Totally magic d-lucky number of graphs

N. Mohamed Rilwan *
A. Nilofer ${ }^{\dagger}$

Abstract

In this paper we introduce a new labeling named as, totally magic d-lucky labeling, find the totally magic d-lucky number of some standard graphs like wheel, cycle, bigraph etc. and find the totally magic d-lucky number of some zero divisor graphs. A totally magic d-lucky labeling $t: V \rightarrow\{1,2, \ldots, p\}$ of a graph $G=(V, E)$ is a labeling of vertices and label the graph's edges using the total label of its incident vertices in such a way that for any two different incident vertices u and v, their colors $d_{t}(u)=\sum_{v \in N(u)} t(v)+$ dgu, $\operatorname{dtv}=u \in N v t u+d g v$ are distinct and for any different edges in a graph, their weights $t(u)+t(v)+t(u v) \equiv 0(\bmod 2)$ are same Where $d_{g}(u)$ represents the degree of u in a graph and $N(u)$ represents the open neighbourhood of u in a graph.

Keywords: Totally magic d-lucky labeling, totally magic d-lucky number, zero divisor graphs.

2010 AMS subject classification: $05 \mathrm{C} 78^{\ddagger}$

[^0]N. Mohamed rilwan, A. Nilofer

1. Introduction

In [2], The idea of lucky labeling was first proposed by Czerwinski, Grytczuk, and Zelezny. In [1], The idea of "d-lucky labeling" was developed by Indira Rajasingh, D. Ahima Emilet, and D. Azhubha Jemilet. [1] Let $l: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{N}$ is a vertex labeling. If for each pair of incident vertices of u and $v, c(u) \neq c(v)$ holds where $c(u)=d_{g}(u)+$ $\sum_{\mathrm{v} \in \mathrm{N}(\mathrm{u})} l(\mathrm{v}), \mathrm{c}(\mathrm{v})=\mathrm{d}_{\mathrm{g}}(\mathrm{u})+\sum_{\mathrm{u} \in \mathrm{N}(\mathrm{v})} l(\mathrm{u}), \mathrm{d}_{\mathrm{g}}(\mathrm{u})$ represents the degree of u and $\mathrm{N}(\mathrm{u})$ represents the open neighbourhood of the vertex u in a graph, then the labeling l is a dlucky labeling. A graph's d-lucky number is the smallest value of labeling required to label the graph. Motivated by this labeling, we introduce Totally magic d-lucky labeling. A graph's total labeling is a mapping from the union of the vertex set and the edge set to positive integers. If the sum of the edge label and the label of the edge's end points has the same constant, the total labeling is said to be totally magic labeling. In [5,] we learned about the totally magic labeling. A totally magic d-lucky labeling $\mathrm{t}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{p}\}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a labeling of vertices and label the edges of the graph by the sum of the labels of its incident vertices in such a way that for any two different incident vertices u and v, their colors $d_{t}(u)=\sum_{v \in N(u)} t(v)+d_{g}(u)$,
$d_{t}(v)=\sum_{u \in N(v)} t(u)+d_{g}(v)$ are distinct and for any different edges in a graph, their weights $t(u)+t(v)+t(u v) \equiv 0(\bmod 2)$ are same Where $d_{g}(u)$ represents the degree of u in a graph and $N(u)$ represents the open neighborhood of u in a graph.

2. Totally magic d-lucky labeling

In this section we introduce a new labeling named as the totally magic d-lucky labeling and apply it on the cycle, path, complete graph, bigraph, and wheel.

Definition 2.1 Define $\mathrm{t}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ and label the edges of $\mathrm{E}(\mathrm{G})$ as the label of the edge's incident vertices added together. The labeling is said to be Totally magic dlucky labeling if $d_{t}(u) \neq d_{t}(v)$ and $t(u)+t(v)+t(u v) \equiv 0(\bmod 2)$ where $u, v \in V(G)$ $d_{t}(u)=\sum_{v \in N(u)} t(v)+d_{G}(u) \quad$ and $\quad d_{t}(v)=\sum_{u \in N(v)} t(u)+d_{G}(v)$. The totally magic d-lucky number of $G, \operatorname{tdln}(G)$ is defined as the lowest value of p for which the graph G has totally magic d-lucky labeling.

