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Abstract

Every sixth death in the world is due to cancer, making it the second
leading cause of death. Around one-third of deaths from cancer are
due to tobacco use, high body mass index, alcohol use, low fruit and
vegetable intake, and lack of physical activity. Anticancer drugs are
those which are used to cure malignant disease i.e., cancer. Topolog-
ical indices are used to model physico-chemical properties and bio-
logical activities of chemical compounds. In this paper, we compute
M -polynomial and NM -polynomial of anticancer drugs. Further, we
retrieve some degree and neighborhood degree based topological in-
dices of anticancer drugs from their respective M -polynomial and
NM -polynomial. The theoretical results obtained in this article have
promising aspects in designing novel drug for the treatment of cancer.
This study may assist chemists and pharmaceutical industry workers
forecast the features of anticancer drugs without experimenting.
Keywords: M-polynomial; NM-polynomial; degree-based topologi-
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1 Introduction
Up to now, cancer remains a global and serious public health challenge. Can-

cer is the uncontrolled growth of abnormal cells in the body. Cancer develops
when the body’s normal control mechanism stops working. Old cells do not die
and instead grow out of control, forming new, abnormal cells. It is estimated that
there are more than 200 different types of cancer, generally named according to
the tissue where the cancer was recognized for the first time. Any drug that is
effective in the treatment of malignant, or cancerous, disease is called anticancer
drug. There are several major classes of anticancer drugs; these include alkylating
agents, antimetabolites, natural products, and hormones.

It is always interesting to find some properties of graphs which are invariant.
Topological indices and polynomials are foremost among them. Over the last
decade there are numerous research papers devoted to topological indices and
polynomials. Several topological indices have been defined in the literature. For
details of topological indices one can refer to [15, 19]. For different topological
indices and their applications one can refer to [2, 3, 10–12]. Some topological
indices are already computed in literature on various anticancer drugs to determine
physico-chemical properties [9, 13, 24].

Molecular topological indices are important in mathematical chemistry, par-
ticularly in the study of quantitative structure-property relationships (QSPR) and
quantitative structure-activity relationships (QSAR). It is an effective technique
to eliminate expensive and time-consuming laboratory studies. Information on
physicochemical qualities and biological activity of molecular graphs of com-
pounds is required in pharmaceutical drug design. These features may be pre-
dicted using the topological index, a well-known method in chemical graph the-
ory.

There are many graph polynomials refer to [5,28]. The Hosoya polynomial is
the most well-known polynomial which plays a vital role in determining distance-
based topological indices such as Wiener index [27], hyper Wiener index [5] of
graphs. There are various types of algebraic polynomials are found in the lit-
erature. Some examples for polynomials in the theory of chemical graphs are
PI polynomial [1], Tutte polynomial [7], Theta polynomial [8], Schultz polyno-
mial [17], Hub polynomial [25], Gourava and hyper-Gourava polynomial [4], M-
polynomial [6], NM-polynomial [20] etc.

Throughout this paper, by a graph G = (V,E) we mean a simple, undirected,
finite graph of order n and size m. Let V (G) and E(G) denote the vertex set
and an edge set, respectively. For undefined graph theoretic terminologies and
notions, refer to [16, 18, 26].

The M -polynomial [6] is one among other algebraic polynomials which was
introduced in 2015 and useful in determining many degree-based topological in-
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Figure 1: Molecular structure of anticancer drugs (A) Amathaspiramide E; (B)
Aminopterin; (C) Aspidostomide E; (D) Carmustine; (E) caulibugulone E; (F)
Convolutamide A; (G) Convolutamine F; (H) convolutamydine A; (I) Daunoru-
bicin; (J) Deguelin; (K) Melatonin; (L) Minocycline; (M) Perfragilin A; (N)
Podophyllotoxin; (O) Pterocellin; (P) Raloxifene; (Q) Tambjamine K.
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dices (listed in Table 2) [15,19]. Recently, the study of M -polynomial is reported
in [21–23]. Let ψ(u) denote the degree of vertex u of a graph G.

Definition 1.1. [6] If G is a graph, then M − polynomial of G is defined as

M(G;x, y) =
∑
i≤j

mij(G)x
iyj, (1)

where mij, (i, j ≥ 1), is the number [14] of edges uv in G such that ψ(u) = i and
ψ(v) = j.

Neighborhood M-polynomial [20] play the similar role for neighborhood de-
gree sum-based indices. Let Ψ(u) denote the degree sum of all vertices of G that
are adjacent u. We call Ψ(u) as neighborhood degree sum of u in G.

Definition 1.2. [20] If G is a graph, then NM − polynomial of G is defined as

NM(G;x, y) =
∑
i≤j

m∗
ij(G)x

iyj, (2)

where m∗
ij(i, j ≥ 1) is the number of edges uv in G such that Ψ(u) = i and

Ψ(v) = j.

D g(ψ(u), ψ(v)) ND g(Ψ(u),Ψ(v))

First Zagreb indexM1(G) ψ(u) + ψ(v) Third version Zagreb indexM
′
1(G) Ψ(u) + Ψ(v)

Second Zagreb indexM2(G) ψ(u)ψ(v) Neighborhood second Zagreb indexM∗
2 Ψ(u)Ψ(v)

Forgotten topological index F (G) ψ(u)2 + ψ(v)2 Neighborhood Forgotten topological index F∗
N Ψ(u)2 + Ψ(v)2

Second modified Zagreb indexmM2(G) 1
ψ(u)ψ(v)

Neighborhood second modified Zagreb index nmM2(G) 1
Ψ(u)Ψ(v)

Randić indexRα(G) (ψ(u)ψ(v))α Neighborhood Randić indexNRα(G) (Ψ(u)Ψ(v))α

Redefined third Zagreb indexReZG3(G) (ψ(u) + ψ(v))ψ(u)ψ(v) Third NDe indexND3(G) (Ψ(u) + Ψ(v))Ψ(u)Ψ(v)

Symmetric division index SDD(G)
ψ2(u)+ψ2(v)
ψ(u)ψ(v)

Fifth NDe indexND5(G)
Ψ2(u)+Ψ2(v)

Ψ(u)Ψ(v)

Harmonic indexH(G) 2
ψ(u)+ψ(v)

Neighborhood Harmonic indexNH(G) 2
Ψ(u)+Ψ(v)

Inverse sum indeg index I(G)
ψ(u)ψ(v)

(ψ(u)+ψ(v))
Neighborhood Inverse sum indeg indexNI(G)

Ψ(u)Ψ(v)
(Ψ(u)+Ψ(v))

Augmented Zagreb indexA(G)
{

ψ(u)ψ(v)
(ψ(u)+ψ(v))

}3
Sanskruti index S(G)

{
Ψ(u)Ψ(v)

(Ψ(u)+Ψ(v))

}3

Table 1: Description of some topological indices.

