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Abstract. The separation of variables based solution to a simplified (compared to that
published earlier in JODEA, 28 (1) (2020), 1 – 42) initial boundary value problem for a 1D
linear degenerate wave equation, posed in a space-time rectangle, has been presented in
a fully complete form. Degeneracy of the equation is due to vanishing its coefficient in
an interior point of the spatial segment being the side of the rectangle. For the sake
of convenience, the solution is interpreted as a vibrating ‘string’. The solution obtained
in the case of weak degeneracy is smooth and bounded, whereas that in the case of strong
degeneracy is piece-wise smooth, piece-wise continuous and unbounded in a neighbor-
hood of the point of degeneracy, nevertheless being satisfied some regularity conditions,
including square-integrability. In both cases the travelling waves pass through the point
of degeneracy, and this phenomenon is referred to as an ability of the ‘string’ to hear
itself. The total energy of the ‘string’ is shown to conserve in both cases of degeneracy,
provided the ends of the ‘string’ are fixed, though the above vibrating ‘string’ analogy fails
in the case of strong degeneracy. The total energy conservation implies the uniqueness of
the solution to the problem in both cases of degeneracy.

Key words: degenerate wave equation, vibrating string, separation of variables, series
solution, transmission condition, travelling wave, conservation of energy.
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1. Introduction and the problem formulation

The current study is a sequel to [2,4] and deals with the following 1-parameter
simplified initial boundary value problem (IBVP) for the degenerate wave equa-
tion, posed in the space-time rectangle [0, T ]× [−1,+1] ⊂ R+

t ×Rx wrt u(t, x;α)




∂2u

∂t2
− ∂

∂x

�
a
∂u

∂x

�
= 0 , (t, |x|) ∈ (0, T ]× (0, 1) ,

∂u(0, x;α)

∂t
=

∗∗
u(x;α)

u(0, x;α) =
∗
u(x;α)





, x ∈ [−1,+1] ,

u(t,−1;α) = h1(t;α)

u(t,+1;α) = h2(t;α)

�
, t ∈ [0, T ] ,

(1.1)
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where known control functions h1,2(t;α)∈C 1[0, T ]
�

C 2(0, T ] obey the compati-
bility conditions: h1(0;α) =

∗
u(−1;α), h �

1(0;α) =
∗∗
u(−1;α), h2(0;α) =

∗
u(+1;α),

h �
2(0;α) =

∗∗
u(+1;α), and the 1-parameter family of coefficient functions is defined

as follows

a(x;α) = |x|α, x ∈ [−1,+1] , (1.2)

the parameter of degeneracy α∈ (0, 2), and all the variables are nondimensional.
The point x = 0, where the coefficient (1.2) vanishes, is referred below to as the de-
generacy point, whereas [0, T ]× [−1,+1] ⊃ [0, T ]×{0} is referred to as the dege-
neracy segment, or the dividing segment of the space-time rectangle. Dealing with
(1.1), (1.2), we distinguish between the cases of: 1) weak degeneracy, α∈ (0, 1),
2) strong degeneracy, α ∈ (1, 2), and 3) non-degeneracy, α = 0 (the limiting case).

For the solution to the problem to exist and to be unique, some matching
conditions must be imposed on the required solution at the degeneracy segment,
which will be discussed below.

The above problem is simplified compared to that of [2, 3] due to extending
the original power law for the coefficient function

a(x;α) =

�
a∗|x|α, 0 � |x| � c ,

1 , c � |x| � 1 ,
(1.3)

where a∗c
α=1, to the segment [−1,+1], as in (1.2). We will further refer to (1.1),

(1.2) as the IBVPS, for short.
The transformation of the independent variables based on the characteristics

variables [2] (refer to Fig. 1.1)





τ = t ,

ξ = ∓|x|
θ
2 ,

(t, |x|) ∈ [0, T ]× [0, 1] , (1.4)

where the upper and lower signs refer to x < 0 and x > 0, respectively, yields
to the following formulation of the IBVPS, posed in the space-time rectangle
[0, T ]× [−1,+1] ⊂ R+

τ × Rξ wrt U(τ, ξ;α)





∂2U

∂τ2
−

�
θ

2

�2 ∂2U

∂ξ2
− θ

2

α

2ξ

∂U

∂ξ
= 0 , (τ, |ξ|) ∈ (0, T ]× (0, 1) ,

∂U(0, ξ;α)

∂τ
=

∗∗
U(ξ;α)

U(0, ξ;α) =
∗
U(ξ;α)





, ξ ∈ [−1,+1] ,

U(τ,−1;α) = h2(τ ;α)

U(τ,+1;α) = h1(τ ;α)

�
, τ ∈ [0, T ] ,

(1.5)
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Fig. 1.1. Transformation (1.4) maps space-time rectangle (t, |x|) ∈ [0, T ]×[0, 1]

onto space-time rectangle (τ, |ξ|) ∈ [0, T ]× [0, 1] and ‘inflates’ the degeneracy
of the original wave equation in (1.1) by stretching variable ξ near the dege-
neracy segment: curves 1 – 7 are drawn for α = 0.25 (0.25) 1.75, respectively

referred to as the simplified transformed initial boundary value problem (IBVPT,
for short).

Wherever it is useful and convenient, the solution to the IBVPS will be inter-
preted (and referred to) as the distributed over segment [−1,+1] displacements
of a vibrating ‘string’: 1) subject to known controls h1(t) and h2(t), imposed
on both ends of the ‘string’, and 2) having the initial distributed displacements
∗
u(x;α) and velocities ∗∗

u(x;α).
From a physical point of view, the coefficient function a(x;α) of the degenera-

te wave equation of the IBVPS can be treated as a) the ratio of the local tension
and the local density of the ‘string’ or b) the local ‘speed of sound’ (the velocity
of the travelling waves) squared. Indeed, the expanded form of the degenerate
wave equation of (1.1) can be presented using the differential operator, satisfying
the following identity [1]

∂2

∂t2
− a

∂2

∂x2
− a�

∂

∂x
=

�
∂

∂t
−√

a
∂

∂x

��
∂

∂t
+
√
a

∂

∂x

�
− a�

2

∂

∂x
=

=

�
∂

∂t
+
√
a

∂

∂x

��
∂

∂t
−√

a
∂

∂x

�
− a�

2

∂

∂x
,
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and then can be easily rewritten as any of two following systems




∂u1
∂t

+
√
a
∂u1
∂x

− u2 = 0 ,

∂u2
∂t

− a�

2

∂u1
∂x

− √
a
∂u2
∂x

= 0 ,

(1.6)





∂v1
∂t

− √
a
∂v1
∂x

− v2 = 0 ,

∂v2
∂t

− a�

2

∂v1
∂x

+
√
a
∂v2
∂x

= 0 ,

(1.7)

where u1(t, x;α)= v1(t, x;α)=u(t, x;α), whereas functions u2(t, x;α), v2(t, x;α)
are fully determined by the first equations of systems (1.6), (1.7), respectively.