Theorem 2.2. For a cycle graph $C_{n}, \operatorname{tdln}\left(C_{n}\right)=\left\{\begin{array}{cc}n & \text { if } n \text { is odd } \\ 2 & \text { otherwise }\end{array}\right.$
Proof. Let G be the cycle graph.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \mathrm{U}\left\{\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right\}$
Case. (i).
When $\mathrm{n} \equiv 1(\bmod 2)$.
Let $\mathrm{t}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ defined by for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
Then the induced edge labelling is,
$t\left(v_{i} v_{i+1}\right)=2 i+1$ for $1 \leq i \leq n-1$
$\mathrm{t}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=\mathrm{n}+1$
We observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{1}\right)=\mathrm{n}+4$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+2$, for $2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+2$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}+1}\right)$ and $\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{1}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)$
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{i}+2 \equiv 0(\bmod 2)$ for $2 \leq \mathrm{i} \leq \mathrm{n}-1$ and
$\mathrm{t}\left(\mathrm{v}_{1}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{n}}\right)+\mathrm{t}\left(\mathrm{v}_{1} \mathrm{vn}\right)=2 \mathrm{n}+2 \equiv 0(\bmod 2)$

case (ii).

When $\mathrm{n} \equiv 0(\bmod 2)$
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows,
for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}1, \mathrm{i} \equiv 1(\bmod 2) \\ 2, \mathrm{i} \equiv 0(\bmod 2)\end{array}\right.$
Then the induced edge labelling is,
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=3$ for $2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{t}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=3$
we observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=6$ if i is odd
$d_{t}\left(v_{i}\right)=4$ if i is even
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}+1}\right)$
and $t\left(v_{i}\right)+t\left(v_{i+1}\right)+t\left(v_{i} v_{i+1}\right)=6 \equiv 0(\bmod 2)$
It can be easily verified that weights of the incident vertices are pair wise distinct and have the common totally magic d-lucky constant for its edges. Thus, the totally magic d-lucky number of cycle graph is 2 .

Theorem 2.3 Every path P_{n} has $t d \ln \left(P_{n}\right)=2$
Proof Let P_{n} be the path graph, $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}\right.$: for $\left.1 \leq i \leq n\right\}$
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}1, \mathrm{i} \equiv 1(\bmod 2) \\ 2, \mathrm{i} \equiv 0(\bmod 2)\end{array}\right.$
Then the induced edge labelling is,
$t\left(v_{i} v_{i+1}\right)=3$ for all edges in P_{n}
we observe that,
when n is even,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{1}\right)=3$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=4$ if $\mathrm{i} \equiv 0(\bmod 2)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=6$ if $\mathrm{i} \equiv 1(\bmod 2)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)=2$
$d_{t}\left(v_{i}\right) \neq d_{t}\left(v_{i+1}\right)$ for all i
and $t\left(v_{i}\right)+t\left(v_{i+1}\right)+t\left(v_{i} v_{i+1}\right)=6 \equiv 0(\bmod 2)$.
When n is odd
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{1}\right)=3=\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)$

N. Mohamed rilwan, A. Nilofer

$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=4$ if $\mathrm{i} \equiv 0(\bmod 2)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=6$ if $\mathrm{i} \equiv 1(\bmod 2)$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}+1}\right)$ for all i
and $t\left(v_{i}\right)+t\left(v_{i+1}\right)+t\left(v_{i} v_{i+1}\right)=6 \equiv 0(\bmod 2)$.
Hence tdln $\left(\mathrm{P}_{\mathrm{n}}\right)=2$.
Theorem 2.4 For a complete graph k_{n}, $\operatorname{tdln}\left(\mathrm{k}_{\mathrm{n}}\right)=\mathrm{n}$
Proof In complete graph K_{n}, Each and every pair of vertices are close together.
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}$
Then the induced edge labelling is,
$t\left(v_{i} v_{j}\right)=i+j$ for all edges in P_{n}
we observe that,
for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\left(\mathrm{n}^{2}+3 \mathrm{n}-2 \mathrm{i}-2\right)}{2}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{j}}\right)$
and $t\left(v_{i}\right)+t\left(v_{j}\right)+t\left(v_{i} v_{j}\right)=2(i+j) \equiv 0(\bmod 2)$.
$\operatorname{tdln}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$. It is simple to confirm that the colors of the pair wise incident vertices are distinct and that the sum of the labels for each edge and the incident vertices of its edges is even.