Degree based(D) and neighborhood degree sum-based (ND) topological in-
dices defined on edge set E(G) of a graph G can be expressed as

D(G) =
∑

uv∈E(G)

g(ψ(u), ψ(v)), ND(G) =
∑

uv∈E(G)

g(Ψ(u),Ψ(v)),

where the formulation of g(ψ(u), ψ(v)) and g(Ψ(u),Ψ(v)) are given in Table 1.
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Topological Index Derivation from M(G;x, y) Topological Index Derivation from NM(G;x, y)

M1(G) (Dx +Dy)(M(G;x, y))|x=y=1 M
′
1(G) (Dx +Dy)(M(G;x, y))|x=y=1

M2(G) (DxDy)(M(G;x, y))|x=y=1 M∗
2 (DxDy)(M(G;x, y))|x=y=1

F (G) (D2
x +D2

y)(M(G;x, y))|x=y=1 F ∗
N (D2

x +D2
y)(M(G;x, y))|x=y=1

mM2(G) (IxIy)(M(G;x, y))|x=y=1
nmM2(G) (IxIy)(M(G;x, y))|x=y=1

Rα(G) (Dα
xD

α
y )(M(G;x, y))|x=y=1 NRα(G) (Dα

xD
α
y )(M(G;x, y))|x=y=1

ReZG3(G) DxDy(Dx +Dy)(M(G;x, y))|x=y=1 ND3(G) DxDy(Dx +Dy)(M(G;x, y))|x=y=1

SDD(G) (DxIy +DyIx)(M(G;x, y))|x=y=1 ND5(G) (DxIy +DyIx)(M(G;x, y))|x=y=1

H(G) 2IxJ(M(G;x, y))|x=1 NH(G) 2IxJ(M(G;x, y))|x=1

I(G) IxJDxDy(M(G;x, y))|x=1 NI(G) IxJDxDy(M(G;x, y))|x=1

A(G) I3xQ−2JD3
xD

3
y(M(G;x, y))|x=1 S(G) I3xQ−2JD3

xD
3
y(M(G;x, y))|x=1

Table 2: Operations to derive degree-based topological indices from M -
polynomial and NM -polynomial.

Where Dx = x∂f(x,y)
∂x

, Dy = y ∂f(x,y)
∂y

, Ix =
∫ x

0
f(t,y)

t
dt, Iy =

∫ y

0
f(x,t)

t
dt,

J(f(x, y)) = f(x, x) and Qα(f(x, y)) = xαf(x, y) are the operators.

Molecular topological indices are important in mathematical chemistry, par-
ticularly in the study of quantitative structure-property relationships (QSPR) and
quantitative structure-activity relationships (QSAR). It is an effective technique
to eliminate expensive and time-consuming laboratory studies. Information on
physicochemical qualities and biological activity of molecular graphs of com-
pounds is required in pharmaceutical drug design. These features may be pre-
dicted using the topological index, a well-known method in chemical graph the-
ory. This motivates us to study M and NM polynomials from which we retrieve
topological indices.

2 Main Results
In this section, we obtain the expression for M and NM -polynomials of

molecular graphs of some anticancer drugs using edge partition technique, degree
and neighborhood counting method.

Theorem 2.1. Let G be the molecular graph of amathaspiramide E. Then,

(i) M(G;x, y) = xy2 + 5xy3 + 3x2y2 + 5x2y3 + 2x2y4 + 6x3y3 + 2x3y4,

(ii) NM(G;x, y) = x2y4 + x3y5 + x3y6 + 2x3y7 + x3y8 + x4y4 + 2x4y6

+ x4y7 + x5y6 + x5y8 + x6y6 + 2x6y7 + x6y8 + 2x6y10

+ x7y7 + x7y8 + x7y10 + 2x8y10 + x10y10.

Proof. Let G be the molecular graph of amathaspiramide E (Figure 1). It has 24
number of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j,
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i. e., M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of
edges in M(i,j). From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 5, m(2,2) = 3,
m(2,3) = 5, m(3,3) = 6, m(3,4) = 2 and m(2,4) = 2.

Thus, the M − polynomial of G is

M(G;x, y) =
∑
i≤j

m(i,j)x
iyj

= m(1,2)x
1y2 +m(1,3)x

1y3 +m(2,2)x
2y2 +m(2,3)x

2y3

+m(2,4)x
2y4 +m(3,3)x

3y3 +m(3,4)x
3y4

= xy2 + 5xy3 + 3x2y2 + 5x2y3 + 2x2y4 + 6x3y3 + 2x3y4.

LetM∗
(i,j) be the set of all edges with neighborhood degree sum of end vertices

i, j, i. e., M∗
(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗

(i,j) be the
number of edges in M∗

(i,j). From Figure 1, it is clear that m∗
(2,4) = 1, m∗

(3,5) = 1,
m∗

(3,6) = 1, m∗
(3,7) = 2, m∗

(3,8) = 1, m∗
(4,4) = 1, m∗

(2,4) = 6, m∗
(4,7) = 1, m∗

(5,6) = 1,
m∗

(5,8) = 1,m∗
(6,6) = 1,m∗

(6,7) = 2,m∗
(6,8) = 1,m∗

(6,10) = 2,m∗
(7,7) = 1,m∗

(7,8) = 1,
m∗

(7,10) = 1, m∗
(8,10) = 2 and m∗

(10,10) = 1.
Thus, the NM − polynomial of G is

NM(G;x, y) =
∑
i≤j

m∗
(i,j)x

iyj

= m∗
(2,4)x

2y4 +m∗
(3,5)x

3y5 +m∗
(3,6)x

3y6 +m∗
(3,7)x

3y7 +m∗
(3,8)x

3y8

+m∗
(4,4)x

4y4 +m∗
(4,6)x

4y6 +m∗
(4,7)x

4y7 +m∗
(5,6)x

5y6 +m∗
(5,8)x

5y8

+m∗
(6,6)x

6y6 +m∗
(6,7)x

6y7 +m∗
(6,8)x

6y8 +m∗
(6,10)x

6y10

+m∗
(7,7)x

7y7 +m∗
(7,8)x

7y8 +m∗
(7,10)x

7y10 +m∗
(8,10)x

8y10 +m∗
(10,10)x

10y10

= x2y4 + x3y5 + x3y6 + 2x3y7 + x3y8 + x4y4 + 2x4y6 + x4y7 + x5y6 + x5y8

+x6y6 + 2x6y7 + x6y8 + 2x6y10 + x7y7 + x7y8 + x7y10 + 2x8y10 + x10y10.

Figure 2: Plotting of (a) M-polynomial and (b) NM-polynomial of amathaspi-
ramide E.

34



Topological indices of some anticancer drugs

Corolary 2.1. Let G be the molecular graph of amathaspiramide E. Then

(i) M1(G) = 122, M
′
1(G) = 303,

(ii) M2(G) = 153, M∗
2 (G) = 992,

(iii) F (G) = 342, F ∗
N(G) = 2141,

(iv) mM2(G) = 4.833, nmM2(G) = 0.832,

(v) Rα(G) = 2α+5(3)α+3(4)α+5(6)α+2(8)α+6(9)α+2(12)α, NRα(G) =
(8)α+(15)α+(18)α+2(21)α+(24)α+(16)α+2(24)α+(28)α+(30)α+
(40)α+(36)α+2(42)α+(48)α+2(60)α+(49)α+(56)α+(70)α+2(80)α+
(100)α,

(vi) ReZG3(G) = 852, ND3(G) = 14492,

(vii) SDD(G) = 57.166, ND5(G) = 53.65,

(viii) H(G) = 9.904, NH(G) = 4.13,

(ix) I(G) = 28.511, NI(G) = 72.36,

(x) A(G) = 2572.2, S(G) = 852.94.