Both systems can be presented in matrix form, for example the former reads

∂U

∂t
+ A

∂U

∂x
+ A�U = O , (1.8)

where U(t, x;α) is the state matrix-column, whereas A(x;α) and A� are quadratic
coefficient matrices as follows

U =




u1

u2


, O =




0

0


, A =




+
√
a 0

−1
2 a

� −√
a


, A� =




0 −1

0 0


.

Matrix A has 1) two real and distinct eigenvalues ∓√
a being the velocities

of the travelling waves and 2) a complete set of right (in columns of matrix R)
and left (in rows of matrix L) eigenvectors

R = L−1 =




0 1

1 −1
2 (

√
a )�


, L = R−1 =




+1
2 (

√
a )� 1

1 0


,

hence, system (1.8) is strictly hyperbolic outside the degeneracy segment, where
it degenerates.

The fact that a(x;α) vanishes at x = 0 makes it possible to assume that
the ‘string’ a) acts like a swivel or is ’too heavy’ in a close vicinity to this point,
and even b) can prevent the travelling waves from passing through this point.

One question among those, raised in [2], was that concerning the travelling
waves on one part of a degenerate ‘string’, say, on the left one, initially excited
due to a choice of ∗

u(x;α), ∗∗
u(x;α), x∈ [−1, 0), or being excited due to a choice of

h1(t;α), t ∈ [0, T ] (provided that h2(t;α) ≡ 0, t ∈ [0, T ]). Can such waves enter
the right part of the ‘string’ being at rest and come back to the left part (violating
the above assumption b)? Using power series solutions to the degenerate wave
equation valid in some close vicinity of the degeneracy point, it was succeeded
in [2] to prove that some necessary conditions for passing the travelling waves
through the point of degeneracy hold. Being impressed by the title [7], we refer
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to the question concerning passing the travelling waves through the degeneracy
point (from the left part of the ‘string’ being disturbed to the right one being
undisturbed) in the way the current study is entitled, realizing that our local
implication of verb ‘to hear’ and that used in [7] are quite different.

From a mathematical point of view, formulation of any correct IBVP for the vi-
brating ‘string’ implies imposing the proper matching conditions at both sides of
the degeneracy point (more precisely, at both sides of the degeneracy segment
of the space-time rectangle): 1) the continuity of the displacement u(t, x;α) and
2) the continuity of the tension, or the flux f(t, x;α), being equal to the product
of a(x;α) and the local slope of the displacement (the latter condition usually
is referred to as the transmission one). Therefore the matching conditions for
the IBVPS read as the continuity of u(t, x;α) and f(t, x;α) on the degeneracy
segment 




u(t, x;α)
��
x=0−0

= u(t, x;α)
��
x=0+0

,

f(t, x;α)
��
x=0−0

= f(t, x;α)
��
x=0+0

,
t ∈ [0, T ] . (1.9)

whereas for the IBVPT they read as continuity of U(τ, ξ;α) and the flux F (τ, ξ;α)




U(τ, ξ;α)
��
ξ=0−0

= U(τ, ξ;α)
��
ξ=0+0

,

F (τ, ξ;α)
��
ξ=0−0

= F (τ, ξ;α)
��
ξ=0+0

,
τ ∈ [0, T ] . (1.10)

F (τ, ξ;α) being equal to the product of
θ

2
|ξ|

α
θ and the local slope of U(τ, ξ;α).

We explain our approaches to solve the IBVPS and the IBVPT using sepa-
ration of variables (SV) and imposing the matching conditions by referring to
the IBVP for vibrating string with a piecewise constant density (a particular non-
degenerate case). Let the IBVP be posed in the space-time rectangle [0, T ]× [0, l],
then the coefficient reads: a(x;α)≡a21, x∈ [0, x0); a(x;α)≡a22, x∈(x0, l]; x0 being
the point of discontinuity at which the matching conditions are imposed.

The first approach follows an algorithm given, for example, in the collection
of problems [5] (for example, problems 164 – 166 on p. 37; problem 57 on p. 128),
supplementing the textbook [12]. The algorithm utilizes the core idea of formu-
lating ‘the global’ (or the composite) Sturm – Liouville boundary value problem
(BVP) for the segment [0, l], rather than formulating two ‘local’ Sturm – Liouville
BVPs for the subsegments [0, x0], [x0, l]. The governing equation of the global
BVP has the above discontinuity in its coefficient at x= x0, nevertheless there
exist the complete countable sets of the ‘global’ eigenvalues and eigenfunctions
(modes), the latter being smooth over the segment [0, l]. This means that the re-
sulting solution to the IBVP, based on those sets due to SV, obey the matching
conditions.

The second approach to the IBVP is based on: 1) splitting [0, T ] × [0, l] into
two space-time subrectangles [0, T ] × [0, x0] and [0, T ] × [x0, l]; 2) reformulating
the IBVP into two ‘local’ IBVPs in the above space-time subrectangles; 3) formu-
lating and solving two associated ‘local’ incomplete BVPs (due to not imposing
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the matching conditions at x0) as two sets of the ‘local’ eigenvalues and eigenfunc-
tions (modes) ; 4) solving the ‘local’ IBVPs; 5) imposing matching conditions on
the solutions to the ‘local’ IBVPs for obtaining the solution to the IBVP.

Previously, in [4], it was attempted to develop the second SV based approach
to the IBVPS, nevertheless the first SV based approach was presented as well.

The goal of the current study is:
1) to develop SV [4] for solving the IBVPS and IBVPT, utilizing the first

approach, in a fully complete form, supplemented by illustrative test cases;
2) to demonstrate that multiple passing the travelling waves through the point

of degeneracy occurs in the cases of weak and strong degeneracy at any type of
exciting one part of the ‘string’, the other part being at rest.

The current study is arranged as follows.
In Sect. 2 we: 1) define the complete sets of the eigenvalues and the eigenfunc-

tions for the composite BVPs, associated with the IBVPS (λk,µ(α), Xk,µ(x;α))
and the IBVPT (λk,µ(α), Φk,µ(ξ;α)); 2) discuss the properties of the above sets
to build solutions u(t, x;α) to the IBVPS and U(τ, ξ;α) to the IBVPT, both
bounded and unbounded, respectively in the cases of weak and strong degeneracy.