Theorem 2.5 For a bigraph $K_{m, n}, \operatorname{tdln}\left(K_{m, n}\right)=1$.
Proof A bigraph's vertices can be divided into two separate subsets, V_{1} and V_{2}, and each edge of the bigraph connects a point on each subset. $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ indicates a bigraph.
Let $V\left(K_{m, n}\right)=V_{1} \cup V_{2}$ where $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j}: u_{i} \in V_{1} v_{j} \in V_{2}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows: $\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)=1, \mathrm{t}\left(\mathrm{v}_{\mathrm{j}}\right)=1$
Then the induced edge labeling is
$t\left(u_{i} v_{j}\right)=2$ for all edges in $K_{m, n}$
We observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}$,
$d_{t}\left(v_{j}\right)=2 m$,
$\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{j}}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right)=2(\mathrm{i}+\mathrm{j}) \equiv 0(\bmod 2)$.
It is obvious that all incident vertices have pair wise different colors and that all of the edges in the $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ graph have the same totally magic d-lucky constant.
Hence $\operatorname{tdln}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=1$.
Theorem 2.6 For a wheel graph $W_{n}, \operatorname{tdln}\left(W_{n}\right)=\left\{\begin{array}{cc}n-1 \text { if } n \text { is odd } \\ n & \text { otherwise }\end{array}\right.$.
Proof A wheel graph is obtained by joining a vertex to all the vertices of a cycle graph.
It is denoted by W_{n} for $\mathrm{n}>3$, where n is the number of vertices in the graph.
Let $\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{u_{1} \mathrm{u}_{\mathrm{i}}: 2 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}: 2 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Case(i) When $n \equiv 1(\bmod 2)$

Define a labeling $\mathrm{t}: \mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$\mathrm{t}\left(\mathrm{u}_{1}\right)=1, \mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}-1$ for $2 \leq \mathrm{i} \leq \mathrm{n}$
Then the induced edge labelling is
$\mathrm{t}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}$ for $2 \leq \mathrm{i} \leq \mathrm{n}$
We observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right)=\frac{\mathrm{n}^{2}+\mathrm{n}-2}{2}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{2}\right)=\mathrm{n}+5$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2$ for $3 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+3$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)$ for $2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}+1}\right)$ for $2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{n}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right)$
$\mathrm{t}\left(\mathrm{u}_{1}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i} \equiv 0(\bmod 2) ;$
$t\left(u_{i}\right)+t\left(u_{i+1}\right)+t\left(u_{i} u_{i+1}\right)=4 i-2 \equiv 0(\bmod 2)$, for $2 \leq i \leq n-1 ;$
$\mathrm{t}\left(\mathrm{u}_{1}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{n}}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n} \equiv 0(\bmod 2)$
Hence $\operatorname{tdln}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{n}-1$
Case (ii) When $\mathrm{n} \equiv 0(\bmod 2)$
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{n}\}$ as follows:
$\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
Then the induced edge labelling is
$\mathrm{t}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}}\right)=1+\mathrm{i}$ for $2 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{t}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i}+1$ for $2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{t}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{2}\right)=\mathrm{n}+2$
we observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right)=\frac{\mathrm{n}^{2}+3 \mathrm{n}-4}{2}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{2}\right)=\mathrm{n}+7$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+4 \quad$ for $3 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+5$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)$ for $2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}+1}\right)$ for $2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{n}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{1}\right)$
for $2 \leq i \leq n$
$t\left(u_{1}\right)+t\left(u_{i+1}\right)+t\left(u_{1} u_{i+1}\right)=2 i+2 \equiv 0(\bmod 2)$,
$t\left(u_{i}\right)+t\left(u_{i+1}\right)+t\left(u_{i} u_{i+1}\right)=4 i+2 \equiv 0(\bmod 2)$,
$\mathrm{t}\left(\mathrm{u}_{2}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{n}}\right)+\mathrm{t}\left(\mathrm{u}_{2} \mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}+4 \equiv 0(\bmod 2)$.
Hence $\operatorname{tdln}\left(W_{n}\right)=n$
It is simple to confirm that all incident vertices' colors are pairwise different and preserve the totally magic d-lucky constant for all of the graph's edges W_{n}.