Proof. Let M(G) = f(x, y) = xy2 + 5xy3 + 3x2y2 + 5x2y3 + 2x2y4 + 6x3y3 +
2x3y4. Then, we have

(Dx +Dy)(f(x, y)) = 3xy2 +20xy3 +12x2y2 +25x2y3 +12x2y4 +36x3y3 +14x3y4,

DxDy(f(x, y)) = 2xy2 + 15xy3 + 12x2y2 + 30x2y3 + 16x2y4 + 54x3y3 + 24x3y4,

(D2
x+D2

y)(f(x, y)) = 5xy2+50xy3+24x2y2+65x2y3+40x2y4+108x3y3+50x3y4,

IxIy(f(x, y)) =
1
2xy

2 + 5
3xy

3 + 3
4x

2y2 + 5
6x

2y3 + 1
4x

2y4 + 2
3x

3y3 + 1
6x

3y4,

Dα
xD

α
y (f(x, y)) = 2αxy2+5(3)αxy3+3(4)αx2y2+5(6)αx2y3+2(8)αx2y4+6(9)αx3y3

+ 2(12)αx3y4,

DxDy(Dx +Dy)(f(x, y)) = 6xy2 + 60xy3 + 48x2y2 + 150x2y3 + 96x2y4 + 324x3y3

+ 168x3y4,

(DxIy+IxDy)(f(x, y)) =
5
2xy

2+ 50
3 xy3+6x2y2+ 65

6 x2y3+ 5
x

2
y4+12x3y3+ 25

6 x3y4,

IxJ(f(x, y)) =
2
3x

3 + 4x4 + 2x5 + 8
3x

6 + 4
7x

7,

IxJDxDy(f(x, y)) =
2
3x

3 + 27
4 x4 + 6x5 + 35

3 x6 + 24
7 x7,

I3xQ−2JD
3
xD

3
y(f(x, y)) = 8x+ 327

2 x2 + 360x3 + 5398
4 x4 + 3456

5 x5

Using Table 2, we have
M1(G) = 3xy2+20xy3+12x2y2+25x2y3+12x2y4+36x3y3+14x3y4|x=y=1 = 122,

M2(G) = 2xy2+15xy3+12x2y2+30x2y3+16x2y4+54x3y3+24x3y4|x=y=1 = 153,
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F (G) = 5xy2+50xy3+24x2y2+65x2y3+40x2y4+108x3y3+50x3y4|x=y=1 = 342,

mM2(G) = 1
2xy

2 + 5
3xy

3 + 3
4x

2y2 + 5
6x

2y3 + 1
4x

2y4 + 2
3x

3y3 + 1
6x

3y4|x=y=1 = 4.833,

Rα = 2αxy2 + 5(3)αxy3 + 3(4)αx2y2 + 5(6)αx2y3 + 2(8)αx2y4 + 6(9)αx3y3

+ 2(12)αx3y4|x=y=1 = 2α + 5(3)α + 3(4)α + 5(6)α + 2(8)α + 6(9)α

+ 2(12)α,

ReZG3(G) = 6xy2 + 60xy3 + 48x2y2 + 150x2y3 + 96x2y4 + 324x3y3

+ 168x3y4|x=y=1 = 852,

SDD(G) = 5
2xy

2+ 50
3 xy3+6x2y2+ 65

6 x2y3+ 5
x

2
y4+12x3y3+ 25

6 x3y4|x=y=1 = 57.166,

H(G) = 2
3x

3 + 4x4 + 2x5 + 8
3x

6 + 4
7x

7|x=1 = 9.904,

I(G) = 2
3x

3 + 27
4 x4 + 6x5 + 35

3 x6 + 24
7 x7|x=1 = 28.511,

A(G) = 8x+ 327
2 x2 + 360x3 + 5398

4 x4 + 3456
5 x5|x=1 = 2572.2.

For neighborhood degree sum-based indices, we consider g(x, y) = NM(G) =
x2y4+x3y5+x3y6+2x3y7+x3y8+x4y4+2x4y6+x4y7+x5y6+x5y8+x6y6+
2x6y7 + x6y8 + 2x6y10 + x7y7 + x7y8 + x7y10 + x8y10 + x10y10. Then, applying
the above operations and Table 2, we can easily obtain the neighborhood degree
sum-based indices. This completes the proof.

Theorem 2.2. Let G be the molecular graph of aminopterin. Then,

(i) M(G;x, y) = 7xy3 + 5x2y2 + 18x2y3 + 4x3y3,

(ii) NM(G;x, y) = 3x3y4 + 2x3y5 + 2x3y6 + x4y5 + 2x4y6 + 5x5y5

+ 5x5y6 + 5x5y7 + 3x6y6 + 3x6y7 + 2x6y8 + x7y8.

Proof. Let G be the molecular graph of aminopterin (Figure 1). It has 34 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,3) = 7, m(2,2) = 5, m(2,3) = 18 and m(3,3) = 4.
Let M∗

(i,j) be the set of all edges with neighbourhood degree sum of end vertices
i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗
(i,j) be the

number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(3,4) = 3, m∗
(3,5) = 2,

m∗
(3,6) = 2, m∗

(4,5) = 1, m∗
(4,6) = 2, m∗

(5,5) = 5, m∗
(5,6) = 5, m∗

(5,7) = 5, m∗
(6,6) = 3,

m∗
(6,7) = 3, m∗

(6,8) = 2 and m∗
(7,8) = 1. The proof is similar as that of Theorem

2.1.
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Figure 3: Plotting of (a) M-polynomial and (b) NM-polynomial of aminopterin.

Corolary 2.2. Let G be the molecular graph of aminopterin. Then

(i) M1(G) = 162, M
′
1(G) = 367,

(ii) M2(G) = 185, M∗
2 (G) = 1006,

(iii) F (G) = 416, F ∗
N(G) = 2087,

(iv) mM2(G) = 7.027, nmM2(G) = 1.35,

(v) Rα(G) = 7(3)α + 5(4)α + 18(6)α + 4(9)α, NRα(G) = 3(12)α + 2(15)α +
2(18)α + (20)α +2(24)α +5(25)α +5(30)α +5(35)α +3(36)α +3(42)α +
2(48)α + (56)α,

(vi) ReZG3(G) = 920, ND3(G) = 11594,

(vii) SDD(G) = 80.333, ND5(G) = 71.16,

(viii) H(G) = 7.266, NH(G) = 6.54,

(ix) I(G) = 37.85, NI(G) = 89.91,

(x) A(G) = 253.187, S(G) = 701.33.

Theorem 2.3. Let G be the molecular graph of aspidostomide E. Then,

(i) M(G;x, y) = xy2 + 6xy3 + x2y2 + 9x2y3 + 12x3y3,

(ii) NM(G;x, y) = x2y4 + x3y5 + 2x3y6 + 3x3y7 + x4y7 + 2x5y5 + x5y6

+ x5y7 + 2x6y6 + 2x6y7 + x6y8 + 2x6y9 + 2x7y7

+ x7y8 + 3x7y9 + x8y9 + 3x9y9.
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Proof. Let G be the molecular graph of aspidostomide E (Figure 1). It has 29
edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Letm(i,j) be the number of edges in
M(i,j). From Figure 1, it is clear thatm(1,2) = 1,m(1,3) = 6,m(2,2) = 1,m(2,3) = 9
and m(3,3) = 12. Let M∗

(i,j) be the set of all edges with neighbourhood degree sum
of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let
m∗

(i,j) be the number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,4) = 1,
m∗

(3,5) = 1, m∗
(3,6) = 2, m∗

(3,7) = 3, m∗
(4,7) = 1, m∗

(5,5) = 2, m∗
(5,6) = 1, m∗

(5,7) = 1,
m∗

(6,6) = 2, m∗
(6,7) = 2, m∗

(6,8) = 1, m∗
(6,9) = 2, m∗

(7,7) = 1, m∗
(7,8) = 1, m∗

(7,9) = 3,
m∗

(8,9) = 1 and m∗
(9,9) = 3. Using the edge partition of G, the M and NM

polynomials can be obtained easily.

Figure 4: Plotting of (a) M-polynomial and (b) NM-polynomial of aspidostomide
E.

