The Forcing Geodetic Cototal Domination Number of a Graph

S. L. Sumi ${ }^{1}$
V. Mary Gleeta ${ }^{2}$
J. Befija Minnie ${ }^{3}$

Abstract

Let S be a geodetic cototal domination set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum geodetic cototal domination set containing T. The minimum cardinality T is the forcing geodetic cototal domination number of S is denotedby $f_{\gamma g c t}(S)$, is the cardinality of a minimum forcing subset of S . The forcing geodetic cototal domination number of G, denoted by $f_{\gamma g c t}(S)$, is $f_{\gamma g c t}(G)=$ $\min \left\{f_{\gamma g c t}(S)\right\}$, where the minimum is takenover all $\gamma_{g c t}$-sets S in G. Some general properties satisfied by this concept arestudied. It is shown that for every pair a, b of integers with $0 \leq a<b, b \geq 2$, there exists a connected graph G such that $f_{\gamma g c t}(G)=a$ and $\gamma_{g c t}(G)=b$. where $\gamma_{g c t}(G)$ isthe geodetic cototal dominating number of G.

Keywords: geodetic set, cototal dominating set, geodetic cototal dominating set, geodetic cototal domination number, forcing geodetic cototal domination number.

AMS Subject Classification: 05C12, 05C69 ${ }^{4}$

[^0]S. L. Sumi, V. Mary Gleeta and J. Befija Minnie

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by mand nrespectively. For basic definitions and terminologies, we refer to [1,2]. For vertices u and v in a connected graph G, the distanced (u, v) is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a u-vgeodesic. The eccentricitye (v) of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G \operatorname{or}(G)$ and the maximum eccentricity is its diameter, diam G of G. Let $x, y \in \operatorname{Vand} \operatorname{let} I[x, y]$ be the set of all vertices that lies in $x-y$ geodesic including x and y. Let $S \subseteq V(G)$ and $I[S]=\cup_{x, y \in S} I[x, y]$. Then S is said to be a geodetic set of G, if $I[S]=V$. The geodetic numberg (G) of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is called a g setof G. A set $S \subseteq V(G)$ is called a dominating set if every vertex in $V(G)-S$ is adjacent to at least one vertex of S. The domination number, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called as a γ-set of G. The domination concept was studied in [3]. A dominating set S of G is a cototal dominating set if every vertex $v \in V \backslash S$ is not an isolated vertex in the induced subgraph $\langle V \backslash S\rangle$. The cototal domination number $\gamma_{c t}(G)$ of G is the minimum cardinality of a cototal dominating set. The cototal domination number of a graph was studied in [4]. A set $S \subseteq V$ is said to be a geodetic cototal dominating set of G, IfS is both geodetic set and cototal dominating set of G. The geodetic cototal domination number of G is the minimum cardinality among all geodetic cototal dominatingsets in G and denoted by $\gamma_{g c t}(G)$. A geodetic cototal dominating set of minimumcardinality is called the $\gamma_{g c t}$-set of G. The geodetic cototal domination number of agraph was studied in [6]. The following theorems are used in the sequel.

Theorem 1.1. [6] Every end vertex of G belongs to every geodetic cototal dominating set of G.

2. The forcing geodetic Cototal domination number of a graph

Even though every connected graph contains a minimum geodetic cototal dominating sets, some connected graph may contain several minimum geodetic cototal dominating sets. For each minimum geodetic cototal dominating set S in a connected graph there is always some subset T of S that uniquely determines S as the minimum geodetic cototal dominating set containing T such "forcing subsets" are considered in this section. The forcing concept was studied in [5]

Definition 2.1. Let S be a geodetic cototal domination set of G. A subset $\mathrm{T} \subseteq \mathrm{S}$ is called a forcing subset for S if S is the unique minimum geodetic cototal domination set containing T . The minimum cardinality T is the forcing geodetic cototal domination
number of S is denoted by $f_{\gamma g c t}(S)$, is the cardinality of a minimum forcing subset of S . The forcing geodetic cototal domination number of G, denoted by $f_{\gamma g c t}(S)$, is $f_{\gamma g c t}(G)=\min \left\{f_{\gamma g c t}(S)\right\}$, where the minimum is taken over all $\gamma_{g c t}$-setsS in G.

