤ −α(�x�Θ) ∀�x�Θ ≤ r, (4.10)

where here and after for A ⊂ X, V (A) =
�
a∈A

V (a).

For this purpose we choose function β from (4.2), fix r0 > 0 and ∀ε > 0 let
T = T (r0, ε) be such that

β(r0, t) ≤ ε ∀t ≥ T. (4.11)

We put
V ε(x) := e−(c0+c)T sup

t≥0
(ectηε(�S0(t, 0, x)�Θ)), �x�Θ < r0,

where c0 = c(r0) is taken from (4.6), c > 0 will be fixed throughout the proof,
ηε(r) := max{0, r − ε}. Due to (4.11)

V ε(x) = e−(c0+c)T sup
t∈[0,T ]

(ectηε(�S0(t, 0, x)�Θ)).

Using elementary properties of ηε:

ηε(r) ≤ r, |ηε(r1)− ηε(r2)| ≤ |r1 − r2|,

we get the following properties of V ε:

V ε(x) ≤ e−c0T sup
t∈[0,T ]

ηε(�S0(t, 0, x)�Θ) ≤ β(�x�Θ, 0), ∀�x�Θ ≤ r0
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and

|V ε(x)− V ε(y)| ≤ e−(c0+c)T

× sup
t∈[0,T ]

|ectηε(�S0(t, 0, x)�Θ)− ectηε(�S0(t, 0, y)�Θ)|

≤ e−c0T sup
t∈[0,T ]

|�S0(t, 0, x)�Θ)− �S0(t, 0, y)�Θ)|

≤ e−c0T sup
t∈[0,T ]

dist (S0(t, 0, x), S0(t, 0, y))

≤ e−c0T ec0T �x− y�
= �x− y�, ∀ �x�Θ ≤ r0, ∀ �y�Θ ≤ r0.

Here, we utilized the inequality

dist (A,B) ≤ dist (A,C) + dist (C,B)

with A = S0(t, 0, x), B = Θ, C = S0(t, 0, y).
Due to compactness of Θ we have that ∀�x�Θ < r0

�x�Θ = inf
ξ∈Θ

�x− ξ� = �x− ξ0�, ξ0 ∈ Θ.

Then due to (4.6)

dist (S0(t, 0, x), S0(t, 0, ξ0)) ≤ ec0t�x− ξ0�.

Invariance of Θ implies the inclusion

S0(t, 0, ξ0) ⊂ Θ.

Therefore,
dist (S0(t, 0, x), S0(t, 0, ξ0)) ≥ �S0(t, 0, x)�Θ.

So, from the sctrict inequality �x�Θ < r0 we derive that for sufficiently small
τ > 0

�S0(τ, 0, x)� < r0.

Then ∀ϕ ∈ K : ϕ(0) = x, we get from the strictness of S0

V ε(ϕ(τ)) = e−(c0+c)T sup
t≥0

(ectηε(�S0(t, 0,ϕ(τ))�Θ))

≤ e−(c0+c)T sup
t≥0

(ectηε(�S0(t+ τ, 0, x)�Θ))

≤ e−cτV ε(x) for sufficiently small τ > 0.

Due to compactness of S0(t, 0, x) we deduce: for every small τ > 0 ∃ϕ ∈
K, ϕ(0) = x such that

dist (V ε(S0(τ, 0, x)), V
ε(x)) = V ε(ϕ(τ))− V ε(x) ≤ (e−cτ − 1)V ε(x). (4.12)
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Therefore,

V̇ ε
0 (x) := lim

t→0+

1

t
dist(V ε(S0(t, 0, x)), V

ε(x)) ≤ −cV ε(x), �x�Θ < r0. (4.13)

Now, for every �x�Θ ≤ r0, we put

V (x) :=
∞�

k=1

2−kV
1
k (x).

Then from the previous arguments, we get

V (x) ≤ β(�x�Θ, 0), �x�Θ ≤ r0, (4.14)
|V (x)− V (y)| ≤ �x− y�, �x�Θ ≤ r0, �y�Θ ≤ r0, (4.15)

∀ϕ ∈ K, ϕ(0) = x for sufficiently small τ > 0

V (ϕ(τ)) ≤ e−cτV (x), and therefore,

dist (V (S0(τ, 0, x)), V (x)) ≤ (e−cτ − 1)V (x).

So,
V̇0(x) ≤ −cV (x), �x�Θ < r0. (4.16)

Moreover, inequality

sup
t≥0

�
ectη 1

k
(�S0(t, 0, x)�Θ)

�
≥ η 1

k
(�x�Θ)

implies

V (x) ≥
∞�

k=1

2−ke−(c0+c)T ( 1
k
)η 1

k
(�x�Θ), �x�Θ ≤ r0. (4.17)

Finally, denoting

ψ(r) = β(r, 0) + r,

ψ(r) =
∞�

k=1

2−ke−(c0+c)T ( 1
k
)η 1

k
(r),

α(r) = cψ(r),

we obtain (4.9),(4.10).
Then for ∀�x�Θ < 1, ∀u ∈ U : �u�∞ ≤ 1, ∀ϕ ∈ K0

u : ϕ(0) = x, let us
consider for t > 0 the upper right-hand Dini derivative [27]

D
+
V (ϕ(t)) = lim

τ→0+

1

τ
(V (ϕ(t+ τ))− V (ϕ(t))).