Corolary 2.3. Let G be the molecular graph of aspidostomide E. Then

(i) M1(G) = 148, M
′
1(G) = 372,

(ii) M2(G) = 186, M∗
2 (G) = 1235,

(iii) F (G) = 406, F ∗
N(G) = 2596,

(iv) mM2(G) = 5.583, nmM2(G) = 0.94,

(v) Rα(G) = 2α + 6(3)α + 4α + 9(6)α + 12(9)α, NRα(G) = (8)α + (15)α +
2(18)α + 3(21)α + (28)α + 2(25)α + (30)α + (35)α + 2(36)α + 2(42)α +
(48)α + 2(54)α + (56)α + 3(63)α + 2(49)α + (72)α + 3(81)α,

(vi) ReZG3(G) = 1012, ND3(G) = 17762,

(vii) SDD(G) = 68, ND5(G) = 63.20,

(viii) H(G) = 5.883, NH(G) = 4.85,
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(ix) I(G) = 34.966, NI(G) = 90.06,

(x) A(G) = 244.937, S(G) = 1070.91.

Theorem 2.4. Let G be the molecular graph of carmustine. Then

(i) M(G;x, y) = 3xy2 + xy3 + 3x2y2 + 3x2y3 + x3y3,

(ii) NM(G;x, y) = 2x2y3 + x2y4 + x3y4 + x3y5 + x3y6 + x4y5 + x4y7

+ x5y6 + x5y7 + x6y7.

Proof. Let G be the molecular graph of carmustine (Figure 1). It has 11 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,2) = 3, m(1,3) = 1, m(2,2) = 3, m(2,3) = 3
and m(3,3) = 1. Let M∗

(i,j) be the set of all edges with neighbourhood degree sum
of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let
m∗

(i,j) be the number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,3) = 2,
m∗

(2,4) = 1, m∗
(3,4) = 1, m∗

(3,5) = 1, m∗
(3,6) = 1, m∗

(4,5) = 1, m∗
(4,7) = 1, m∗

(5,6) = 1,
m∗

(5,7) = 1 and m∗
(6,7) = 1. The M and NM polynomials can be obtained by

using the edge partition of G.

Figure 5: Plotting of (a) M-polynomial and (b) NM-polynomial of carmustine.

Corolary 2.4. Let G be the molecular graph of carmustine. Then

(i) M1(G) = 46, M
′
1(G) = 96,

(ii) M2(G) = 48, M∗
2 (G) = 220,

(iii) F (G) = 106, F ∗
N(G) = 476,

(iv) mM2(G) = 3.194, nmM2(G) = 0.835,
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(v) Rα(G) = 3(2)α+(3)α+3(4)α+3(6)α+(9)α, NRα(G) = 2(6)α+(8)α+
(12)α + (18)α + (15)α + (20)α + (28)α + (30)α + (35)α + (42)α,

(vi) ReZG3(G) = 222, ND3(G) = 2258,

(vii) SDD(G) = 25.33, ND5(G) = 24.22,

(viii) H(G) = 5.53, NH(G) = 2.79,

(ix) I(G) = 10.85, NI(G) = 22.96,

(x) A(G) = 12.86, S(G) = 131.74.

Theorem 2.5. Let G be the molecular graph of caulibugulone E. Then

(i) M(G;x, y) = xy2 + 2xy3 + 3x2y2 + 5x2y3 + 4x3y3,

(ii) NM(G;x, y) = x2y4 + x3y6 + x3y7 + x4y4 + 2x4y5 + x4y7 + 2x5y8

+ x6y6 + x6y7 + x7y7 + x7y8 + x8y6 + x8y8.

Proof. Let G be the molecular graph of caulibugulone E (Figure 1). It has 15
edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Letm(i,j) be the number of edges in
M(i,j). From Figure 1, it is clear thatm(1,2) = 1,m(1,3) = 2,m(2,2) = 3,m(2,3) = 5
and m(3,3) = 4. Let M∗

(i,j) be the set of all edges with neighbourhood degree sum
of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let
m∗

(i,j) be the number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,4) = 1,
m∗

(3,6) = 1, m∗
(3,7) = 1, m∗

(4,4) = 1, m∗
(4,5) = 2, m∗

(4,7) = 1, m∗
(5,8) = 2, m∗

(6,6) = 1,
m∗

(6,7) = 1, m∗
(6,8) = 1, m∗

(7,7) = 1, m∗
(7,8) = 1, m∗

(8,6) = 1 and m∗
(8,8) = 1.

By making use of the edge partition of G, the M and NM polynomials can be
computed.

Figure 6: Plotting of (a) M-polynomial and (b) NM-polynomial of caulibugulone
E.
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Corolary 2.5. Let G be the molecular graph of caulibugulone E. Then

(i) M1(G) = 72, M
′
1(G) = 172,

(ii) M2(G) = 86, M∗
2 (G) = 506,

(iii) F (G) = 186, F ∗
N(G) = 1076,

(iv) mM2(G) = 3.194, nmM2(G) = 0.60,

(v) Rα(G) = (2)α+2(3)α+3(4)α+5(6)α+4(9)α, NRα(G) = (8)α+(18)α+
(21)α+(16)α+2(20)α+(28)α+2(40)α+(36)α+(42)α+(48)α+(49)α+
(56)α + (64)α,

(vi) ReZG3(G) = 444, ND3(G) = 1072,

(vii) SDD(G) = 34, ND5(G) = 32.75,

(viii) H(G) = 6.5, NH(G) = 2.80,

(ix) I(G) = 17.16, NI(G) = 41.46,

(x) A(G) = 26.28, S(G) = 384.26.

Theorem 2.6. Let G be the molecular graph of convolutamide A. Then

(i) M(G;x, y) = xy2 + 5xy3 + xy4 + 12x2y2 + 6x2y3 + x2y4

+ 4x3y3 + 2x3y4,

(ii) NM(G;x, y) = x2y3 + x3y4 + 3x3y6 + 2x3y7 + 9x4y4

+ x4y5 + x4y9 + 2x5y6 + x5y8 + 2x6y6

+ 2x6y7 + 3x6y8 + x6y9 + x7y8 + x7y9 + x8y9.

Proof. Let G be the molecular graph of convolutamide A (Figure 1). It has 32
edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges
in M(i,j). From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 5, m(1,4) = 1,
m(2,2) = 12, m(2,3) = 6, m(2,4) = 1, m(3,3) = 4 and m(3,4) = 2. Let M∗

(i,j)

be the set of all edges with neighbourhood degree sum of end vertices i, j, i. e.,
M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗
(i,j) be the number of edges

in M∗
(i,j). From Figure 1, it is clear that m∗

(2,3) = 1, m∗
(3,4) = 1, m∗

(3,6) = 3,
m∗

(3,7) = 2, m∗
(4,4) = 9, m∗

(4,5) = 1, m∗
(4,9) = 1, m∗

(5,6) = 2, m∗
(5,8) = 1, m∗

(6,6) = 2,
m∗

(6,7) = 2, m∗
(6,8) = 3, m∗

(6,9) = 1, m∗
(7,8) = 1, m∗

(7,9) = 1 and m∗
(8,9) = 1. Using

the edge partition of G, the M and NM polynomials can be obtained easily.
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Figure 7: Plotting of (a) M-polynomial and (b) NM-polynomial of convolutamide
A.

