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Abstract. A method for constructing a one-dimensional discrete mapping describing a
certain periodic process in a general system of ordinary autonomous differential equations
is proposed. The resulting discrete mapping is then used to prove the existence of chaos
in the original system of differential equations.
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1. Introduction

An extensive scientific literature is devoted to the issue of the appearance
of chaos in nonlinear dynamic systems. A good presentation of the reasons for
the appearance of chaotic behavior in dynamical systems (the birth of a chaotic
attractor) is presented, for example, in the book [1]. It should be said that there
are two main methods for searching for chaotic attractors for nonlinear systems.
These methods are based either on the fact the existence of a homoclinic (or
heteroclinic) orbit for a given system (a1) or on constructing a discrete mapping
for the same system and proving its state of chaos (a2).

(a1) Consider the following 3D system of real ordinary autonomous differential
equations:

ẋ(t) = f(x(t),p) ∈ R3; x = (x, y, z)T , f(0,p) = 0. (1.1)

Here f(x,p) : R3 × Rm → R3 is a continuously differentiable function; p ∈ Rm is
a parameter vector.

Let the point 0 be a saddle focus of system (1.1). Assume also that at some
parameter vector p = p0 in system (1.1) there exists a limit cycle L = L(p0) of
period T = T (p0).

In world scientific literature dedicated to the problems of chaotic dynamics
a few scenarios of transition to the chaos in system (1.1) are considered. For a
dissipative system (1.1) one of these scenarios is offered in paper [2].
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According to one of statements of the mentioned work, the transition to
chaos happens through the infinite cascade of period-doubling bifurcations ac-
cording to the Feigenbaum’s scenario. This scenario generates the cascade of the
period-doubling bifurcations of limit cycles L → L(p0): T → 2kT ; k = 1, 2, . . . .
Further, Feigenbaum’s scenario continues by the subharmonic cascade of bifur-
cations of limit cycles L → L(p), the periods T → m(k)T of which are de-
fined by Sharkovsky’s ordering m(k), where m(k) is an integer-valued sequence;
k = 1, 2, . . . (The subharmonic cascade of bifurcations is finished by the cycle of
period 3.) Finally, the subharmonic cascade is ended by the homoclinic cascade of
bifurcations of stable cycles, which converges to the homoclinic orbit connected at
0. The existence conditions of homoclinic (heteroclinic) orbit for system (1.1) are
given by the known Shilnikov Homoclinic (Heteroclinic) Theorem. (Note that in
the Shilnikov Homoclinic (Heteroclinic) Theorem the existence of homoclinic (het-
eroclinic) orbit is a key condition for appearance of chaotic dynamics in system
(1.1). Due to the existence of homoclinic (heteroclinic) orbit the chaotic behavior
of the known Lorenz system at the suitable parameter vector p was proved.)

(a2) Let A(x∗, y∗, z∗) ∈ L(p0) be a point on the limit cycle L = L(p0).
Consider the folowing 1D discrete process

xn+1 = h(xn,p); n = 0, 1, 2, . . . , (1.2)

which is generated by system (1.1) [3, 4]. Here h(x,p) : R × Rm → R is a
continuously differentiable function.

It is clear that if p = p0, then the point x∗ is a fixed point of the function
h(x,p): x∗ = h(x∗,p0). (It means that there exists the limit cycle in system
(1.1).)

Suppose that at p = pc the discrete process (1.2) demonstrates the chaotic
behavior. In this case system (1.1) also demonstrates the chaotic behavior [5, 6].

Now assume that for some p = pc in system (1.1) the conditions of the
Shilnikov Homoclinic (Heteroclinic) Theorem is fulfilled. Then at p = pc process
(1.2) is chaotic.

The converse statement is incorrect. If process (1.2) is chaotic, then system
(1.1) is also chaotic, but in this system the homoclinic (or heteroclinic) orbit can
not exist. Consequently, in such cases the Shilnikov Homoclinic (Heteroclinic)
Theorem is inapplicable.

Let ẋ(t) = f(x(t)) be a dynamical system. In the present article, an attempt
to find the conditions for the appearance of chaos in this system was made. (Here
it is important to note that the existence of equilibrium points, homoclinic and
heteroclinic orbits in studied dynamical systems, was not supposed.)

Denote by Rn a real space of dimension n. Let x = (x1, . . . , xn)
T ∈ Rn be an

unknown vector whose coordinates are functions of time t. Let also f(x) ∈ Rn be
a real vector function of variable x.

Consider the autonomous real dynamical system

ẋ(t) = f(x) ≡ (f1(x), . . . , fn(x))
T , (1.3)
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where functions f1(x), . . . , fn(x) are real continuous.

The function f(x) is said to be continuously differentiable at a point x0 if
the partial derivatives ∂fi(x1, . . . , xn)/∂xj exist and are continuous at x0 for
i, j = 1, . . . , n. For the continuously differentiable function f(x), the Jacobian
matrix Df(x) is an n× n matrix whose element in the ith row and jth column is
∂fi(x)/∂xj [7].