N. Mohamed rilwan, A. Nilofer

3. Totally magic d-lucky number of some zero divisor graphs

In this part, the totally magic d-lucky number of some zero divisor graphs is examined.

Theorem. 3.1 For $\mathrm{R}=\mathrm{Z}_{\mathrm{k}}, \mathrm{k}=\mathrm{mn}, \mathrm{m}=2,3$ and $\mathrm{n}>3$ be a prime number, $\operatorname{tdln}(\Gamma(\mathrm{R}))=1$ Proof Consider $\mathrm{G}_{0}=\Gamma(\mathrm{R})$ where $\mathrm{R}=\mathrm{Z}_{\mathrm{k}}$, $\mathrm{k}=\mathrm{mn}$

Case(i)

when $\mathrm{m}=2, \mathrm{n}>3$ be a prime. By the definition of zero divisor graph,
Assume $V\left(G_{0}\right)=\{2,4 \ldots 2(n-1), n\}=\left\{v_{i}: 1 \leq i \leq n\right\}, E\left(G_{0}\right)=\left\{v_{i} v_{n}: v_{i} \in V(\Gamma(R))-\left\{v_{n}\right\}\right\}$.
We have $\mathrm{d}_{\mathrm{g}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{m}-1, \mathrm{~d}_{\mathrm{g}}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}-1,1 \leq \mathrm{i} \leq 2(\mathrm{n}-1)$
Define $\mathrm{t}: \mathrm{V}\left(\mathrm{G}_{0}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)=1$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
Then the induced edge labeling is,
$\mathrm{t}(\mathrm{e})=2$ for all edges e in G_{0}
we observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~m}-2$,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}-2$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{n}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and
$\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{n}}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{n}}\right)=4 \equiv 0(\bmod 2)$
Hence $\operatorname{tdln}\left(\mathrm{G}_{0}\right)=1$
Case(ii)
when $m=3, n>3$ be a prime.
In this graph, we have $V\left(G_{0}\right)=V_{1}\left(G_{0}\right) \cup V_{2}\left(G_{0}\right)$ where $V_{1}\left(G_{0}\right)=\{n, 2 n\}$,
$\mathrm{V}_{2}\left(\mathrm{G}_{0}\right)=\{3 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\}$ and $\mathrm{E}\left(\mathrm{G}_{0}\right)=\left\{\mathrm{uv}: \mathrm{u} \in \mathrm{V}_{1}\left(\mathrm{G}_{0}\right)\right.$, v $\left.\in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)\right\}$.
Hence $\mathrm{d}_{\mathrm{g}}(\mathrm{u})=\mathrm{n}-1$ for all $u \in \mathrm{~V}_{1}\left(\mathrm{G}_{0}\right), \mathrm{d}_{\mathrm{g}}(\mathrm{v})=\mathrm{m}-1$, for all $\mathrm{v} \in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)$ and $\left|E\left(\mathrm{G}_{0}\right)\right|=2 \mathrm{n}-2$
Define a labeling $\mathrm{t}: \mathrm{V}\left(\mathrm{G}_{0}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$t(u)=1$ for all $u \in V_{1}\left(G_{0}\right)$
$t(v)=1$ for all $v \in V_{2}\left(G_{0}\right)$
Then the induced edge labeling is,
$t(u v)=2$ for all $u v \in E\left(G_{0}\right)$
We observe that,
$\mathrm{d}_{\mathrm{t}}(\mathrm{u})=2 \mathrm{n}-2$,
$\mathrm{d}_{\mathrm{t}}(\mathrm{v})=2 \mathrm{~m}-2$
$d_{t}(u) \neq d_{t}(v)$ for all $u \in V_{1}$, for all $v \in V_{2}$ and
$\mathrm{t}(\mathrm{u})+\mathrm{t}(\mathrm{v})+\mathrm{t}\left(\mathrm{uv}_{\mathrm{i}}\right)=4 \equiv 0(\bmod 2)$ for all $\mathrm{uv} \in \mathrm{E}\left(\mathrm{G}_{0}\right)$
Hence $\operatorname{tdln}\left(\mathrm{G}_{0}\right)=1$.
Theorem 3.2 For $R=Z_{k}, k=m^{2} n, n>3$ be a prime number,
$\operatorname{tdln}(\Gamma(\mathrm{R}))=\left\{\begin{array}{l}1 \text { when } \mathrm{m}=2 \\ 2 \text { when } \mathrm{m}=3\end{array}\right.$
Proof Assume $\mathrm{G}_{0}=\Gamma(\mathrm{R})$