Corolary 2.6. Let G be the molecular graph of convolutamide A. Then

(i) M1(G) = 150, M∗
1 (G) = 343,

(ii) M2(G) = 173, M∗
2 (G) = 959,

(iii) F (G) = 388, F ∗
N(G) = 2045,

(iv) mM2(G) = 7.15, nmM2(G) = 1.47,

(v) Rα(G) = (2)α+5(3)α+13(4)α+6(6)α+(8)α+4(9)α+2(12)α, NRα(G) =
(6)α+(12)α+3(18)α+2(21)α+9(16)α+(20)α+(36)α+2(30)α+2(36)α+
2(42)α + 3(48)α + (54)α + (56)α + (63)α + (72)α + (40)α,

(vi) ReZG3(G) = 890, ND3(G) = 11854,

(vii) SDD(G) = 75.07, ND5(G) = 68.86,

(viii) H(G) = 14.20, NH(G) = 6.47,

(ix) I(G) = 35.17, NI(G) = 82.89,

(x) A(G) = 51.23, S(G) = 701.26.

Theorem 2.7. Let G be the molecular graph of convolutamine F. Then

(i) M(G;x, y) = 2xy2 + 3xy3 + 2x2y2 + 4x2y3 + 4x3y3,

(ii) NM(G;x, y) = x2y3 + x2y4 + x3y4 + 2x3y6 + x3y7 + x4y5

+ x4y8 + x5y8 + 2x6y6 + 2x6y8 + 2x7y8.

Proof. Let G be the molecular graph of convolutamine F (Figure 1). It has 15
edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Letm(i,j) be the number of edges in
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M(i,j). From Figure 1, it is clear thatm(1,2) = 2,m(1,3) = 3,m(2,2) = 2,m(2,3) = 4
and m(3,3) = 4. Let M∗

(i,j) be the set of all edges with neighbourhood degree sum
of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let
m∗

(i,j) be the number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,3) = 1,
m∗

(2,4) = 1, m∗
(3,4) = 1, m∗

(3,6) = 2, m∗
(3,7) = 1, m∗

(4,5) = 1, m∗
(4,8) = 1, m∗

(5,8) = 1,
m∗

(6,6) = 2, m∗
(6,8) = 2 and m∗

(7,8) = 2. The M and NM polynomials are obtained
by using the edge partition of G.

Figure 8: Plotting of (a) M-polynomial and (b) NM-polynomial of convolutamine
F.

Corolary 2.7. Let G be the molecular graph of convolutamine F. Then

(i) M1(G) = 70, M
′
1(G) = 162,

(ii) M2(G) = 81, M∗
2 (G) = 455,

(iii) F (G) = 180, F ∗
N(G) = 986,

(iv) mM2(G) = 3.44, nmM2(G) = 0.77,

(v) Rα(G) = 2(2)α+3(3)α+2(4)α+4(6)α+4(9)α, NRα(G) = (6)α+(8)α+
(12)α+2(18)α+(21)α+(20)α+(32)α+(40)α+2(36)α+2(48)α+2(56)α,

(vi) ReZG3(G) = 416, ND3(G) = 5668,

(vii) SDD(G) = 35.66, ND5(G) = 33.48,

(viii) H(G) = 6.76, NH(G) = 3.09,

(ix) I(G) = 16.38, NI(G) = 38.63,

(x) A(G) = 24.27, S(G) = 332.14.

Theorem 2.8. Let G be the molecular graph of convolutamydine A. Then
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(i) M(G;x, y) = 5xy3 + xy4 + 7x2y3 + x2y4 + 2x3y3 + 2x3y4,

(ii) NM(G;x, y) = 2x3y4 + x3y5 + x3y6 + x3y7 + x4y7 + x4y9 + 2x5y6

+ x6y6 + 3x6y7 + x6y10 + 2x7y9 + x7y10 + x9y10.

Proof. Let G be the molecular graph of convolutamydine A (Figure 1). It has
18 edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Letm(i,j) be the number of edges in
M(i,j). From Figure 1, it is clear that m(1,3) = 5, m(1,4) = 1, m(2,3) = 7, m(2,4) =
1, m(3,3) = 2 andm(3,4) = 2. LetM∗

(i,j) be the set of all edges with neighbourhood
degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) =

j}. Let m∗
(i,j) be the number of edges in M∗

(i,j). From Figure 1, it is clear that
m∗

(3,4) = 2, m∗
(3,5) = 1, m∗

(3,6) = 1, m∗
(3,7) = 1, m∗

(4,7) = 1, m∗
(4,9) = 1, m∗

(5,6) = 2,
m∗

(6,6) = 1, m∗
(6,7) = 3, m∗

(6,10) = 1, m∗
(7,9) = 2, m∗

(9,10) = 1 and m∗
(7,10) = 1. The

proof is similar as that of Theorem 2.1.

Figure 9: Plotting of (a) M-polynomial and (b) NM-polynomial of convolutamy-
dine A.

Corolary 2.8. Let G be the molecular graph of convolutamydine A. Then

(i) M1(G) = 82, M
′
1(G) = 222,

(ii) M2(G) = 111, M∗
2 (G) = 710,

(iii) F (G) = 264, F ∗
N(G) = 1524,

(iv) mM2(G) = 3.59, nmM2(G) = 0.63,

(v) Rα(G) = 5(3)α + (4)α + (6)α + 2(9)α + 2(12)α, NRα(G) = 2(12)α +
(15)α+(18)α+(21)α+(28)α+(36)α+2(30)α+(36)α+3(42)α+(60)α+
2(63)α + (70)α + (90)α,

(vi) ReZG3(G) = 614, ND3(G) = 10042,
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(vii) SDD(G) = 42.58, ND5(G) = 39.38,

(viii) H(G) = 4.27, NH(G) = 3.16,

(ix) I(G) = 20.71, NI(G) = 53.34,

(x) A(G) = 33.91, S(G) = 591.32.

Theorem 2.9. Let G be the molecular graph of Daunorubicin. Then

(i) M(G;x, y) = xy2 + 9xy3 + xy4 + 2x2y2 + 10x2y3 + 2x2y4

+ 16x3y3 + x3y4,

(ii) NM(G;x, y) = x2y4 + 4x3y6 + 5x3y7 + 2x4y5 + x4y7 + x4y8

+ x5y7 + x5y8 + 5x6y6 + 3x6y7 + x6y8 + x7y7

+ 5x7y8 + 8x7y9 + 2x8y9 + x9y9.

Proof. Let G be the molecular graph of Daunorubicin (Figure 1). It has 42 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 9, m(1,4) = 1, m(2,2) = 2,
m(2,3) = 10, m(2,4) = 2, m(3,3) = 16 and m(3,4) = 1. Let M∗

(i,j) be the set of all
edges with neighbourhood degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈
E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗

(i,j) be the number of edges in M∗
(i,j). From

Figure 1, it is clear that m∗
(2,4) = 1, m∗

(3,6) = 4, m∗
(3,7) = 5, m∗

(4,5) = 2, m∗
(4,7) = 1,

m∗
(4,8) = 1, m∗

(5,7) = 1, m∗
(5,8) = 1, m∗

(6,6) = 5, m∗
(6,7) = 3, m∗

(6,8) = 1, m∗
(7,7) = 1,

m∗
(7,8) = 5, m∗

(7,9) = 8, m∗
(8,9) = 2 and m∗

(9,9) = 1. Now by making use of the
edge partition of G, the M and NM polynomials are obtained.

Figure 10: Plotting of (a) M-polynomial and (b) NM-polynomial of Daunorubicin.