In future we will assume that only one of two following situations takes place:

(b1) the functions f1(x), . . . , fn(x) are independent. Thus, rankDf(x) = n
and there doesn’t exist nonzero a real continuous function Φ(ξ1, . . . , ξn) depending
on n variables ξ1, . . . , ξn such that ∀x ∈ Rn Φ(f1(x), . . . , fn(x)) ≡ 0;

(b2) rankDf(x) = n− 1. It means that there exists the nonzero real function
Φ(ξ1, . . . , ξn) depending on n variables ξ1, . . . , ξn such that ∀x ∈ Rn Φ(f1(x), . . . ,
fn(x)) ≡ 0.

Consider the autonomous real system of ordinary differential equations

ẋ(t) = a+Bx(t) + f(x(t)),x = (x1, . . . , xn)
T ∈ Rn. (1.4)

Here a = (a1, . . . , an)
T ∈ Rn, B = (bij) ∈ Rn×n, f(x) = (f1(x1, . . . , xn),

f2(x1, . . . , xn), . . . , fn(x1, . . . , xn))
T ∈ Rn, and f1(x1, . . . , xn) �≡ 0.

Note that with a suitable change of variables x → Sx, detS �= 0, the vector
a can be represented as a = (0, a2, . . . , an)

T . Moreover, in matrix B �= 0, we can
always fulfill the condition b11 �= 0. Therefore, we will assume that in system
(1.4), we have a1 = 0 and b11 �= 0.

Assume that the f1(. . . ), . . . , fn(. . . ) are continuously differentiable functions
such that

fi(0, . . . , 0) = 0, i = 1, . . . , n;

∂fi(x1, . . . , xn)

∂xj
(0, . . . , 0) = 0; i = 1, . . . , n; j = 1, . . . , n.

(A situation such that some of the functions f1(. . . ), . . . , fn(. . . ) identically equal
to the zero, is not excepted.)

Assume that all functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) are polynomials.
In this case it is clear that if the function fi(x1, . . . , xn) �≡ 0, then we will have
deg fi(x1, . . . , xn) ≥ 2; i ∈ {1, . . . , n}.

Let b11 �= 0. Change the variable x1 by the same variable x1 on the formula:
x1 → x1 − a1/b11. Then in these variables system (1.4) can be rewritten in the
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following form:




ẋ1(t) = a1 +
n�

j=1

b1jxj(t) + f1(x1(t), . . . , xn(t)) ≡ g1(x1(t), . . . , xn(t)),

ẋ2(t) = a2 +

n�

j=1

b2jxj(t) + f2(x1(t), x2(t), . . . , xn(t)) ≡ g2(x1(t), . . . , xn(t)),

. . . . . . . . . . . . . . . . ,

ẋn(t) = an +

n�

j=1

bnjxj(t) + fn(x1(t), x2(t), . . . , xn(t)) ≡ gn(x1(t), . . . , xn(t)).

(1.5)
where a1 = 0. (For simplicity we have left the former designations of variables
x1, . . . , xn, functions g1(. . . ), . . . , gn(. . . ), and corresponding coefficients.)

Let g(x) ≡ (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))
T . By xT (0) = xT

0 = (x10, . . . ,
xn0) denote a vector of initial values for system (1.5).

Definition 1.1. [7]. A set L ⊂ Rn is said to be a positively invariant set of
system (1.5) if from the condition x0 ⊂ L it follows that x(t,x0) ⊆ L, ∀t ≥ 0.

Definition 1.2. System (1.5) is called either degenerate, if ∀x ∈ Rn rankDg(x)<
n or regular, if there exists a point x0 ∈ Rn such that rankDg(x0) = n.

Now by x0 denote an equilibrium point of system (1.5). In future existence
(or absence) of equilibrium points at system (1.3) is not assumed. Nevertheless,
if these equilibriium points exist, they must possess next properties.

Definition 1.3. [1]. The equilibrium x0 is called a saddle if the matrix Dg(x0)
has at least one eigenvalue with a positive real part and one with a negative real
part.

The equilibrium x0 is called a center if all of eigenvalues of the matrix Dg(x0)
have zero real parts with distinct eigenvalues.

2. Construction of 1D exponential discrete map generating
chaos in system (1.5)

Let condition (b1) be satisfied for system (1.5). In this case, the functions
g2(x1, . . . , xn), . . . , gn(x1, . . . , xn) in this system are independent.

Now if condition (b1) is false, then let condition (b2) be valid. A situation,
which is possible in this case: the functions g2(x1, . . . , xn), . . . , gn(x1, . . . , xn) are
dependent. Therefore, it is necessary to do linear nonsingular replacements of
variables x1 → x1, x2 → �

α1jxj ,. . . , xn → �
αnjxj such that in new variables

new functions g2(αij , x1, . . . , xn), . . . , gn(αij , x1, . . . , xn) (these are linear combi-
nations of former functions g1(. . . ), g2(. . . ), . . . , gn(. . . )) will be independent.