Case(i) When $m=2$, In this case $\left(G_{0}\right)$ has partitioned into two sets $V_{1}\left(G_{0}\right), V_{2}\left(G_{0}\right) . V_{1}\left(G_{0}\right)$ contains the multiples of n in $Z_{k}, V_{2}\left(G_{0}\right)$ contains the multiples of m excluding $2 n$ in Z_{k}.
Let $\mathrm{V}_{1}\left(\mathrm{G}_{0}\right)=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}\right\}$ and $\mathrm{V}_{2}\left(\mathrm{G}_{0}\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}+1}, \ldots, \mathrm{~s}_{2 \mathrm{n}-1}\right\}$
$\left|\mathrm{V}\left(\mathrm{G}_{0}\right)\right|=2 \mathrm{n}+1$
$\mathrm{E}\left(\mathrm{G}_{0}\right)=\left\{\mathrm{r}_{\mathrm{i}} \mathrm{s}_{\mathrm{j}}: \mathrm{i} \in\{1,3\}, \mathrm{s}_{\mathrm{j}}=\{4,8, \ldots,(4 \mathrm{~m}-4)\}\right\} \cup\left\{\mathrm{r}_{2} \mathrm{~s}_{\mathrm{j}}:\right.$ for all $\left.\mathrm{s}_{\mathrm{j}} \in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)\right\}$.
$\left|\mathrm{E}\left(\mathrm{G}_{0}\right)\right|=4 \mathrm{n}-4$
Hence $\mathrm{d}_{\mathrm{g}}\left(\mathrm{r}_{\mathrm{i}}\right)=\mathrm{n}-1$, for $\mathrm{i} \in\{1,3\}$;
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{r}_{2}\right)=2 \mathrm{n}-2$;
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{s}_{\mathrm{j}}\right)=\mathrm{m}+1, \mathrm{~s}_{\mathrm{j}} \in\{4,8, \ldots, 4 \mathrm{n}-4\} ;$
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{s}_{\mathrm{j}}\right)=\mathrm{m}-1, \mathrm{~s}_{\mathrm{j}} \in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)-\{4,8, \ldots, 4 \mathrm{n}-4\}$
Define a labeling $\mathrm{t}: \mathrm{V}\left(\mathrm{G}_{0}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$t\left(r_{i}\right)=1$ for $1 \leq i \leq 3$;
$\mathrm{t}\left(\mathrm{s}_{\mathrm{j}}\right)=1$ for $1 \leq \mathrm{j} \leq 2 \mathrm{n}-2$;
Then the induced edge labelling is,
$\mathrm{t}\left(\mathrm{r}_{\mathrm{i}} \mathrm{s}_{\mathrm{j}}\right)=2$ for all $\mathrm{r}_{\mathrm{i}} \mathrm{s}_{\mathrm{j}} \in \mathrm{E}\left(\mathrm{G}_{0}\right)$
We observe that,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{r}_{\mathrm{i}}\right)=2 \mathrm{n}-2, \mathrm{i} \in\{1,3\}$,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{r}_{2}\right)=4 \mathrm{n}-4$,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{s}_{\mathrm{j}}\right)=2 \mathrm{~m}-2, \mathrm{~s}_{\mathrm{j}} \in \mathrm{V}(\Gamma(\mathrm{R}))-\{4,8, \ldots, 4 \mathrm{n}-4\}$,
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{s}_{\mathrm{j}}\right)=2 \mathrm{~m}+2, \mathrm{~s}_{\mathrm{j}} \in\{4,8, \ldots, 4 \mathrm{n}-4\}$
$\mathrm{d}_{\mathrm{t}}\left(\mathrm{r}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{s}_{\mathrm{j}}\right)$ for all $\mathrm{r}_{\mathrm{i}} \in \mathrm{V}_{1}\left(\mathrm{G}_{0}\right), \mathrm{s}_{\mathrm{j}} \in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)$ and
$\mathrm{t}\left(\mathrm{r}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{s}_{\mathrm{j}}\right)+\mathrm{t}\left(\mathrm{r}_{\mathrm{i}} \mathrm{s}_{\mathrm{j}}\right)=4 \equiv 0(\bmod 2)$ for all edges in G_{0}
Hence $\mathrm{td} \ln \left(\mathrm{G}_{0}\right)=1$.
Case(ii) when $\mathrm{m}=3$,
In this case, the vertex set of G_{0} partitioned into two sets V_{1} and V_{2}.
WhereV $\mathrm{V}_{1}=\{\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}, 4 \mathrm{n}, 5 \mathrm{n}, 6 \mathrm{n}, 7 \mathrm{n}, 8 \mathrm{n}\}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{5}, \mathrm{u}_{6}, \mathrm{u}_{7}, \mathrm{u}_{8}\right\}$ and
$V_{2}=\{3,6,9, \ldots, 9 n-3\}-\{n, 2 n\}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{3 n-1}\right\}$.
$E\left(G_{0}\right)=\left\{u_{i} v_{i}:\right.$ for all $u_{i} \in V_{1}, v_{i} \in\{9,18,27, \ldots, 9(n-1)\} \cup\left\{u_{i} v_{i}: u_{i} \in\{3 n, 6 n\} v_{i} \in V_{2}\right\} \cup$
$\left\{\mathrm{u}_{3}, \mathrm{u}_{6}\right\}$.
Hence $d_{g}\left(u_{i}\right)=n-1$ for all $u_{i} \in V_{1-}\{3 n, 6 n\}$;
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{n}-2, \quad \mathrm{i}=\{3,6\}$;
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{v}_{\mathrm{i}}\right)=8$ for all $\mathrm{v}_{\mathrm{i}} \in\{9,18, \ldots, 9(\mathrm{n}-1)\}$;
$\mathrm{d}_{\mathrm{g}}\left(\mathrm{v}_{\mathrm{i}}\right)=2, \mathrm{v}_{\mathrm{i}} \in \mathrm{V}_{2^{-}}\{9,18, \ldots, 9(\mathrm{n}-1)\}$.
Define the labelling $\mathrm{t}: \mathrm{V}\left(\mathrm{G}_{0}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows:
$\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $1 \leq i \leq 8, \mathrm{u}_{\mathrm{i}} \in \mathrm{V}_{1}$;
$\mathrm{t}\left(\mathrm{u}_{6}\right)=2, \mathrm{u}_{6} \in \mathrm{~V}_{1}$;
$t\left(v_{i}\right)=1$, for all $v_{i} \in V_{2}$.
Then the induced edge labellings are,
$t\left(u_{i} v_{i}\right)=2$ for all $u_{i} v_{i} \in E\left(G_{0}\right)$
$t\left(u_{3} u_{6}\right)=3$
$t\left(u_{6} v_{i}\right)=3$ for all $v_{i} \in V_{2}$
We observe that, $\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}-2$,