Corolary 2.9. Let G be the molecular graph of Daunorubicin. Then

(i) M1(G) = 217, M
′
1(G) = 540,
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(ii) M2(G) = 273, M∗
2 (G) = 1772,

(iii) F (G) = 611, F ∗
N(G) = 3750,

(iv) mM2(G) = 8.02, nmM2(G) = 1.31,

(v) Rα(G) = (2)α +9(3)α + (4)α +2(4)α +10(6)α +2(8)α +16(9)α + (12)α,
NRα(G) = (8)α + 4(18)α + 5(21)α + 2(20)α + (28)α + (32)α + (35)α +
(40)α+5(36)α+3(42)α+(48)α+(49)α+5(56)α+8(63)α+2(72)α+(81)α,

(vi) ReZG3(G) = 1510, ND3(G) = 25064,

(vii) SDD(G) = 101.5, ND5(G) = 92.35,

(viii) H(G) = 16.85, NH(G) = 6.92,

(ix) I(G) = 50.59, NI(G) = 130.24,

(x) A(G) = 87.66, S(G) = 1502.98.

Theorem 2.10. Let G be the molecular graph of Deguelin. Then

(i) M(G;x, y) = 2xy2 + xy3 + 2xy4 + 3x2y2 + 14x2y3 + 2x2y4 + 9x3y3,

(ii) NM(G;x, y) = 2x2y4 + x3y7 + 2x4y6 + 2x4y7 + 2x5y5 + x5y6

+ 3x5y7 + 2x5y8 + x6y6 + 5x6y7 + 2x6y8 + 2x7y7

+ 3x7y8 + 2x7y9 + 2x8y8 + x8y9.

Proof. Let G be the molecular graph of Deguelin (Figure 1). It has 33 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,2) = 2, m(1,3) = 1, m(1,4) = 2, m(2,2) = 3,
m(2,3) = 14, m(2,4) = 2 and m(3,3) = 9. Let M∗

(i,j) be the set of all edges with
neighbourhood degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) :

Ψ(u) = i,Ψ(v) = j}. Let m∗
(i,j) be the number of edges in M∗

(i,j). From Figure
1, it is clear that m∗

(2,4) = 2, m∗
(3,7) = 1, m∗

(4,6) = 2, m∗
(4,7) = 2, m∗

(5,5) = 2,
m∗

(5,6) = 1, m∗
(5,7) = 3, m∗

(5,8) = 2, m∗
(6,6) = 1, m∗

(6,7) = 5, m∗
(6,8) = 2, m∗

(7,7) = 2,
m∗

(7,8) = 3, m∗
(7,9) = 2, m∗

(8,8) = 2 and m∗
(8,9) = 1. With the help of edge partition

of G, the M and NM polynomials can be computed.
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Figure 11: Plotting of (a) M-polynomial and (b) NM-polynomial of Deguelin.

Corolary 2.10. Let G be the molecular graph of Deguelin. Then

(i) M1(G) = 158, M
′
1(G) = 416,

(ii) M2(G) = 208, M∗
2 (G) = 1340,

(iii) F (G) = 462, F ∗
N(G) = 2786,

(iv) mM2(G) = 6.16, nmM2(G) = 1.06,

(v) Rα(G) = (2)α+(3)α+2(4)α+3(4)α+14(6)α+2(8)α+9(9)α, NRα(G) =
2(8)α + (21)α + 2(24)α + 2(28)α + 2(25)α + (30)α + 3(35)α + 2(40)α +
(36)α + 5(442)α + 2(48)α + 2(49)α + 3(56)α + 2(63)α + 2(64)α + (72)α,

(vi) ReZG3(G) = 1114, ND3(G) = 18218,

(vii) SDD(G) = 57.20, ND5(G) = 70.04,

(viii) H(G) = 13.4, NH(G) = 5.54,

(ix) I(G) = 39.65, NI(G) = 101.61,

(x) A(G) = 64.34, S(G) = 1103.

Theorem 2.11. Let G be the molecular graph of Melatonin. Then

(i) M(G;x, y) = xy2 + 2xy3 + 4x2y2 + 9x2y3 + 2x3y3,

(ii) NM(G;x, y) = x2y4 + 2x3y4 + 3x4y5 + x4y6 + 2x5y5

+ x5y6 + 4x5y7 + x6y6 + x6y8 + 2x7y8.

Proof. Let G be the molecular graph of Melatonin (Figure 1). It has 18 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 2, m(2,2) = 4, m(2,3) = 9
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and m(3,3) = 2. Let M∗
(i,j) be the set of all edges with neighbourhood degree sum

of end vertices i, j, i. e., M∗
(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let

m∗
(i,j) be the number of edges in M∗

(i,j). From Figure 1, it is clear that m∗
(2,4) = 1,

m∗
(3,4) = 2, m∗

(4,5) = 3, m∗
(4,6) = 1, m∗

(5,5) = 2, m∗
(5,6) = 1, m∗

(5,7) = 4, m∗
(6,6) = 1,

m∗
(6,8) = 1 and m∗

(7,8) = 2. The proof is similar as that of Theorem 2.1.

Figure 12: Plotting of (a) M-polynomial and (b) NM-polynomial of Melatonin.

Corolary 2.11. Let G be the molecular graph of Melatonin. Then

(i) M1(G) = 84, M
′
1(G) = 192,

(ii) M2(G) = 96, M∗
2 (G) = 532,

(iii) F (G) = 210, F ∗
N(G) = 1100,

(iv) mM2(G) = 3.88, nmM2(G) = 0.79,

(v) Rα(G) = (2)α+2(3)α+4(4)α+9(6)α+2(9)α, NRα(G) = (8)α+2(12)α+
3(20)α + (24)α + 2(25)α + (30)α + 4(35)α + (36)α + (48)α + 2(56)α,

(vi) ReZG3(G) = 472, ND3(G) = 6290,

(vii) SDD(G) = 40.66, ND5(G) = 37.59,

(viii) H(G) = 7.93, NH(G) = 3.59,

(ix) I(G) = 19.96, NI(G) = 47.11,

(x) A(G) = 27.43, S(G) = 381.34.

Theorem 2.12. Let G be the molecular graph of Minocycline. Then

(i) M(G;x, y) = 11xy3 + xy4 + x2y2 + 6x2y3 + 14x3y3 + 3x3y4,
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(ii) NM(G;x, y) = 6x3y5 + x3y6 + 2x3y7 + 2x3y8 + x4y10 + x5y5 + x5y6

+ 2x5y8 + 2x5y9 + 2x6y7 + x6y8 + 2x6y9 + 5x7y9

+ x8y8 + 3x8y9 + 2x8y10 + x9y9 + x9y10.

Proof. Let G be the molecular graph of Minocycline (Figure 1). It has 36 edges.
Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e., M(i,j) =
{uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges in M(i,j).
From Figure 1, it is clear that m(1,3) = 11, m(1,4) = 1, m(2,2) = 1, m(2,3) = 6,
m(3,3) = 14 and m(3,4) = 3. Let M∗

(i,j) be the set of all edges with neighbourhood
degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) =

j}. Let m∗
(i,j) be the number of edges in M∗

(i,j). From Figure 1, it is clear that
m∗

(3,5) = 6,m∗
(3,6) = 1,m∗

(3,7) = 2,m∗
(3,8) = 2,m∗

(4,10) = 1,m∗
(5,5) = 1,m∗

(5,6) = 1,
m∗

(5,8) = 2, m∗
(5,9) = 2, m∗

(6,7) = 2, m∗
(6,8) = 1, m∗

(6,9) = 2, m∗
(7,9) = 5, m∗

(8,8) = 1,
m∗

(8,9) = 3, m∗
(8,10) = 2, m∗

(9,9) = 1 and m∗
(9,10) = 1. With the help of edge

partition of G, the M and NM polynomials can be computed.

Figure 13: Plotting of (a) M-polynomial and (b) NM-polynomial of Minocycline.