According to property (3.2)

ϕ(t+ τ) ∈ Su(t+ τ, 0, x) ⊂ Su(·+t)(τ, 0,ϕ(t)).
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From (4.8), for some r0 > 0, �ϕ(t)� < r0 ∀t ≥ 0. We fix such r0 in all previous
arguments. So, in view of (4.7), we can write

V (ϕ(t+ τ))− V (ϕ(t)) ≤ dist (V (Su(·+t)(τ, 0,ϕ(t))), V (ϕ(t)))

≤ dist
�
V (Su(·+t)(τ, 0,ϕ(t))), V (S0(τ, 0, V (Su(·+t)(τ, 0,ϕ(t)))))

�

+ dist (V (S0(τ, 0, V (Su(·+t)(τ, 0,ϕ(t))))), V (ϕ(t)))

≤ d(r0, τ)σ(�u�∞) + (e−cτ − 1)V (ϕ(t)). (4.18)

It means that

D
+
V (ϕ(t)) ≤ −cV (ϕ(t)) + dσ(�u�∞), ∀t > 0, (4.19)

where d = lim
τ→0+

d(r0,τ)
τ .

Due to the properties of upper limit, we get from (4.19):

D
+ �

V (ϕ(t))ect
�
≤ −D

+
�
−dσ(�u�∞)

c
ect

�
,

D
+
�
V (ϕ(t))ect − dσ(�u�∞)

c
ect

�
≤ 0. (4.20)

Then inequality (4.20) implies that (see [27])

V (ϕ(t))ect − dσ(�u�∞)

c
ect ≤ V (x)− dσ(�u�∞)

c
, ∀t ≥ 0.

So,

V (ϕ(t)) ≤ V (x)e−ct +
d

c
σ(�u�∞), ∀t ≥ 0. (4.21)

Finally,

ψ(�ϕ(t)�Θ) ≤ ψ(�x�Θ)e−ct +
d

c
σ(�u�∞),

�ϕ(t)�Θ ≤ ψ−1(ψ(�x�Θ)e−ct +
d

c
σ(�u�∞))

≤ 1

2
ψ−1

�
2ψ(�x�Θ)e−ct

�
+

1

2
ψ−1

�
2d

c
σ(�u�∞)

�
. (4.22)

If we denot

β(r, s) :=
1

2
ψ−1

�
2ψ(�x�Θ)e−cs

�
,

γ(r) :=
1

2
ψ−1

�
2d

c
σ(r)

�
,

then inequality (4.22) implies the required local ISS property (2.4).
Theorem is proved.
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5. Application to reaction-diffusion equation

We consider the following problem
�

∂y
∂t = �y + g(y) + h(y)u(t),

y|∂Ω = 0,
(5.1)

where Ω ⊂ Rd is a bounded domain, g ∈ C1(R), h ∈ C(R), ∃α1,α2, k, c,λ ∈
(0,+∞), p ≥ 2 such that, ∀r ∈ R,

−k − α1|r|p ≤ g(r)r ≤ k − α2|r|p,
g�(r) ≤ λ, (5.2)
|h(r)| ≤ c.

Conditions (5.2) allow us to claim that ∀τ ≥ 0, ∀u ∈ L∞(τ,+∞), ∀yτ ∈ X =
L2(Ω) there exists at least one (but not necessary unique) weak solution y = y(t, x)
of (5.1), defined on (τ,+∞), such that y|t=τ = yτ [3, 9]. It is known [26] that all
weak solutions of (5.1) generate the family of maps {Kτ

u} which satisfies (S1)–
(S3), where we choose U = L∞(0,+∞). Moreover, every weak solutions of (5.1)
belongs to the class of absolutely continuous functions from [τ, T ] to X for every
T > τ , and for a.a. t > τ

d

dt
�y(t)�2 + ν�y(t)�2 ≤ c1 + c2�u�2∞.

So,

�y(t)�2 ≤ �y(τ)�2e−ν(t−τ) +
1

ν
(c1 + c2�u�∞), ∀t ≥ τ. (5.3)

In particular, property (4.8) holds.
For u ≡ 0 the problem (5.1) is uniquelly resolvable in the phase space X [4],

and results from [5] guarantee the existence of invariant stable global attractor Θ
of the corresponding semiflow S0. Moreover, from [21] we deduce that

�S0(t, 0, y
(1)
0 )− S0(t, 0, y

(2)
0 )� ≤ eλt�y(1)0 − y

(2)
0 �, ∀y(1)0 , y

(2)
0 ∈ X, ∀t ≥ 0, (5.4)

y(0) = y0, ∀y0 ∈ X, ∀u ∈ U, ∀y ∈ K0
u,

�y(t)− S0(t, 0, y0)� ≤ 2e2λcµ(Ω)�u�∞t, ∀t ≥ 0. (5.5)

Inequalities (5.3)–(5.5) imply conditions (4.6)–(4.8) of the Theorem 4.1. It
means, that the family of m-semiprocess, generated by weak solution of (5.1) is
local ISS with respect to the global attractor Θ of the undisturbed system S0.
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