In Sect. 3 we apply the second SV based approach to solve exactly the IBVPS
and IBVPT in a fully complete form.

In Sect. 4 we introduce proper function spaces H1
a and H1

ξ for the SV based so-
lutions u(t, x;α) and U(τ, ξ;α) of Sect. 3, respectively to the IBVPS and IBVPT,
and prove the uniqueness of the above solutions, 1) using the energy method, and
2) accounting that Xk,µ(x;α) ⊂ H1

a and Φk,µ(ξ;α) ⊂ H1
ξ .

In Sect. 5 we discuss a proper choice of the blending functions φ1(x;α) and
φ2(x;α), used in SV of Sect. 3 to replace the IBVPS and IBVPT with the asso-
ciated IBVPs.

In Sect. 6 we give some comments on ways used to suppress the Gibbs phe-
nomenon, that arises when expanding: 1) the initial functions ∗

u(x;α), ∗∗
u(x;α),

∗
U(ξ;α), and

∗∗
U(ξ;α), and 2) the blending functions φ1(x;α), φ2(x;α) in general

Fourier series wrt the eigenfunctions Xk,µ(x;α) and Φk,µ(ξ;α) of Sect. 2.
In Sect. 7 we apply the obtained exact solutions of Sect. 3 to two test cases of

the IBVPS and IBVPT and discuss in detail the observable properties of the so-
lutions to the test cases.

In Sect. 8 we summarize the results obtained and some observations on the pro-
cedures applied in the current study.

Before completing this introductory Sect., we would like to point out other
studies on the subject [8–10], carried out purely by methods of functional analysis.

2. Preliminaries to separation of variables

Implementing SV to the IBVPS and IBVPT of Sect. 1 is essentially based
on the assertions being formulated below in Prop. 2.1 and Prop. 2.2 relating to
the IBVPS and in Prop. 2.3 relating to the IBVPT. Note, that Props. 2.1, 2.2 are
given with some modifications compared to those presented in [4].
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The Bessel functions J∓�(s) of the first kind and orders ∓� [14], being refer-
enced to in Props. 2.1 – 2.3, satisfy the ordinary differential equation

s2 J��∓�(s) + s J �
∓�(s) +

�
s2 − �2

�
J∓�(s) = 0

and have the following power series representations

J∓�(s) =
�s
2

�∓�
∞�

γ=0

(−1)γ

γ!Γ(1∓ �+ γ)

�s
2

�2γ
. (2.1)

Proposition 2.1. Let the following incomplete 1-parameter boundary value prob-
lems be given





�
a(x;α)Z �

j (x;α)
��
+ λj(α)Zj(x;α) = 0 , 0 < |x| < 1 ,

Zj(∓1;α) = 0 ,
(2.2)

where j∈{1, 2} relates to [−1, 0] and [0,+1] respectively, then: 1) the eigenvalues
λj,k,µ(α) ≡ λk,µ(α) and the eigenfunctions Zj,k,µ(x;α) ≡ Zk,µ(x;α) of the prob-
lems (2.2) of the two kinds (marked with k∈{1, 2}) are defined as follows





λ1,µ(α) =

�
θ

2
s1,µ

�2

≡ σ2
1,µ , Z1,µ(x;α) = |x|

ν
2 J−�

�
s1,µ |x|

θ
2

�
,

λ2,µ(α) =

�
θ

2
s2,µ

�2

≡ σ2
2,µ , Z2,µ(x;α) = |x|

ν
2 J+�

�
s2,µ |x|

θ
2

�
,

(2.3)

where ν, θ, � are the α-dependent quantities

ν(α) = 1− α , θ(α) = 2− α , �(α) =
ν

θ
=

1− α

2− α
; (2.4)

J∓�(s), � /∈Z, are the linearly independent Bessel functions of the first kind and
orders ∓� [14];

�
sk,µ

�∞
µ=1

are the unbounded monotonically increasing sequences
of the zeros of functions J∓�(s); 2) the eigenfunctions of each kind are orthogonal
in L2[−1, 0] and L2[0,+1] respectively, that is

∓
ˆ ∓1

0
Zk,µ(x;α)Zk,γ(x;α) dx =

1

θ
J 2
∓�+1(sk,µ) δµ,γ ≡ �Zk,µ�21 δµ,γ , (2.5)

where µ, γ ∈ N , and δµ,γ is the Kronecker delta.

Proposition 2.2. Let the following composite 1-parameter boundary value prob-
lem be given





D�(x;α) + λ(α)X(x;α) = 0 , 0 < |x| < 1 ,

a) X(∓1;α) = 0 , b) X(x;α)
��
x=0−0

= X(x;α)
��
x=0+0

,

c) D(x;α)
��
x=0−0

= D(x;α)
��
x=0+0

,

(2.6)
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where D(x;α)=a(x;α)X �(x;α) is the flux of X(x;α), then in the case of weak de-
generacy: 1) the eigenvalues λk,µ(α) and the eigenfunctions Xk,µ(x;α) of the prob-
lem (2.6) of the two kinds (marked with k∈{1, 2}) are defined as follows

�
λ1,µ(α) = σ2

1,µ , X1,µ(x;α) = Z1,µ(x;α) ,

λ2,µ(α) = σ2
2,µ , X2,µ(x;α) = sgnx Z2,µ(x;α) ,

(2.7)

where σ2
k,µ(α) and Zk,µ(x;α) are given in (2.3) of Prop. 2.1; 2) the eigenfunctions

of both kinds are orthogonal in L2[−1,+1], that is




ˆ +1

−1
Xk,µ(x;α)Xk,γ(x;α) dx = 2 �Zk,µ�21 δµ,γ ≡ �Xk,µ�22 δµ,γ ,

ˆ +1

−1
X1,µ(x;α)X2,γ(x;α) dx = 0 .

(2.8)

The eigenfunctions Xk,µ(x;α) and their fluxes Dk,µ(x;α)=a(x;α)X �
k,µ(x;α)

(refer to Fig. 2.2), due to (2.1) and (2.7), have the following series representations




X1,µ(x;α) =
�s1,µ

2

�−� ∞�

γ=0

(−1)γ |x|γθ
γ!Γ(1− �+ γ)

�s1,µ
2

�2γ
,

X2,µ(x;α) = sgnx |x|ν
�s2,µ

2

�+� ∞�

γ=0

(−1)γ |x|γθ
γ!Γ(1 + �+ γ)

�s2,µ
2

�2γ
,

(2.9)





D1,µ(x;α) =
�s1,µ

2

�−�

θ x

∞�

γ=1

(−1)γγ |x|(γ−1)θ

γ!Γ(1− �+ γ)

�s1,µ
2

�2γ
,

D2,µ(x;α) =
�s2,µ

2

�+� ∞�

γ=0

(−1)γ [ν + γθ] |x|γθ
γ!Γ(1 + �+ γ)

�s2,µ
2

�2γ
.