2.1. Case when at (1.5) f1(x1, . . . , xn) ≡ f1(0, x2, . . . , xn)

Let function f1(x1, . . . , xn) be independent of variable x1: f1 ≡ f1(x2, . . . , xn).
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Introduce in system (1.5) (or (1.4)) new real variables ρ > 0, x,φ1, . . . ,φn−1,
which are given by the following formulas: x1 = x, x2 = ρ cosφ1, . . . , xn =
ρ cosφn−1, where cos2 φ1 + · · · + cos2 φn−1 ≡ 1. Then, after replacement of vari-
ables and multiplication of the second, third,. . . , and the last equations of system
(1.5) on the corresponding coordinates of row-vector (cosφ1, . . . , cosφn−1) and
summation, we get the first and second equations of system (1.5) in such aspect:





ẋ(t) = b11x(t) + ρ(t)h1(ρ(t),φ1(t), . . . ,φn−1(t)) ≡ b11x(t) + ρ(t)ω1(ρ(t), t),
ρ̇(t) = a2 cosφ1(t) + · · ·+ an cosφn−1(t) + h2(x(t), ρ(t),φ1(t), . . . ,φn−1(t))

≡ a0(t) + ω2(x(t), ρ(t), t).
(2.1)

Here a0(t) ≡ a2 cosφ1(t) + · · · + an cosφn−1(t), h1(. . . ),ω1(. . . ), h2(. . . ),ω2(. . . )
are known functions of their arguments. (The equations φ̇1(t) = v1(. . . ), . . . ,
φ̇n−1(t)=vn−1(. . . ) derived from equations (1.5) in future aren’t used.)

Remind that b11 �= 0. Then from the first equation of system (2.1), we have

x(t) = −(ρ(t)ω1(ρ(t), t))/b11 + ẋ(t)/b11.

From here and the second equation of system (2.1), we also have

ρ̇(t) = a0(t) + ρ(t)Φ(ρ(t), t) + ẋ(t)Ψ(ρ(t), ẋ(t), t), (2.2)

where a0(t),Φ(ρ(t), t), and Ψ(ρ(t), ẋ(t), t) are continuous functions of variables
t, ρ(t), ẋ(t) with periodic coefficients depending on t.

To solve the last equation, we use the well-known Lagrange method of variation
of an arbitrary constant. Then, the solution of this equation can be written in
the following form:

ρ(t) = ρ(t0) exp

� t
ˆ

t0

Φ(ρ(τ), τ)dτ

�

+

t
ˆ

t0

�
a0(τ) + ẋ(τ)Ψ(ρ(τ), ẋ(τ), τ)

�
exp

� τ
ˆ

t0

Φ(ρ(τ − ν), τ − ν)dν

�
dτ, τ > ν.

(2.3)

We can suppose that for system (2.1) the following variant takes place: the in-
creasing sequence tk < tk+1 < tk+2 < . . . is a join of sequences of maximums
tk < tk+2 < tk+4 < . . . and minimums tk+1 < tk+3 < tk+5 < . . . of the function
u(t), where u̇(t) = a0(t) + ẋ(t)Ψ(ρ(t), ẋ(t), t).

We also assume that there exists a positive number T such that t2k+2 − t2k =
t2k+1 − t2k−1 = T . Since we have t2k+2 − t2k+1 = tk+1 − tk, then for the sequence
ρk = ρ(tk), ρk+1 = ρ(tk+1), . . . formula (2.3) can be represented in the following
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aspect:

ρ(tk+1) = ρ(tk) exp

� tk+1
ˆ

tk

Φ(ρ(τ), τ)dτ

�

+

tk+1
ˆ

tk

�
a0(τ) + ẋ(τ)Ψ(ρ(τ), ẋ(τ), τ)

�
exp

� τ
ˆ

tk

Φ(ρ(τ − ν), τ − ν)dν

�
dτ, (2.4)

where τ > ν. (Compact notation is ρk+1 = w(ρk), k = 0, 1, . . . , where w(ρ) ≥ 0
is a 1D continuous real map defined by (2.4)).

3. Conditions for the existence of chaos in system (1.5)

There are a few determinations of chaotic dynamics in the discrete dynamical
systems [8]. We will adhere to one of them.

Definition 3.1. [8]. The function w(ρ) : [0,∞) → [0,∞) is called chaotic if: 1)
w is transitive and 2) a set of periodic points of w is dense in [0,∞).

Definition 3.2. System (1.5) is called chaotic if the function w(ρ) is chaotic.

Let Y ⊂ Rn be a linear subspace in Rn of dimension p (here 0 < p < n).
Denote by P = g|Y the restriction of g to Y. Assume that ∀y ∈ Y, we have

P(y) ∈ Y.