N. Mohamed rilwan, A. Nilofer

```
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{3}\right)=6 \mathrm{n}-3\),
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{6}\right)=6 \mathrm{n}-4\),
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=5\) for all \(\mathrm{v}_{\mathrm{i}} \in \mathrm{V}_{2}\left(\mathrm{G}_{0}\right)-\{9,8, \ldots, 9(\mathrm{n}-1)\}\)
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)=17, \mathrm{v}_{\mathrm{i}} \in\{9,8, \ldots, 9(\mathrm{n}-1)\}\)
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{\mathrm{i}}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{i}}\right)\),
\(\mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{3}\right) \neq \mathrm{d}_{\mathrm{t}}\left(\mathrm{u}_{6}\right)\) and
\(\mathrm{t}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{t}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \equiv 0(\bmod 2)\) for all edges in \(\mathrm{G}_{0}\)
\(\mathrm{t}\left(\mathrm{u}_{3}\right)+\mathrm{t}\left(\mathrm{u}_{6}\right)+\mathrm{t}\left(\mathrm{u}_{3} \mathrm{u}_{6}\right)=6 \equiv 0(\bmod 2)\)
\(t\left(u_{6}\right)+t\left(v_{i}\right)+t\left(u_{6} v_{i}\right)=3\) for all \(v_{i} \in V_{2}\)
```