(2.10)

The resulting series (2.9), (2.10) give the following values on the degeneracy
segment





X1,µ(0;α) =
�s1,µ

2

�−� 1

Γ(1− �)
, α ∈ (0, 2) ,

X2,µ(0;α) = 0 , α ∈ (0, 1) ,

sgnx lim
x→0

|x|−ν X2,µ(x;α) =
�s2,µ

2

�+� 1

Γ(1 + �)
, α ∈ [1, 2) ,

(2.11)





D1,µ(0;α) = 0 ,

D2,µ(0;α) =
�s2,µ

2

�� ν

Γ(1 + �)
�= 0 ,

α ∈ (0, 2) . (2.12)
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Fig. 2.2. Eigenvalues Xk,µ(x;α) (2.7) (a,c) of the composite boundary-value problem (2.6)
and their fluxes Dk,µ(x;α) = a(x;α)X �

k,µ(x;α) (b,d) for α = 0.25 (a,b) and α = 1.25 (c,d)



98 V. L. Borsch, P. I. Kogut

1) In the case of weak degeneracy the above values are in agree with condi-
tions b) and c) of Prop. 2.2.

2) In the case of strong degeneracy, the eigenfunctions X1,µ(x;α) still obey
conditions b) and c), whereas the eigenfunctions X2,µ(x;α), being unbounded
and discontinuous at x=0, do not obey condition b), nevertheless do obey con-
dition c). We shall try to build formally the solution to the IBVPS for α∈(1, 2),
keeping in mind this property of X2,µ(x;α).

3) In the case of non-degeneracy (ν = 1, θ = 2), the Bessel functions of the first
kind and orders ∓� = ∓1

2 are known [13,14] to simplify to





J−�(s) = J− 1
2

(s) =

�
2

πs
cos s ,

J+�(s) = J
+ 1

2

(s) =

�
2

πs
sin s ,

s > 0 , (2.13)

then the eigenfunctions read




X1,µ(x; 0) = |x| 12 J−�

�
s1,µ |x|

�
=

�
2

π s1,µ
cos

�
s1,µ x

�
,

X2,µ(x; 0) = signx |x| 12 J+�

�
s2,µ |x|

�
=

�
2

π s2,µ
sin

�
s2,µ x

�
,

x ∈ [−1,+1] ,

where the eigenvalues are as follows




s1,µ(0) = σ1,µ(0) = (2µ− 1)
π

2
≡ s1,µ ,

s2,µ(0) = σ2,µ(0) = (2µ− 0)
π

2
≡ s2,µ ,

µ ∈ N . (2.14)

Taking the above eigenfunctions, for the sake of convenience, as
�
X1,µ(x; 0) = cos

�
σ1,µ x

�
,

X2,µ(x; 0) = sin
�
σ2,µ x

�
,

x ∈ [−1,+1] , (2.15)

we obtain the well-known orthonormal system of the eigenfunctions of the Sturm-
Liouville BPV [12]

�
X ��(x; 0) + λX(x; 0) = 0 , x ∈ [−1,+1] ,

X(∓1; 0) = 0 ,
(2.16)

satisfying conditions b) and c).
The next proposition directly follows from Prop. 2.2, transformation (1.4) and

its inverse, though it can be easily proved independently.
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Proposition 2.3. Let the following composite 1-parameter boundary value prob-
lem be given





θ

2
|ξ|−

α
θ Ψ�(ξ;α) + λΦ(ξ;α) = 0 , 0 < |ξ| < 1 ,

a) Φ(∓1;α) = 0 , b) Φ(ξ;α)
��
ξ=0−0

= Φ(ξ;α)
��
ξ=0+0

,

c) Ψ(ξ;α)
��
ξ=0−0

= Ψ(ξ;α)
��
ξ=0+0

,

(2.17)

where Ψ(ξ;α)=
θ

2
|ξ|

α
θ Φ�(ξ;α) is the flux of Φ(ξ;α), then in the case of weak de-

generacy: 1) the eigenvalues λk,µ(α) and the eigenfunctions Φk,µ(ξ;α) of the prob-
lem (2.17) of the two kinds (marked with k∈{1, 2}) are defined as follows





λ1,µ(α) = σ2
1,µ , Φ1,µ(ξ;α) = |ξ|� J−�

�
s1,µ |ξ|

�
,

λ2,µ(α) = σ2
2,µ , Φ2,µ(ξ;α) = sgn ξ |ξ|� J+�

�
s2,µ |ξ|

�
,

(2.18)

where σ2
k,µ are given in (2.3) of Prop. 2.1; 2) the eigenfunctions of both kinds are

orthogonal in L2[−1,+1] with the weight |ξ|
α
θ (for detail refer to Sect. 4), that is





ˆ +1

−1
|ξ|

α
θ Φk,µ(ξ;α)Φk,γ(ξ;α) dξ = �Φk,µ�23 δµ,γ =

θ

2
�Xk,µ�22 δµ,γ ,

ˆ +1

−1
|ξ|

α
θ Φ1,µ(ξ;α)Φ2,γ(ξ;α) dξ = 0 .

(2.19)

The eigenfunctions Φk,µ(ξ;α) and their fluxes Ψk,µ(ξ;α) =
θ

2
|ξ|

α
θ Φ �

k,µ(ξ;α)

(refer to Fig. 2.3), due to (2.1), (2.18), have the following series representations




Φ1,µ(ξ;α) =
�s1,µ

2

�−� ∞�

γ=0

(−1)γ

γ!Γ(1− �+ γ)

�
s1,µ|ξ|

2

�2γ

,

Φ2,µ(ξ;α) = sgn ξ |ξ|2ρ
�s2,µ

2

�+� ∞�

γ=0

(−1)γ

γ!Γ(1 + �+ γ)

�
s2,µ|ξ|

2

�2γ

,

(2.20)





Ψ1,µ(x;α) = θ sgn ξ |ξ|
2
θ
�s1,µ

2

�−� ∞�

γ=1

(−1)γγ |ξ|2(γ−1)

γ!Γ(1− �+ γ)

�s1,µ
2

�2γ
,

Ψ2,µ(x;α) =
�s2,µ

2

�+� ∞�

γ=0

(−1)γ [ν + γθ] |ξ|2γ
γ!Γ(1 + �+ γ)

�s2,µ
2

�2γ
,

(2.21)
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Fig. 2.3. Eigenvalues Φk,µ(ξ;α) (2.18) (c) of the composite boundary-value problem (2.17)
and their fluxes Ψk,µ(ξ;α) = Φ �

k,µ(x;α) (d) for α = 1.25 (c,d) (cf. Fig. 2.2, c,d)

and take exactly the same values on the degeneracy segment as those (2.11), (2.12)
for the eigenfunctions Xk,µ(ξ;α) and their fluxes Dk,µ(ξ;α).