Definition 3.3. The system ẏ(t) = P(y(t)),y(t) ∈ Y, is called a nontrivial
subsystem of system (1.5).

Let φ(x1) = g1(x1, 0, . . . , 0) ≡ x1(b11 + θ(x1)) be a function differentiable on
the interval (−∞,∞).

Theorem 3.1. Assume that for system (1.5) the following conditions are fulfilled:

(c1) there doesn’t exist nontrivial subsystems in system (1.5);

(c2)
∞̂

−∞

(b11 + θ(x1(t))dt < 0;

(c3) there exists an open, connected, positively invariant set X0 ⊂ Rn (with-
out stable equilibrium points) such that for an arbitrary vector of initial values
(x10, . . . , xn0)

T ∈ X0 the solutions x1(x10, . . . , xn0, t), . . . , xn(x10, . . . , xn0, t) of
system (1.5) are bounded, and these solutions satisfy to equality

lim inf
t→∞

ρ(t) ≡ lim inf
t→∞

�
x22(x10, . . . , xn0, t) + · · ·+ x2n(x10, . . . , xn0, t) = 0.

Then in system (1.5) there exists a chaotic dynamics.
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3.1. Proof of Theorem 3.1 in the case when at (1.5) f1 :≡ f1(x2, . . . , xn)

We will look at the iterative process (2.4) as a discrete dynamical system.
We formally construct for system (1.5) the discrete process (2.4).
Further, if system (1.5) has no equilibria, then rankDg(x) = n or rankDg(x)

= n − 1. In this case by linear replacements of variables it is always possible to
obtain that in system (1.5) the functions g2(x1, . . . , xn), . . . , gn(x1, . . . , xn) will
be independent. (It is always possible for the system with equilibrium points.)
Therefore, we can consider that such independence takes place.

Now we suppose that condition (c1) of Theorem 3.1 is not valid. In this case
there exists a basis of space Rn, in which system (1.5) may be represented in the
following form: 




ẏ1(t) = P1(y1(t), . . . , yn(t)),
ẏ2(t) = P2(y2(t), . . . , yn(t)),
. . . . . . . . . . . . ,
ẏn(t) = Pn(y2(t), . . . , yn(t)),

where y1, . . . , yn are new variables and P1(. . . ), . . . , Pn(. . . ) are continuous func-
tions.

From here it follows that in system (1.5) there exists (n − 1)D nontrivial
subsystem. In this case, if n > 3, then in system (1.5) can exists a chaotic attractor
embedded in (n−1)D subspace in Rn. (It attractor can arise up in the subsystem
ẏ2(t) = P2(y2(t), . . . , yn(t)), . . . , ẏn(t) = Pn(y2(t), . . . , yn(t)).) Condition (c1)
excepts such situation. (Condition (c1) guarantees that system (1.5) cannot be
reduced to the so-called "triangular form" by suitable changes of variables.)

Further, we assume that for system (1.5) condition (c3) of Theorem 3.1 is
fulfilled. It means that the condition lim inf

k→∞
ρk = 0 is valid. From here it follows

that lim inf
j→∞

ρ2j+1 = 0. In this case, for the sequence t1, t3, . . . of minimums of

function x(t), we can rewrite formula (2.4) in such aspect:

ρ(t2k+1) =ρ(t2k−1) exp

� t2k+1
ˆ

t2k−1

Φ(ρ(τ), τ)dτ

�

+

t2k+1
ˆ

t2k−1

�
a0(τ) + ẋ(τ)Ψ(ρ(τ), ẋ(τ), τ)

�

× exp

� τ
ˆ

t2k−1

Φ(ρ(τ − ν), τ − ν)dν

�
dτ, τ > ν, (3.1)

where k > 0.
Fix a small enough number � > 0. Further, we choose from the sequence

t1, t3, . . . , t2k−1, . . . a subsequence s1 = ti1 , s2 = ti2 , . . . , sp = tip , . . . such that
ρ(s1) < �, ρ(s2) < �,. . . , ρ(sp) < �,. . .
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Since ρ(t) ≥ 0, then for large enough integers pi, pi+1, we can consider that
ρ(spi) ≈ ρ(spi+1) ≈ 0. Let’s change variables t2k−1 → spi and t2k+1 → spi+1 .
Then, from here and from formula (3.1), it follows that

lim inf
i→∞

spi+1
ˆ

spi

�
a0(τ) + ẋ(τ)Ψ(ρ(τ), ẋ(τ), τ)

�

× exp

� τ
ˆ

spi

Φ(ρ(τ − ν), τ − ν)dν

�
dτ = 0. (3.2)

It is clear that in order that equality (3.2) took place, it is necessary that the
function u(t) was with alternating signs on the interval (spi , spi+1) (the function
u̇(t) = a0(t) + ẋ(t)Ψ(ρ(t), ẋ(t), t) has a root on (spi , spi+1).)