Corolary 2.12. Let G be the molecular graph of Minocycline. Then, we have

(i) M1(G) = 188, M
′
1(G) = 478,

(ii) M2(G) = 239, M∗
2 (G) = 1629,

(iii) F (G) = 544, F ∗
N(G) = 3516,

(iv) mM2(G) = 6.97, nmM2(G) = 1.117,

(v) Rα(G) = 11(3)α+2(4)α+6(6)α+14(9)α+3(12)α, NRα(G) = 6(15)α+
(18)α + 2(21)α + 2(24)α + (40)α + (25)α + (30)α + 2(40)α + 2(45)α +
2(42)α+(48)α+2(54)α+5(63)α+(64)α+3(72)α+2(80)α+(81)α+(90)α,

(vi) ReZG3(G) = 1356, ND3(G) = 24438,
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(vii) SDD(G) = 90.16, ND5(G) = 80.73,

(viii) H(G) = 14.32, NH(G) = 5.86,

(ix) I(G) = 43.39, NI(G) = 114.08,

(x) A(G) = 78.87, S(G) = 1441.95.

Theorem 2.13. Let G be the molecular graph of Perfragilin A. Then

(i) M(G;x, y) = xy2 + 5xy3 + 5x2y3 + 7x3y3,

(ii) NM(G;x, y) = x2y4 + 2x3y6 + 3x3y7 + x4y8 + 3x6y6 + 2x6y8 + x7y7

+ 4x7y8 + x8y8.

Proof. LetG be the molecular graph of Perfragilin A (Figure 1). It has 18 number
of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges
in M(i,j). From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 5, m(2,3) = 5 and
m(3,3) = 7. LetM∗

(i,j) be the set of all edges with neighborhood degree sum of end
vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗
(i,j) be the

number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,4) = 1, m∗
(3,6) = 2,

m∗
(3,7) = 3, m∗

(4,8) = 1, m∗
(6,6) = 3, m∗

(6,8) = 2, m∗
(7,7) = 1, m∗

(7,8) = 4 and
m∗

(8,8) = 1. Now by making use of the edge partition of G, the M and NM -
polynomials are obtained.

Figure 14: Plotting of (a) M-polynomial and (b) NM-polynomial of Perfragilin A.

Corolary 2.13. Let G be the molecular graph of Perfragilin A. Then

(i) M1(G) = 90, M
′
1(G) = 220,

(ii) M2(G) = 110, M∗
2 (G) = 680,
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(iii) F (G) = 246, F ∗
N(G) = 1458,

(iv) mM2(G) = 3.77, nmM2(G) = 0.64,

(v) Rα(G) = (2)α + 5(3)α + 5(6)α + 7(9)α, NRα(G) = (8)α + 2(18)α +
3(21)α + (32)α + 3(36)α + 2(48)α + (49)α + 4(56)α + (64)α,

(vi) ReZG3(G) = 594, ND3(G) = 9096,

(vii) SDD(G) = 42, ND5(G) = 40.52,

(viii) H(G) = 7.5, NH(G) = 3.13,

(ix) I(G) = 20.91, NI(G) = 52.59,

(x) A(G) = 34.65, S(G) = 541.73.

Theorem 2.14. Let G be the molecular graph of Podophyllotoxin. Then

(i) M(G;x, y) = 3xy2 + 2xy3 + 3x2y2 + 15x2y3 + 11x3y3,

(ii) NM(G;x, y) = 3x2y4 + x3y6 + x3y7 + 2x4y5 + 2x4y7 + x4y8 + x5y5

+ x5y6 + 2x5y7 + x5y8 + 6x6y7 + 2x6y8 + x6y9 + x7y7

+ 4x7y8 + x7y9 + x8y8 + 2x8y9 + x9y9.

Proof. Let G be the molecular graph of Podophyllotoxin (Figure 1). It has 34
number of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j,
i. e., M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of
edges in M(i,j). From Figure 1, it is clear that m(1,2) = 3, m(1,3) = 2, m(2,2) = 3,
m(2,3) = 15 and m(3,3) = 11. Let M∗

(i,j) be the set of all edges with neighborhood
degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) =

j}. Let m∗
(i,j) be the number of edges in M∗

(i,j). From Figure 1, it is clear that
m∗

(2,4) = 3, m∗
(3,6) = 1, m∗

(3,7) = 1, m∗
(4,5) = 2, m∗

(4,7) = 2, m∗
(4,8) = 1, m∗

(5,5) = 1,
m∗

(5,6) = 1, m∗
(5,7) = 2, m∗

(5,8) = 1, m∗
(6,7) = 6, m∗

(6,8) = 2, m∗
(6,9) = 1, m∗

(7,7) = 1,
m∗

(7,8) = 4, m∗
(7,9) = 1, m∗

(8,8) = 1, m∗
(8,9) = 2 and m∗

(9,9) = 1. Now by making
use of the edge partition ofG, theM andNM -polynomials can be computed.
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Figure 15: Plotting of (a) M-polynomial and (b) NM-polynomial of Podophyllo-
toxin.

Corolary 2.14. Let G be the molecular graph of Podophyllotoxin. Then

(i) M1(G) = 170, M
′
1(G) = 426,

(ii) M2(G) = 213, M∗
2 (G) = 1383,

(iii) F (G) = 452, F ∗
N(G) = 2890,

(iv) mM2(G) = 6.63, nmM2(G) = 1.2,

(v) Rα(G) = 3(2)α + 2(3)α + 3(4)α + 15(6)α + 11(9)α, NRα(G) = 3(8)α +
(18)α+(21)α+2(20)α+(25)α+2(28)α+(32)α+2(35)α+(30)α+(40)α+
6(42)α + 4(56)α + (49)α + (64)α + 2(48)α + 2(72)α + 2(72)α + (63)α +
(81)α + (54)α,

(vi) ReZG3(G) = 1134, ND3(G) = 19230,

(vii) SDD(G) = 74.66, ND5(G) = 73.13,

(viii) H(G) = 14.16, NH(G) = 5.88,

(ix) I(G) = 41, NI(G) = 103.62,

(x) A(G) = 67.76, S(G) = 1161.65.

Theorem 2.15. Let G be the molecular graph of Pterocellin. Then

(i) M(G;x, y) = xy2 + 2xy3 + 5x2y2 + 13x2y3 + 6x3y3,

(ii) NM(G;x, y) = x2y4 + x3y6 + x3y7 + 2x4y4 + 2x4y5 + x4y7 + x5y5

+ 3x5y6 + x5y8 + 4x6y6 + 2x6y7 + 3x6y8 + 2x7y8 + 3x8y8.
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Proof. Let G be the molecular graph of Pterocellin (Figure 1). It has 27 number
of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Letm(i,j) be the number of edges in
M(i,j). From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 2, m(2,2) = 5, m(2,3) =
13 and m(3,3) = 6. Let M∗

(i,j) be the set of all edges with neighborhood degree
sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let
m∗

(i,j) be the number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(2,4) = 1,
m∗

(3,6) = 1, m∗
(3,7) = 1, m∗

(4,4) = 2, m∗
(4,5) = 2, m∗

(4,7) = 1, m∗
(5,5) = 1, m∗

(5,6) = 3,
m∗

(5,8) = 1, m∗
(6,6) = 4, m∗

(6,7) = 2, m∗
(6,8) = 3, m∗

(7,8) = 2, m∗
(8,8) = 3. With the

help of edge partition of G, the M and NM -polynomials can be computed.

Figure 16: Plotting of (a) M-polynomial and (b) NM-polynomial of Pterocellin.