3. Applying separation of variables to the problem

The solution to the IBVPS is assumed to have the following representation

u(t, x;α) = v(t, x;α) + w(t, x;α) , (3.1)

where: a) v(t, x;α) is the required function; b) the univariate interpolation func-
tion w(t, x;α) is the result of blending the control functions and is given as follows

w(t, x;α) = φ1(x;α)h1(t;α) + φ2(x;α)h2(t;α) ; (3.2)

c) the smooth blending functions φ1(x;α), φ2(x;α) obey the boundary and regu-
larity conditions, respectively

�
φ1(−1;α) = 1 , φ1(+1;α) = 0 ,

φ2(−1;α) = 0 , φ2(+1;α) = 1 ;
(3.3)
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ψ1(x;α) ≡ ϕ �
1(x;α) =

�
a(x;α)φ �

1(x;α)
�� ∈ C [−1,+1] ,

ψ2(x;α) ≡ ϕ �
2(x;α) =

�
a(x;α)φ �

2(x;α)
�� ∈ C [−1,+1] .

(3.4)

Combining (3.1) – (3.3) we obtain: a) the initial conditions for v(t, x;α)





v(0, x;α) = u(0, x;α) − w(0, x;α) ≡ ∗
v(x;α) ,

∂v(0, x;α)

∂t
=

∂u(0, x;α)

∂t
− ∂w(0, x;α)

∂t
≡ ∗∗

v(x;α) ,
(3.5)

and b) the reformulated IBVPS wrt v(t, x;α)





∂2v

∂t2
− ∂

∂x

�
a
∂v

∂x

�
= g , (t, x) ∈ (0, T ]×(−1,+1) ,

v(t,−1;α) = 0

v(t,+1;α) = 0

�
, t ∈ [0, T ] ,

∂v(0, x;α)

∂t
=

∗∗
v(x;α)

v(0, x;α) =
∗
v(x;α)





, x ∈ [−1,+1] ,

(3.6)

where the right-hand side of the degenerate wave equation reads

−g(t, x;α) =
∂2w(t, x;α)

∂t2
− ∂

∂x

�
a(x;α)

∂w(t, x;α)

∂x

�

= φ1(x;α)h
��
1(t;α)− ψ1(x;α)h1(t;α)

+ φ2(x;α)h
��
2(t;α)− ψ2(x;α)h2(t;α)

(3.7)

Applying SV to (3.6) implies that the initial functions (3.5) and the right-hand
side (3.7) are expanded into the series wrt Xk,µ(x;α)





∗
v(x;α) =

∞�

µ=1

∗
v1,µ(α)X1,µ(x;α) +

∞�

µ=1

∗
v2,µ(α)X2,µ(x;α) ,

∗∗
v(x;α) =

∞�

µ=1

∗∗
v1,µ(α)X1,µ(x;α) +

∞�

µ=1

∗∗
v2,µ(α)X2,µ(x;α) ,

(3.8)

g(t, x;α) =
∞�

µ=1

g1,µ(t;α)X1,µ(x;α) +
∞�

µ=1

g2,µ(t)(t;α)X2,µ(x;α) , (3.9)
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where the coefficients are calculated by direct integration




∗
vk,µ(α) =

1

�Xk,µ�22

ˆ +1

−1

∗
v(x;α)Xk,µ(x;α) dx ,

∗∗
vk,µ(α) =

1

�Xk,µ�22

ˆ +1

−1

∗∗
v(x;α)Xk,µ(x;α) dx ,

gk,µ(t;α) =
1

�Xk,µ�22

ˆ +1

−1
g(t, x;α)Xk,µ(x;α) dx .

(3.10)

Accounting for (3.9) the latter coefficients can be presented as follows

gk,µ(t;α) = ck,µ(α)h1(t;α) − ak,µ(α)h
��
1(t;α)

+ dk,µ(α)h2(t;α) − bk,µ(α)h
��
2(t;α) ,

(3.11)

where 



ak,µ(α) =
1

�Xk,µ�22

ˆ +1

−1
φ1(x;α)Xk,µ(x) dx ,

bk,µ(α) =
1

�Xk,µ�22

ˆ +1

−1
φ2(x;α)Xk,µ(x) dx ,

ck,µ(α) =
1

�Xk,µ�22

ˆ +1

−1
ψ1(x;α)Xk,µ(x) dx ,

dk,µ(α) =
1

�Xk,µ�22

ˆ +1

−1
ψ2(x;α)Xk,µ(x) dx .

(3.12)

Then the standard SV procedure yields to the solution to the reformulated
IBVPS (3.6), (3.7)

v(t, x;α) =
∞�

µ=1

O1,µ(t;α)X1,µ(x;α) +
∞�

µ=1

O2,µ(t;α)X2,µ(x;α) , (3.13)

where the time dependent coefficient functions read

Ok,µ(t;α) =
∗
vk,µ(α) cos

�
σk,µt

�
+ σ−1

k,µ
∗∗
vk,µ(α) sin

�
σk,µt

�

+ σ−1
k,µ

ˆ t

0
gk,µ(τ ;α) sin

�
σk,µ(t− τ)

�
dτ .

(3.14)

Finally, (3.13), (3.14) and representation (3.1) give the required solution to
the original IBVPS (1.1), (1.2)





u(t, x;α) =

∞�

µ=1

O1,µ(t;α)X1,µ(x;α) + φ1(x;α)h1(t;α)

+

∞�

µ=1

O2,µ(t;α)X2,µ(x;α) + φ2(x;α)h2(t;α) ,

(3.15)
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with the flux




f(t, x;α) =
∞�

µ=1

O1,µ(t;α)D1,µ(x;α) + ϕ1(x;α)h1(t;α)

+
∞�

µ=1

O2,µ(t;α)D2,µ(x;α) + ϕ2(x;α)h2(t;α) ,

(3.16)

being continuous on the space-time rectangle [0, T ] × [−1,+1] ⊂ R+
t × Rx, due

to: a) Prop. 2.2 and b) the regularity conditions (3.4). From this it immedi-
ately follows that the matching conditions (1.9) for the displacement (3.15) and
the flux (3.16), imposed at the degeneracy segment, are satisfied in the case of
weak degeneracy. In the case of strong degeneracy the displacement (3.15) is un-
bounded on the degeneracy segment, nevertheless the flux (3.15) is still continu-
ous, therefore the first of the matching conditions fails, whereas the second one
holds.