It means that for i → ∞ formula (3.1) can be represented as

lim inf
i→∞

ρspi+1
= lim inf

i→∞
ρspi exp

� spi+1
ˆ

spi

Φ(ρ(τ), τ)dτ

�
= 0. (3.3)

(Note that if lim inf
k→∞

ρk = 0, then lim
t→∞

T = ∞ and the function ρ(t) at some values

of parameters of system (2.1) becomes unperiodic.)
Further, under the condition lim inf

k→∞
ρk = 0 and the boundedness of ρ(t), we

can pass from system (2.1) to the system
�
lim inf
k→∞

ẋ(tk) = lim inf
k→∞

b11x(tk),

lim inf
k→∞

ρ̇(tk) = lim inf
k→∞

(a0(tk) + ω2(x(tk), ρ(tk), tk)).

Thus, in order that the solution x(t) of first equation of system (2.1) was bounded,
it is necessary that in this system we have b11 < 0. (It is condition (c2) of Theorem
3.1.)

Thus, if lim inf
k→∞

ρk = 0 the iterated process (2.4) for system (1.5) is described
by the formula

ρ(tk+1) = ρ(tk) exp

� tk+1
ˆ

tk

Φ(ρ(τ), τ)dτ

�
. (3.4)

If the sequence of values ρ(t1), ρ(t3), . . . of the function ρ(t) is built, then
formula (3.4) can be rewritten in the following form:

ρ(t2i+1)=ρ(t2i−1) exp

� t2i−1+T
ˆ

t2i−1

Φ(ρ(τ), τ)dτ

�
; i = 1, 2, . . . ,∞; T > 0. (3.5)
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Using the Taylor series expansion, the smooth function Φ(ρ(τ), τ) near point
ρ(t2i−1) can be described as follows:

Φ(ρ, τ) =

∞�

j=0

Φ(j)(ρ(t2i−1), t2i−1)

j!
(ρ(τ)−ρ(t2i−1))

j ;Φ(j)(ρ, τ) =
djΦ(ρ, τ)

dρj
. (3.6)

Without loss of generality it is possible to assume that series (3.6) converges
uniformly to Φ(ρ, τ) on the interval [ρ(t2i−1), ρ(t2i+1)]. In this case, we can con-
sider that

t2i−1+T
ˆ

t2i−1

Φ(ρ(τ), τ)dτ =

t2i−1+T
ˆ

t2i−1

∞�

j=0

hj(τ)(ρ(τ)− ρ(t2i−1))
jdτ, (3.7)

where hj(τ) are bounded functions on the interval [t2i−1, t2i−1 + T ].
Now using known First Theorem About Mean Value from (3.7) we get such

presentation:

t2i−1+T
ˆ

t2i−1

Φ(ρ(τ), τ)dτ

=

t2i−1+T
ˆ

t2i−1

∞�

j=0

hj(τ)(ρ− ρ(t2i−1))
jdτ =

∞�

j=0

wj(ξ)(ρ(t2i+1)− ρ(t2i−1))
j ,

where wj(ξ) =
t2i−1+T
´

t2i−1

hj(τ)dτ , t2i−1 < ξ < t2i+1.

Since lim inf
k→∞

ρk = 0, then we can choose from the sequence of minimums

t1, t3, . . . , t2i+1, . . . of function a0(t) + ẋ(t)Ψ(ρ(t), ẋ(t), t) (see (2.2)) the subse-
quence s1 = tp1 , s3 = tp3 , . . . , s2i+1 = tp2i+1 , . . . such that ρ(s2i+1) = o(ρ(s2i−1))
and the sequence ρ(s1), ρ(s3), . . . , ρ(s2i−1), . . . is convergent (limi→∞ ρ(s2i−1) =
h > 0, where h is small enough). In this case formula (3.5) can be rewritten as

ρ(s2i+1) = ρ(s2i−1) exp

� ∞�

j=0

(−1)jwj(s2i−1)ρ
j(s2i−1)

�
; i = 1, 2, . . . ,∞. (3.8)

Now we rewrite formula (3.8) in the following form:

ρ(s2i+1) = ρ(s2i−1) exp(λ(s2i−1)− ρ(s2i−1)µ(ρ(s2i−1))); i = 1, 2, . . . ,∞. (3.9)

Here λ(s2i−1) = w0(s2i−1), µ(ρ(s2i−1)) =
∞�
j=1

(−1)jwj(s2i−1)ρ
j(s2i−1)/ρ(s2i−1).
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Further, from (3.9) it follows that

ρ(s2i+1)µ(ρ(s2i−1)) = ρ(s2i−1)µ(ρ(s2i−1))

× exp(λ(s2i−1)− ρ(s2i−1)µ(ρ(s2i−1))) = 0; i = 1, 2, . . . ,∞. (3.10)

Now we take into consideration condition (c3) in following aspect:

lim inf
i→∞

ρ(s2i+1) = lim inf
i→∞

ρ(s2i−1).