It can be easily verified that weights of all the incident vertices are distinct and all the
edges of the graph have common totally magic d-lucky constant.
Hence $\operatorname{tdln}\left(\mathrm{G}_{0}\right)=2$.

Theorem 3.3 Let $\mathrm{R}=\prod_{i=1}^{k} Z_{m_{i}}{ }^{n_{i}}$ be a commutative ring with unity. For the zero-divisor graph $\Gamma(\mathrm{R}), \operatorname{tdln}(\Gamma(\mathrm{R}))=\mathrm{M}-1$ where $\mathrm{M}=\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots, \mathrm{~m}_{\mathrm{k}}\right), \mathrm{m}_{\mathrm{i}}$'s are distinct prime numbers, n_{i} 's are positive integers.
Proof Consider $\mathrm{G}_{0}=\Gamma(\mathrm{R})$ be a zero-divisor graph of commutative ring $\mathrm{R}=\prod_{i=1}^{k} Z_{m_{i}}{ }^{n_{i}}$ where m_{i} 's are prime numbers and n_{i} 's are positive integers.
The vertex set of G_{0} consists of different blocks,
$\mathrm{V}\left(\mathrm{G}_{0}\right)=\mathrm{U} \mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$
where $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \neq(0,0 \ldots, 0)$ and $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \neq\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}\right)$.
$\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}=\left\{\left(\mathrm{u}_{1}, u_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right): \mathrm{u}_{i}=0\right.$ if $\mathrm{x}_{i}=\mathrm{n}_{i}$ and $\mathrm{m}_{i}^{\mathrm{x}_{i}} \mid \mathrm{u}_{i}$ and $\mathrm{m}_{i}^{\mathrm{x}_{i}+1} \nmid \mathrm{u}_{i}$
if $\left.\mathrm{x}_{i} \in\left\{0,1,2, \ldots, \mathrm{n}_{\mathrm{i}}-1\right\}\right\}$
All the vertices in $\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$ are adjacent to all the vertices in $B_{y_{1}, y_{2}, \ldots, y_{k}}$ if $x_{i}+y_{i} \geq n_{i}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{k}$.
The vertices in $\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$ form a clique in G_{0} if $2 x_{i} \geq n_{i}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{k}$
Hence we have, for each $u \in B_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$,
$\mathrm{d}_{\mathrm{g}}(\mathrm{u})=-2+\prod_{i=1}^{k} m_{i}^{x_{i}}$ if $\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$ is clique ;
$\mathrm{d}_{\mathrm{g}}(\mathrm{u})=-1+\quad \prod_{i=1}^{k} m_{i}^{x_{i}}$ if $\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$ is not a clique.
Define a labeling $\mathrm{t}: \mathrm{V}\left(\mathrm{G}_{0}\right) \rightarrow\{1,2, \ldots, \mathrm{p}\}$ as follows,
Label the vertices of the block as 1 if the block is not form a clique. If the block is form a clique, label the vertices of clique u_{j} as $1 \leq j \leq\left(\left|B_{x_{1}, x_{2}, \ldots, x_{k}}\right|=q\right)$,
where $\left|\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}\right|=\prod_{i=1}^{k} \varphi\left(\mathrm{~m}_{\mathrm{i}}^{n_{i-\mathrm{x}_{i}}}\right)$,
Then the induced edge labellings are,
if the block is not form a clique,
$\mathrm{t}(\mathrm{e})=2$ for all edge e in this block
if the block is form a clique,
$\mathrm{t}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)=2 \mathrm{j}+1$ for all $1 \leq \mathrm{j} \leq \mathrm{q}-1$,
$\mathrm{t}\left(\mathrm{u}_{\mathrm{q}} \mathrm{u}_{1}\right)=\mathrm{q}+1$