The solution U(τ, ξ;α) to the IBVPT, with the flux F (τ, ξ;α) being continu-
ous on the space-time rectangle [0, T ]× [−1,+1] ⊂ R+

t ×Rξ due to Prop. 2.3, can
be obtained in exactly the same way as the above solution to the IBVPS.

4. Existence and uniquiness of the solution to the problem

Now we refer to proving the uniqueness of the obtained in Sect. 3 solutions to
the IBVPS and IBVPT, using a quite standard procedure [12], based on the equa-
tions governing the total energy wrt time for both problems. It is known [12],
that multiplying the wave equation for a finite vibrating string by the partial
derivative of the solution wrt time and integrating the product over the spatial
segment yields, after some transformations of the integrand, to the required equa-
tion. This procedure is applicable for the degenerate wave equation of the IBVPS
as well and yields to the following total energy equation

E(t;α) =
1

2

ˆ +1

−1

��
∂u

∂t

�2

+

�√
a
∂u

∂x

�2�
dx = const , t ∈ [0, T ] . (4.1)

Applying the above procedure for the degenerate wave equation of the IBVPT
involves sophisticated calculations, therefore we perform changing the variable of
integration in (4.1) by referring to transformation (1.4) and its inverse, to obtain
the following total energy equation

Θ(τ ;α) =
1

2

ˆ +1

−1
|ξ|

α
θ

�
2

θ

�
∂U

∂τ

�2

+
θ

2

�
∂U

∂ξ

�2�
dξ = const , τ ∈ [0, T ] . (4.2)

In (4.1), (4.2) the first and second terms in the brackets are responsible for
the kinetic and potential energy, respectively.
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Then we introduce a function space, associated with the IBVPS and denoted
as H1

a ([0, T ]× [−1,+1])≡H1
a , of all functions satisfying the following conditions





a) u(t, |x|;α) ∈ PC(2,2) ([0, T ]× (0, 1]) ,

b) u(t, x;α)

c)
�
a(x;α)

∂u(t, x;α)

∂x





∈ L2[−1,+1], t ∈ [0, T ] .
(4.3)

The above space is of Hilbert type wrt the scalar product

(u, v)4 =

ˆ +1

−1

�
uv + a

�
∂u

∂x

��
∂v

∂x

��
dx (4.4)

and the associated norm

�u�24 =
ˆ +1

−1

�
u2 + a

�
∂u

∂x

�2�
dx , (4.5)

determined for any u(t, x;α), v(t, x;α) ∈ H1
a .

Doing in the same way, we also introduce a function space, associated with
the IBVPT and denoted as H1

ξ ([0, T ]× [−1,+1])≡H1
ξ , of all functions satisfying

the following conditions




a) U(τ, |ξ|;α) ∈ PC(2,2) ([0, T ]× (0, 1]) ,

b) |ξ|
1
2
α
θ U(τ, ξ;α)

c) |ξ|
1
2
α
θ ∂U(τ, ξ;α)

∂ξ





∈ L2[−1,+1], τ ∈ [0, T ] .
(4.6)

The space again is of Hilbert type wrt the scalar product

(U, V )5 =

ˆ +1

−1
|ξ|

α
θ

�
UV + a

�
∂U

∂ξ

��
∂V

∂ξ

��
dξ (4.7)

and the associated norm

�U�25 =
ˆ +1

−1
|ξ|

α
θ

�
U2 +

�
∂U

∂ξ

�2�
dξ , (4.8)

determined for any U(τ, ξ;α), V (τ, ξ;α) ∈ H1
ξ .

Two following Props. 4.1, 4.2 can be readily proved: 1) using the total energy
equations(4.1), (4.2); 2) accounting that Xk,µ(x;α) ⊂ H1

a , Φk,µ(ξ;α) ⊂ H1
ξ ; and

3) following any textbook on partial differential equations, for example [12].

Proposition 4.1. Let the IBVPS be posed for functions u(t, x;α) ∈ H1
a , then

there exists a solution to the IBVPS (for example, obtained by SV) and this solu-
tion is unique.
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Proposition 4.2. Let the IBVPT be posed for functions U(τ, ξ;α) ∈ H1
ξ , then

there exists a solution to the IBVPT (for example, obtained by SV) and this solu-
tion is unique.

5. Calculating the coefficients a, b, c, and d

We take for blending in (3.2) the following power functions




φ1(x;α) =
1− sgnx

2
|x|ω1 ,

φ2(x;α) =
1 + sgnx

2
|x|ω2 ,

(5.1)

where the exponents ωj(α) are to be determined. To impose the proper constraint
on the exponents, we calculate: 1) the ‘fluxes’ ϕj(x;α) = a(x;α)φ �

j(x;α)





ϕ1(x;α) =
sgnx− 1

2
ω1 |x|ω1−θ+1,

ϕ2(x;α) =
1 + sgnx

2
ω2 |x|ω2−θ+1,

and 2) their derivatives ψj(x;α) = ϕ �
j(x;α) =

�
a(x;α)φ �

j(x;α)
��





ψ1(x;α) =
1− sgnx

2
ω1 [ω1 − θ + 1] |x|ω1−θ,

ψ2(x;α) =
1 + sgnx

2
ω2 [ω2 − θ + 1] |x|ω2−θ,

(5.2)

and assume that the latter vanish at x = 0 smoothly: ψj(0;α) = 0, ψ �
j(0;α) = 0,

therefore ωj − θ = 1 + �j , where the free parameter �j > 0. Taking ωj ≡ ω and
substituting the functions φj(x;α, �) (5.1), ψj(x;α, �) (5.2) into (3.12) yields to





ak,µ(α, �) =
1

�Xk,µ�22

ˆ 0

−1
φ1(x;α, �)Xk,µ(x;α) dx ,

ck,µ(α, �) =
1

�Xk,µ�22

ˆ 0

−1
ψ1(x;α, �)Xk,µ(x;α) dx ,





bk,µ(α, �) =
1

�Xk,µ�22

ˆ 1

0
φ2(x;α, �)Xk,µ(x;α) dx ,

dk,µ(α, �) =
1

�Xk,µ�22

ˆ 1

0
ψ2(x;α, �)Xk,µ(x;α) dx .
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Accounting for the definition of Xk,µ(x;α) (refer to Prop. 2.2 on p. 95),
the above coefficients can be rewritten as





ak,µ(α, �) = ∓1

2

Qk,µ(α, �)