Consequently, we have

lim inf
i→∞

ρ(s2i+1)µ(ρ(s2i+1))

= lim inf
i→∞

ρ(s2i−1)µ(ρ(s2i−1)) = lim inf
i→∞

ρ(s2i+1)µ(ρ(s2i−1)).

In this case equality (3.10) as i → ∞ can be rewritten in such form:

v(s2i+1) = v(s2i−1) exp(λ(s2i−1)− v(s2i−1)); i = 1, 2, . . . ,∞. (3.11)

Here v(s2i−1) = ρ(s2i−1)µ(ρ(s2i−1)),λ(s2i−1) > 0.
Process (3.11) is generated by the 1D map δ(v) = v exp(λ− v) (it is Ricker’s

map [6]). It is known that for some λ Ricker’s map is chaotic (this fact was proved
in [4, 5]). (It should also be noted that process (3.11) is non-autonomous.)

Note that if the functions f1(. . . ), . . . , fn(. . . ) in system (1.5) are polynomials,
then at some values of parameters sequence (3.8) will be chaotic [4] – [6]. (In this
case in formula (3.8) under the sign exp(. . . ) there will be a polynomial instead
of series.)

Above it was shown, as process (3.8) can be reduced to process (3.11). At some
values of parameters process (3.11) (and (3.8)) demonstrates the chaotic behavior.
Consequently, there must be the values of parameters at which the solutions of
system (1.5) also will demonstrate the chaotic behavior. �

3.2. Proof of Theorem 3.1 when at (1.5) f1 :≡ f1(x1, . . . , xn)

In this case, the proof of Theorem 3.1 almost completely repeats the proof
of Subsection 3.1. There are only a few differences to which you should pay
attention.

1. The first equation of system (2.1) will have the following form:

ẋ(t) = x(t)(b11 + θ(x(t))) + ρ(t)h1(x(t), ρ(t),φ1(t), . . . ,φn−1(t)). (3.12)

2. Let condition (c3) of Theorem 3.1 be satisfied. Then, for t → ∞, Equation
(3.12) can be represented as

ẋ(t) = x(t)(b11 + θ(x(t))) +O(ρ(t)).
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The solution to the last equation is this:

x(t) = x(t0) exp

� t
ˆ

t0

(b11 + θ(x(τ)))dτ

�

+

t
ˆ

t0

�
O(ρ(τ))

�
· exp

� τ
ˆ

t0

(b11 + θ(x(τ − ν)))dν

�
dτ. (3.13)

Obviously, if condition (c2) of Theorem 3.1 is satisfied, then the solution x(t) is
bounded.

3. Let tc > 0 be a point such that ẋ|t=tc = 0. Then Equation (3.12) can be
written as

Δ(x, ρ) = 0,

where Δ(0, 0) = 0.
Now we use the well-known Implicit Function Theorem [7]. According to this

theorem, there exists a neighborhood S of the point ρ = 0 such that in this
neighborhood x = γ(ρ), where γ is continuously differentiable at ρ = 0.

Further, we use relation the x = γ(ρ) to obtain an equation of type (2.2), from
the second equation of system (2.1). Now it remains to repeat the procedure for
proving Theorem 3.1 presented in Subsection 3.1. �

Let us calculate Lyapunov’s exponent Λ[f ] for a real function f(t) [3, 4]:

Λ[f ] = lim
t→∞

1

t
ln

����
f(t)

f(t0)

���� , f(t0) �= 0. (3.14)

Let Λ[x1],Λ[x2], . . .Λ[xn] be all n Lyapunov’s exponents of system (1.5).

Corollary (necessary conditions for the existence of chaos).Under the
conditions of Theorem 3.1, among all Lyapunov’s exponents of system (1.5), there
exist at least one positive, one negative, and one zero exponent.

Proof of Corollary. From the first equation of system (2.1) it follows that

x(t) = exp(b11t)x0 +

t
ˆ

0

exp(b11(t− τ))ρ(τ)ω1(ρ(τ), τ)dτ.

Then, from here and (3.14), we have

Λ[x] = b11 + lim
t→∞

1

t
ln

1

|x0|

������
x0 +

t
ˆ

0

exp(−b11τ))ρ(τ)ω1(ρ(τ), τ)dτ

������
= b11 < 0.

Further, we recall that xi(t) = ρ(t) cosφ(t), i = 2, . . . , n. In addition, one
of properties of Lyapunov’s exponents is the following: Λ[xi] = Λ[ρ] + Λ[cosφi],
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where Λ[cosφi] ≤ 0; i = 2, . . . , n. As Λ[x1] < 0, then the following variants are
possible:

(d1) if Λ[ρ] < 0, then Λ[xi] < 0, i = 2, . . . , n. Thus, in X0 there is a stable
equilibrium.