Totally magic d-lucky number of graphs

Let $T=\operatorname{Max}\left(\left|B_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}\right|\right)$ if $\mathrm{B}_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}}$ form a clique
We observe that, for each $u \in B_{x_{1}, x_{2}, \ldots, x_{k}}$,
we have,
$d_{t}(u)= \begin{cases}-1+\prod_{i=1}^{k} m_{i}^{x_{i}}+\sum_{v \in N(u)} t(v) & \text { if } B_{x_{1}, x_{2}, \ldots, x_{k}} \text { is not a clique } \\ -2+\prod_{i=1}^{k} m_{i}{ }^{x_{i}}+\sum_{v \in N(u)} t(v) & \text { if } B_{x_{1}, x_{2}, \ldots, x_{k}}\end{cases}$
$\mathrm{t}(\mathrm{u})+\mathrm{t}(\mathrm{v})+\mathrm{t}(\mathrm{uv}) \equiv 0(\bmod 2)$ for all $\mathrm{uv} \in \mathrm{E}\left(\mathrm{G}_{0}\right)$
Hence $\operatorname{tdln}\left(G_{0}\right)=T=M-1$ where $M=\operatorname{Max}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.
It can be easily verified that colors of all the incident vertices are pairwise distinct and have the common constant for all the edges of the our given graph.

4. Conclusions

In this paper, we introduced a new labeling, totally magic d-lucky labeling, found the totally magic d-lucky number of some standard graphs and some zero divisor graphs. In future, we use this labeling in some other graphs.

Acknowledgement

The author is very grateful to the referees for their insightful comments on the revised version of the manuscript.

References

[1] Mirka Miller, Indira Rajasingh, D.Ahima Emilet, D.Azubha Jemilet, d-lucky labeling of graphs. Precedia computer science 57(2015) 766-771.
[2] S. Czerwinski, J. Grytczuk, V. Zelazny, lucky labeling of graphs. Information Processing letters, 109 (2009) 1078-1081.
[3] A. D. Garciano, RM Marcelo, MJP Ruiz and MAC Tolentino, on the sigma chromatic number of the zero divisor graphs of the ring of integers modulo. Journal of physics, Conf. Series 1836(2021) 012013, IOP Publishing.
[4] Anderson DF and Livingston PS 1999, Journal of Algebra, 217 (434-447).
[5] G. Exoo, A. Ling, J. Mcsoriey, N. Philips, and W. Wallis, totally magic graphs. Discrete Mathematics, 254 (2002) 103-113.
[6] Sarifa Khatun, Graceful labeling of some zero divisor graphs. Electronic Notes in Discrete Mathematics 63(2017), 189-196.
[7] I. Cahit, Some totally modular cordial graphs. Discussiones Mathematicae Graph theory 22 (2002), 247-258.

[^0]: *Assistant Professor, Department of Mathematics, Sadakathullah Appa College (Autonomus), Rahmath nagar, Tirnelveli-627011, India; e-mail- rilwan2020@gmail.com.
 ${ }^{\dagger}$ Research scholar, register number 18221192092017, Research center, Department of Mathematics, Sadakathullah Appa College (Autonomus), Rahmath nagar, Tirunelveli 627011, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, India; e-maillourdhunilofer@gmail.com
 t Received on June $9^{\text {th }}$, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.920$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