Corolary 2.15. Let G be the molecular graph of Pterocellin. Then

(i) M1(G) = 132, M
′
1(G) = 320,

(ii) M2(G) = 142, M∗
2 (G) = 978,

(iii) F (G) = 342, F ∗
N(G) = 2024,

(iv) mM2(G) = 5.25, nmM2(G) = 0.95,

(v) Rα(G) = (2)α+2(3)α+5(4)α+13(6)α+6(9)α, NRα(G) = (8)α+(18)α+
(21)α + 2(16)α + 2(20)α + (28)α + (25)α + 3(30)α + 4(36)α + 2(42)α +
3(48)α + 2(56)α + 3(64)α + (40)α,

(vi) ReZG3(G) = 824, ND3(G) = 12692,

(vii) SDD(G) = 59.33, ND5(G) = 56.84,

(viii) H(G) = 11.36, NH(G) = 4.82,

(ix) I(G) = 31.76, NI(G) = 78.39,
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(x) A(G) = 48.84, S(G) = 772.10.

Theorem 2.16. Let G be the molecular graph of Raloxifene. Then

(i) M(G;x, y) = 3xy3 + 11x2y2 + 18x2y3 + 6x3y3,

(ii) NM(G;x, y) = 2x3y5 + x3y7 + 2x4y4 + 4x4y5 + 8x5y5 + 7x5y6 + 4x5y7

+ x5y8 + 2x6y7 + x6y8 + x7y7 + 2x7y8 + x7y9 + 2x8y9.

Proof. Let G be the molecular graph of Raloxifene (Figure 1). It has 38 number
of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j, i. e.,
M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of edges
in M(i,j). From Figure 1, it is clear that m(1,3) = 3, m(2,2) = 11, m(2,3) = 18 and
m(3,3) = 6. LetM∗

(i,j) be the set of all edges with neighborhood degree sum of end
vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) = j}. Let m∗
(i,j) be the

number of edges in M∗
(i,j). From Figure 1, it is clear that m∗

(3,5) = 2, m∗
(3,7) = 1,

m∗
(4,4) = 2, m∗

(4,5) = 4, m∗
(5,5) = 8, m∗

(5,6) = 7, m∗
(5,7) = 4, m∗

(5,8) = 1, m∗
(6,7) = 2,

m∗
(6,8) = 1, m∗

(7,7) = 1, m∗
(7,8) = 2, m∗

(7,9) = 1, m∗
(8,9) = 2. Now using the edge

partition of G, the M and NM -polynomials can be evaluated.

Figure 17: Plotting of (a) M-polynomial and (b) NM-polynomial of Raloxifene.

Corolary 2.16. Let G be the molecular graph of Raloxifene. Then

(i) M1(G) = 182, M
′
1(G) = 430,

(ii) M2(G) = 215, M∗
2 (G) = 1253,

(iii) F (G) = 460, F ∗
N(G) = 2580,

(iv) mM2(G) = 7.41, nmM2(G) = 1.36,

(v) Rα(G) = 3(3)α + 11(4)α + 18(6)α + 6(9)α, NRα(G) = 2(15)α + (21)α +
2(16)α + 4(20)α + 8(25)α + 7(30)α + 4(35)α + (40)α + 2(42)α + (48)α +
(49)α + 2(56)α + (63)α + 2(72)α,
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(vi) ReZG3(G) = 1076, ND3(G) = 15522,

(vii) SDD(G) = 83, ND5(G) = 78.66,

(viii) H(G) = 16.2, NH(G) = 7.002,

(ix) I(G) = 43.85, NI(G) = 105.83,

(x) A(G) = 63.61, S(G) = 945.39.

Theorem 2.17. Let G be the molecular graph of Tambjamine K. Then

(i) M(G;x, y) = xy2 + 2xy3 + 6x2y2 + 9x2y3 + 2x3y3,

(ii) NM(G;x, y) = x2y4 + 2x3y4 + 2x4y4 + 5x4y5 + x4y7 + 3x5y7 + 4x6y7

+ 2x7y7.

Proof. Let G be the molecular graph of Tambjamine K (Figure 1). It has 20
number of edges. Let M(i,j) be the set of all edges with degree of end vertices i, j,
i. e., M(i,j) = {uv ∈ E(G) : ψ(u) = i, ψ(v) = j}. Let m(i,j) be the number of
edges in M(i,j). From Figure 1, it is clear that m(1,2) = 1, m(1,3) = 2, m(2,2) = 5,
m(2,3) = 13 and m(3,3) = 6. Let M∗

(i,j) be the set of all edges with neighborhood
degree sum of end vertices i, j, i. e., M∗

(i,j) = {uv ∈ E(G) : Ψ(u) = i,Ψ(v) =

j}. Let m∗
(i,j) be the number of edges in M∗

(i,j). From Figure 1, it is clear that
m∗

(2,4) = 1, m∗
(3,4) = 2, m∗

(4,4) = 2, m∗
(4,5) = 5, m∗

(4,7) = 1, m∗
(5,7) = 3, m∗

(6,7) = 4
and m∗

(7,7) = 2. Using the edge partition of G, the M and NM -polynomials can
be obtained easily.

Figure 18: Plotting of (a) M-polynomial and (b) NM-polynomial of Tambjamine
K.

Corolary 2.17. Let G be the molecular graph of Tambjamine K. Then

(i) M1(G) = 92, M
′
1(G) = 208,

55



Bommanahal Basavanagoud, Shruti Policepatil

(ii) M2(G) = 104, M∗
2 (G) = 563,

(iii) F (G) = 226, F ∗
N(G) = 1162,

(iv) mM2(G) = 4.38, nmM2(G) = 0.92,

(v) Rα(G) = (2)α+2(3)α+6(4)α+9(6)α+2(9)α, NRα(G) = (8)α+2(12)α+
2(16)α + 5(20)α + (28)α + 3(35)α + 4(42)α + 2(49)α,

(vi) ReZG3(G) = 504, ND3(G) = 6496,

(vii) SDD(G) = 44.66, ND5(G) = 41.67,

(viii) H(G) = 8.93, NH(G) = 4.09,

(ix) I(G) = 21.96, NI(G) = 51.09,

(x) A(G) = 29.43, S(G) = 394.88.
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Figure 19: Plotting of Rα and NRα for aminopterin, amathaspiramide E and car-
mustine.

M polynomial and NM polynomial give an extensive details on degree based
and neighborhood degree based indices, respectively. We hope that a more in-
depth analysis of the properties of M polynomial and NM polynomial will open
up new general perspectives in the study of topological indices. To visualize the
polynomials, their surface plots were performed by Matlab. The expressions of the
M and NM polynomials for some anticancer drugs are shown in Figures 2 to 18,
respectively. The graphs reveals that the polynomial displays different behaviors
corresponding to different parameters. We can control the topology and and there-
fore different properties and operations by tuning theM andNM polynomials via
these parameters. Plotting of Rα and NRα for aminopterin, amathaspiramide E
and carmustine are shown in Figure 19. In the horizontal axis, α = 2, 4, 6, 8, 10
are taken. In the vertical axis, the logarithmic values of the indices are considered
to clearly represent the comparison.
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3 Conclusion
In this paper, we have obtained M -polynomial and NM -polynomial of some

anticancer drugs with graphical representations. The advantage of M -polynomial
and NM -polynomial is from one expression we can obtain several degree-based
and neighborhood degree topological indices. It is very challenging to bring
all the degree-based and neighborhood degree based topological indices under
M−polynomial andNM -polynomial, respectively. As considered topological in-
dices are able to predict different physico-chemical properties. These results can
be useful in designing new drug for the treatment of cancer. A research may be
conducted for various chemical structures, and a conclusion can be drawn based
on their topological indices range.
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