(d2) if Λ[ρ] = 0, then Λ[xi] = 0, i = 2, . . . , p, and Λ[xi] < 0, i = p +
1, . . . , n, where p ≥ 2. Thus, in X0 there is a limit cycle (or center). In this case
the situation lim inf

t→∞
ρ(t) = 0 is impossible.

(d31) if Λ[ρ] > 0, then Λ[xi] > 0, i = 2, . . . , p, and Λ[xi] < 0, i =
p + 1, . . . , n, where p ≥ 2. Thus, in X0 there is a saddle point. In this case the
situation lim inf

t→∞
ρ(t) = 0 is also impossible.

(d32) if Λ[ρ] > 0, then Λ[xi] > 0, i = 2, . . . , p; Λ[xi] = 0, i = p+1, . . . , p+
q, and Λ[xi] < 0, i = p+ q + 1, . . . , n. Here p ≥ 2 and q ≥ p+ 1.

Note that variants (d1), (d2), and (d31) contradict condition (c3) of Theorem
3.1. However, there is condition (d32), which satisfies the condition (c3). This re-
mark completes the proof of Corollary. �

It should be said that the verification of condition (c1) is trivial. (For example,
it is fulfilled for almost all models, which describe real technical systems.) The
verification of condition (c2) is also almost trivial. If this condition is not fulfilled,
then by linear replacements of variables it is necessary to obtain that in the first
equation of the again got system (1.5) condition (c2) was satisfied.

Thus, it is really difficult to check up only condition (c3) of Theorem 3.1. (It
means the boundedness of solutions of system (1.5).)

We take advantage of known results about of structure of a central manifold
(Theorem 4.2 [7]) and stability of perturbed systems (Theorem 5.3 [7]).

Without loss of generality it is possible to consider that rankDg(x) = n− 1.
Let a = 0. Then we have that the point (0, . . . , 0)T ∈ Rn is an equilibrium

of system (1.5). We will consider that the matrix B has one zero eigenvalue and
(n−1) negative eigenvalues. Introduce the new real variables u ∈ R and v ∈ Rn−1

by the formula

xd = T ·
�
u
v

�
, T ∈ Rn×n,

where detT �= 0. In this case the matrix T can be chosen so that system (1.5) in
new variables will take the following form:

u̇(t) = d0u
p(t) + F (u(t),v(t)), (3.15)

v̇(t) = Qv(t) +P(u(t),v(t)). (3.16)

Here Q ∈ R(n−1)×(n−1), the map P : Rn → Rn−1, d0 �= 0, and integer p > 1.
Consider the vector partial differential equation

∂H(u)

∂u
· (d0up + F (u,H(u))−QH(u)−P(u,H(u)) = 0, (3.17)
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with boundary conditions

H(0) = 0,
∂H(u)

∂u
(0) = 0, (3.18)

where H(u) = (h1(u), . . . , hn−1(u))
T is unknown vector function.

Definition 3.4. [7]. The set H(u) of all solutions of the equations (3.17) and
(3.18) is called a center manifold.

In order to study conditions (3.18) it is necessary that the vector H(u) had
the form

H(u) =

∞�

i=p

di−pu
i, di ∈ Rn−1.

In this case, from (3.17) it follows that

H(u) = −Q−1 ·P(u,H(u));0 = (0, . . . , 0)T ∈ Rn−1.

Thus, on the central manifold equation (3.15) has the following aspect:

u̇(t) = d0u
p −Q−1 ·P(u,H(u)) · up +O(�u�p+1) ≡ s0u

p +O(�u�p+1).

If p is odd and s0 = d0−Q−1 ·P(u,H(u)) < 0, then the conclusion of Theorem
4.2 [7] is valid. In this case the origin of system (1.5) is asymptotically stable.

Let in system (1.5) be a �= 0. We assume that the vector a = a∗ is the root
of the equation a+Ba+ f(a) = 0.

Let’s introduce a new variable y = x− a∗. Then using Taylor’s series expan-
sion, the right side of system (1.5) near point a∗ can be described as follows:

ẏ(t) = (B +Df(a∗))y(t) + . . .

Assume that the origin of the last system is asymptotically stable. In this
case the solutions of system (1.5) are bounded (Theorem 5.3 [7]). In the turn the
last assertion is also necessary to fulfill the condition (c3) of Theorem 3.1.

Now let rankDg(x) = n. Then for verification of boundedness of solutions of
system (1.5) it is enough to use only Theorem 5.3 [7].

4. Examples

Consider the following system without equilibrium points [9]:




ẋ(t) = a(y(t)− x(t)),
ẏ(t) = −by(t) + nx(t)z(t) + cw(t),
ż(t) = d− exp(x(t)y(t)),
ẇ(t) = −my(t),

(4.1)

where a > 0, b > 0, c > 0, d > 1,m > 0, n > 0.
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The last two columns of the Jacobian matrix of system (4.1) are (0, nx, 0, 0)T

and (0, c, 0, 0)T . In this case system (4.1) is degenerate.
For a proof of boundedness of solutiions of system (4.1) it is possible again

to take advantage of Theorems 4.2 and 5.3 [7]. However simpler it is to apply
Theorem 3.1.