�Zk,µ�21
, ck,µ(α, �) = ±ϑ

2

Pk,µ(α, �)

�Zk,µ�21
,

bk,µ(α, �) = −1

2

Qk,µ(α, �)

�Zk,µ�21
, dk,µ(α, �) = +

ϑ

2

Pk,µ(α, �)

�Zk,µ�21
,

(5.3)

where ϑ=ω [ω − θ + 1] , θ �Zk,µ�2 = J 2
∓�+1(sk,µ) (2.5), and the quantities Pk,µ(α, �),

Qk,µ(α, �) can be readily presented as follows




Pk,µ(α, �) =

ˆ 1

0
xω−θ Zk,µ(x;α) dx =

ˆ 1

0
x
�+1

x
ν
2 J∓�

�
sk,µ |x|

θ
2

�
dx

=
2

θ

�
1

sk,µ

�υ+1

P ∗
k,µ(α, �) ,

Qk,µ(α, �) =

ˆ 1

0
xω Zk,µ(x;α) dx =

ˆ 1

0
x
θ+�+1

x
ν
2 J∓�

�
sk,µ |x|

θ
2

�
dx

=
2

θ

�
1

sk,µ

�υ+3

Q ∗
k,µ(α, �) ,

(5.4)

applying the variable transformation s = sk,µ x
θ
2 and notation υθ = 2�+ 3.

The definite integrals in (5.4)

P ∗
k,µ(α, �) =

ˆ sk,µ

0
sυ J∓�(s) ds , Q ∗

k,µ(α, �) =

ˆ sk,µ

0
sυ+2 J∓�(s) ds , (5.5)

in turn, can be calculated exactly by parts, if the positive values of those, produced
by the formulas: 1) �=−1 + n θ, n ∈ N, and 2) �=−2 +m θ, m∈N, are used for
the free parameter �, respectively, in cases: 1) k=1 and the upper sign in J∓�(s),
and 2) k = 2 and the lower sign in J∓�(s) [4]. Unfortunately, simultaneous (for
the unique choice of � in both cases) exact calculation of the above integrals
is impossible. Subtracting one formula from the other gives the equality 1= kθ,
k ∈ Z, which does not hold for any α ∈ [0, 2], except for α = 1. Therefore,
numerical approaches are used to calculate (5.5).

6. Suppressing the Gibbs phenomenon

Expanding the initial functions ∗
u(x;α), ∗∗

u(x;α),
∗
U(ξ;α),

∗∗
U(ξ;α) of Sect. 1, and

the blending functions φ1(x;α), φ2(x;α) of Sect. 5 is the only source of the spu-
rious oscillations, or the Gibbs phenomenon, in the series solutions of Sect. 3.
We tested some approaches [6], being different filters, to suppress the Gibbs phe-
nomenon, especially near the degeneracy segment. Note, that method [11] can
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be easily adjusted to the eigenfunctions of Props. 2.2, 2.3. To avoid the Gibbs
phenomenon, produced by the initial functions, we used mollifiers to smooth piece-
wise constant discontinuous initial functions (7.1) of test case A of Sect. 7. There-
fore test case A is free from any sources of the Gibbs phenomenon, whereas test
case B is sensitive to the Gibbs phenomenon, due to expanding the blending
functions, therefore their expansions were properly filtered.

7. Test cases of the problem

We chose for the IBVPS and the IBVPT two test cases differing in the way
the ‘string’ is excited: 1) by disturbing the initial shape of its left part, the ‘string’
being at rest, and 2) by moving its left end periodically, the right end being fixed.

Five different values, presented in Table. 1, were assigned to exponent α in
simplified power law (1.2).

Table 1. α- and N -dependent quantities for the test cases

α ν θ � Δξ (Δx)min

0 1 2 +
1

2
1.000·10−3 1.000 · 10−3

1

4

3

4

7

4 +
3

7
1.000·10−3 3.378 · 10−4

2

4

2

4

6

4 +
1

3
1.000·10−3 7.942 · 10−5

3

4

1

4

5

4 +
1

5
1.000·10−3 1.047 · 10−5

5

4
−1

4

3

4 −1

3
1.000·10−3 3.154 · 10−9

It is clear that there is no necessity to solve directly the IBVPT, using the ex-
plicit formulas similar to those (3.15), (3.16), to study the solution u(t, x;α) to
the IBVPS in a close vicinity of the degeneracy segment, but it is quite enough
to invoke the inverse of transformation (1.4) and apply it as a ‘magnifying glass’
to ‘inflate’ the known solution u(t, x;α) to the required solution U(τ, ξ;α).

To this end, we first introduce the uniform grid on segment [−1,+1] ⊂ Rξ

with spacing Δξ between the nodes and the coordinates ξi of the formers, where

(N − 1)Δξ = 2 , ξi = −1 + (i− 1)Δξ , i = 1, . . . , N ,

N being the number of the nodes. In the case mod (N, 2) = 0 two central nodes
are biased wrt the degeneracy point ξ = 0 by half of Δξ.
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Second, we apply the inverse of transformation (1.4) to calculate the coordi-
nates xi of the grid nodes on segment [−1,+1] ⊂ Rx , for the nodes to cluster
near the degeneracy point x = 0.

All the results presented below were obtained at N=2000, the corresponding
values of Δξ and (Δx)min are presented in Table 1, to evaluate clustering the grid
nodes xi.

7.1. Test case A

In test case A: 1) the initially (t = 0) disturbed ‘string’ is at rest

∗∗
u(x;α) ≡ ∗∗

u0 = 0 ,
∗
u(x;α) =

�
0 ,

��x− x0
�� > δ ,

∗
u0 ,

��x− x0
�� � δ ,

x ∈ [−1,+1] ; (7.1)

2) both ends of the ‘string’ are fixed

u(−1, t;α) = u(+1, t;α) = 0 , t ∈ [0, T ] , (7.2)

i. e., both controls are absent: h1(t;α) = h2(t;α) ≡ 0.
The coefficient functions (3.14) then reduce to

Ok,µ(t;α) =
∗
vk,µ(α) cos

�
σk,µt

�
, (7.3)

where ∗
vk,µ are given in (3.10) and x0 =−0.50, δ=0.10, ∗

u0 =0.50. Recall, refer-
ring to Sect. 6, that the piece-wise constant discontinuous initial conditions (7.1)
are smoothed before substituting into (3.10).

Below we present the solutions u(t, x;α) and U(τ, ξ;α) to the IBVPS and
to the IBVPT as the shapes or the displacements of the ‘string’, respectively,
in Fig. 7.4, 7.5 and Fig. 7.6 –7.9, at some instants of t, τ ∈ [0, 9].