Since here we can put b11 = b > 0, then all conditions of Theorem 3.1 (with
the exception of (c3)) are fulfilled. The verification of condition (c3) is represented
in Figure 4.1. (In this case ρ2 = x2 + z2 + w2.)

(a1) (a2)

(b1) (b2)

Fig. 4.1. The behavior of function ρ(t) for system (4.1) at b = m = 0.5, c = 0.2, n = 1, d = 2.5,
and also at a = 0.8 (a1), a = 1.5 (a2), a = 2.8 (b1), a = 3.8 (b2)

It is possible to consider condition (c3) of Theorem 3.1 (lim inf
t→∞

ρ(t) = 0) for
cases (a1), (a2) of Figure 4.1 was achieved. It means that at the indicated values
of parameters the solutions of system (4.1) are chaotic. In cases (b1), (b2) of
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(a1) (a2)

Fig. 4.2. The Lyapunov exponents λ1, ...,λ4 for system (4.1) at b = m = 0.5, c = 0.2, n = 1,
d = 2.5, and also at a = 0.8 (a1), a = 1.5 (a2)

Figure 4.1 the solutions of system (4.1) are periodic. A proof of chaotic behavior
of solutions of system (4.1) confirms Figure 4.2. Here a dynamics of Lyapunov
exponents is shown. There are two positive Lyapunov exponents. It means an
existence of hyperchaotic dynamics.

In Figure 4.3 we show the fulfillment of condition (c3) of Theorem 3.1 for
point (x, z, w) = (0, 0, 0) ∈ R3, which can be achieved at t∗ ≈ 219. (In this case
x(219) = z(219) = w(219) = 0, y(219) = 0.4.) However, this condition is not
satisfied for the origin (x, y, z, w) = (0, 0, 0, 0) ∈ R4:

lim inf
t→∞

ρ(t) = lim inf
t→∞

�
x2(x0, y0, z0, w0, t) + · · ·+ w2(x0, y0, z0, w0, t) ≈ ρ(219)

=
�
02 + (0.4)2 + 02 + 02 = 0.4 �= 0.

This result is a consequence of the fact that system (4.1) has no equilibrium
points. Therefore, the criteria for the existence of chaos proposed in [10, 11] are
unsuitable for such systems.

In conclusion, we note that as the coefficient b11 from Theorem 3.1, we can
take the coefficient a = 0.8 > 0. In this case we have ρ2 = y2 + z2 + w2 and the
results will be similar to the previous ones.

5. Conclusion

It is known that the chaos in the autonomous nonlinear dynamical system
begins with bifurcations of the limit cycle. Consequently, the existence of limit
cycle in this system is a necessary condition for the existence of chaos. In turn,
the minimum dimension of an autonomous dynamical system, in which a limit
cycle can exist, is equal to 2. Exactly this circumstance dictated the introduction
of system (2.1).
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(a1) (a2)

(a3) (a4)

Fig. 4.3. The behavior of function ρ(t) = h1(x(t))(a1), ρ(t) = h2(y(t))(a2), ρ(t) = h3(z(t))(a3),
and ρ(t) = h4(w(t))(a4) for system (4.1) at b = m = 0.5, c = 0.2, n = 1, d = 2.5, and a = 0.8

The present article is a continuation of work [10]. In this paper questions of
existence of chaotic dynamics in the autonomous polynomial dynamic systems are
extended to continuous systems, the right-hand sides of which are continuously
differentiable functions.

Thus, the idea of reducing the problem of the existence of chaos in system
(1.4) to the study of the problem of the existence of chaos in the 2D system (2.1)
got further development.

Basic results got in the present work are such:
1. The sufficient conditions of existence of chaotic dynamics in continuous

dynamic systems, the right-hand sides of which are continuously differentiable
functions, are found.

2. These conditions do not suppose of the presence in system (1.4) either
homoclinic or heteroclinic orbits. (The existence of such orbits almost always
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results to the beginning of chaotic processes.)
3. The existence of equilibrium points in the same system (1.4) is not also

assumed.
4. The results represented in papers [10,11] are got under the condition X0 =

Rn. (This circumstance diminishes the class of systems for which the quoted
results can be applied.) Theorem 3.1 of the present article does not suppose that
the condition X0 = Rn takes place. (Here we have the condition X0 ⊂ Rn only.)
Thus, the class of chaotic systems that satisfy the conditions of Theorem 3.1 can
be much wider than the class of chaotic systems described in [10–12].

Nevertheless, the advantage of the criteria for the existence of chaos proposed
in [12] is that the right-hand sides of system (1.4) can only be continuous (differ-
entiability is not assumed).
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