The initial shape (7.1) (t=0.0) immediately breaks into two travelling waves
moving into the opposite directions (t=0.4). In the non-degenerate case the ve-
locity of both travelling waves is known to be constant. In the case of weak
degeneracy the travelling waves behave themselves similarly to those in the non-
degenerate case, but that moving to the right slows down and increases its dis-
placement near the degeneracy point (t=0.8). In the case of strong degeneracy
the ‘string’ loses the continuity of its shape, and the displacements become un-
bounded when the wave approaches the point of degeneracy (t=1.6), they remain
such both just after the wave passes the point (t=2.4) and then during its further
motion.

Reaching the right end of the ‘string’ the wave reflects with overturning and
runs towards the left end, again passing through the degeneracy point. The same
does the wave starting to move to the left from the beginning. From this we con-
clude that only a part of the total energy is spent to drive the degeneracy
point in vertical direction, whereas the other part of the total energy is contin-
uously redistributed between the kinetic and potential energy to provide motion
of the waves. Note, that multiple passing through the degeneracy point leads
to essential distortion of the initial shape of the travelling waves.



Can a finite degenerate ‘string’ hear itself? 109

Fig. 7.4. Test case A: solution u(t, x;α) to the IBVPS (1.1), (1.2)
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Fig. 7.5. Test case A: solution u(t, x;α) to the IBVPS (1.1), (1.2) (continued from Fig. 7.4)
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Fig. 7.6. Test case A: solution U(τ, ξ;α) to the IBVPT (1.5)
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Fig. 7.7. Test case A: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.6)
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Fig. 7.8. Test case A: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.7)
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Fig. 7.9. Test case A: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.8)
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7.2. Test case B

In test case B: 1) the initially (t = 0) undisturbed ‘string’ ( ∗
u(x;α) ≡ 0) is

at rest (∗∗u(x;α) ≡ 0); 2) the right control is absent (h2(t;α) ≡ 0, t ∈ [0, T ]).
The coefficient functions (3.14) then reduce to

Ok,µ(t;α) = σ−1
k,µ

ˆ t

0
gk,µ(τ ;α) sin

�
σk,µ(t− τ)

�
dτ , (7.4)

gk,µ(t;α) (3.11) simplify to

gk,µ(t;α) = ck,µ h1(t;α)− ak,µ h
��
1(t;α) , (7.5)

and ak,µ, ck,µ are given in (3.12), therefore (7.4) read

Ok,µ(t;α) = σ−1
k,µ ck,µ

ˆ t

0
h1(τ ;α) sin

�
σk,µ(t− τ)

�
dτ

� �� �
Ik,µ(t;α)

− σ−1
k,µ ak,µ

ˆ t

0
h��1(τ ;α) sin

�
σk,µ(t− τ)

�
dτ

� �� �
Jk,µ(t;α)

.

(7.6)

Calculation of the second integral in (7.6) is performed accounting for the com-
patibility conditions h1(0;α) =

∗
u(−1;α), h �

1(0;α) =
∗∗
u(−1;α), introduced in Sect. 1

for the left control h1(t;α), and applying integration by parts, as follows

Jk,µ(t;α) = h �
1(τ ;α) sin

�
σk,µ(t− τ)

����
t

0� �� �
0

+ σk,µ

ˆ t

0
h �
1(τ ;α) cos

�
σk,µ(t− τ)

�
dτ

= σk,µ h1(τ ;α) cos
�
σk,µ(t− τ)

����
t

0� �� �
h1(t;α)

− σ2
k,µ

ˆ t

0
h1(τ ;α) sin

�
σk,µ(t− τ)

�
dτ ,

and finally
Jk,µ(t;α) = σk,µ h1(t;α)− σ2

k,µ Ik,µ(t;α) , (7.7)

wherefrom (7.6) yields to

Ok,µ(t;α) = σ−1
k,µ ck,µ Ik,µ(t;α)− σ−1

k,µ ak,µ Jk,µ(t;α)

= σ−1
k,µ

�
ck,µ + ak,µσ

2
k,µ

�
Ik,µ(t;α)− ak,µ h1(t;α) .

(7.8)

We chose the left control in the form (refer to Fig. 7.10)

h1(t;α) =
(−1)

n(t)

2
A1(α)

�
1− cos (ω1(α) t)

�
≡ C1(t;α)

�
1− cos (ω1t)

�
, (7.9)
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where the time-dependent exponent reads

n(t) = entier

�
ω1t

2π

�
= entier

�
t

T1

�
, (7.10)

2T1 being the period of (7.9), wherefrom we find

h �
1(t;α) = C1(t;α) ω1 sin (ω1t) , h��1(t;α) = C1(t;α) ω

2
1 cos (ω1t) , (7.11)

and the above ‘left’ compatibility conditions are evidently to meet.

Fig. 7.10. Left control function h1(t;α) (7.9), satisfying the compatibility conditions:
A1=0.10, T1=2 (solid green curve), A1=0.25, T1=1 (dashed blue curve)

Below the solution to the IBVPT is presented in Fig. 7.11 – 7.14, as the shapes
or the displacements of the ‘string’, at some instants of τ ∈ [0, 4.4], A1 = 0.10,
T1=2. It is clear that the way the ‘string’ is excited does not significantly affect
the behavior of the traveling waves, including its passing the degeneracy point.

8. Conclusions

1. The SV based methods of solving the IBVPS and IBVPT have been pre-
sented in the fully completed form.

2. The solutions to the above problems have been proven using the energy
method to be unique in properly introduced function spaces.

3. In the case of weak degeneracy the travelling waves pass through the point
of degeneracy, the displacements of the ‘string’ being smooth and bounded, that
is the ‘string’ retains its integrity and can hear itself.

4. In the case of strong degeneracy the travelling waves, passing the degeneracy
point, lead to local unboundness and violating the continuity of the displacements
of the ‘string’, the displacements being piece-wise smooth, that is the ‘string’ does
not retain its integrity, nevertheless it still can hear itself.

5. The way the degenerate ‘string’ is excited does not affect significantly
passing the traveling waves through the point of degeneracy, the total energy
of the ‘string’ being conserved.



Can a finite degenerate ‘string’ hear itself? 117

Fig. 7.11. Test case B: solution U(τ, ξ;α) to the IBVPT (1.5)
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Fig. 7.12. Test case B: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.11)
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Fig. 7.13. Test case B: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.12)
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Fig. 7.14. Test case B: solution U(τ, ξ;α) to the IBVPT (1.5) (continued from Fig. 7.13)
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