Example 2.2. For the graph G of Figure 2.1, $S_{1}=\left\{v_{3}, v_{6}, v_{7}\right\}$ and $S_{2}=$ $\left\{v_{2}, v_{5}, v_{7}\right\}$ are the only two $\gamma_{g c t}$-sets of G so that $\gamma_{g c t}(G)=3$ and $f_{\gamma g c t}\left(S_{1}\right)=$ $f_{\gamma g c t}\left(S_{2}\right)=1$ sothat $f_{\gamma g c t}(G)=1$.

Figure 2.1
The following result follows immediately from the definitions of the geodetic cototal domination number and the forcing geodetic cototal domination number of a connected graph G.

Theorem 2.3. For every connected graph $G, 0 \leq f_{\gamma g c t}(G) \leq \gamma_{g c t}(G)$.
Remark 2.4. The bounds in Theorem 2.3 are sharp. For the complete graph $G=$ $K_{n}, S=V$ is the unique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$. Also, the bounds in Theorem2.3 can be strict. For the graph G given in Figure 2.1, $\gamma_{g c t}(G)=3$ and $f_{\gamma g c t}(G)=1$. Thus $0<f_{\gamma g c t}(G)<\gamma_{g c t}(G)$.

Theorem 2.5. Let G be a connected graph. Then
(a) $f_{\gamma g c t}(G)=0$ if and only if G has a unique minimum $\gamma_{g c t}$-set.
(b) $f_{\gamma g c t}(G)=1$ if and only if G has at least two minimum $\gamma_{g c t}$-sets, one of which isa unique minimum $\gamma_{g c t}$-set containing one of its elements and
(c) $f_{\gamma g c t}(G)=\gamma_{g c t}(G)$ if and only if no $\gamma_{g c t}$-set of G is the unique minimum $\gamma_{g c t}$-set containing any of its proper subsets.

S. L. Sumi, V. Mary Gleeta and J. Befija Minnie

Definition 2.6. A vertex v of a connected graph G is said to be a geodetic cototal dominating vertex of G if v belongs to every $\gamma_{g c t}$-set of G.

Example 2.7. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{3}, v_{6}\right\}$ and $S_{2}=$ $\left\{v_{1}, v_{3}, v_{5}\right\}$ are the only two minimum $\gamma_{g c t}$-sets of G so that $\left\{v_{1}, v_{3}\right\}$ is the geodeticcototal dominating vertex of G.Then $f_{\gamma g c t}(G) \leq \gamma_{g c t}(G)-|W|$.

Figure 2.2

Remark 2.9. The bound in Corollary 2.7 is sharp. For the graph G of Figure 2.2, $S_{1}=$ $\left\{v_{1}, v_{3}, v_{6}\right\}$ and $S_{2}=\left\{v_{1}, v_{3}, v_{5}\right\}$ are the only two minimum $\gamma_{g c t}$-sets of G so that $f_{\gamma g c t}\left(S_{1}\right)=f_{\gamma g c t}\left(S_{2}\right)=1$ so that $\gamma_{g c t}(G)=3$ and $f_{\gamma g c t}(G)=1$. Also, $W=$ $\left\{v_{1}, v_{3}\right\}$ is theset of all geodetic cototal dominating vertices of G. Now, $\gamma_{g c t}(G)-|W|=$ $3-2=1$. Thus $f_{\gamma g c t}(G)<\gamma_{g c t}(G)-|W|$. Also, the bounds in Theorem 2.7 can be strict.

Theorem 2.10. For the complete bipartite graph $G=K_{r, s}(1 \leq r \leq s)$,
$f_{\gamma g c t}(G)=\left\{\begin{array}{l}0, \text { if } 1 \leq r \leq 3 \\ 4, \text { if } 4 \leq r \leq s\end{array}\right.$
Proof: Let $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ be the bipartite sets of G.
For $1 \leq r \leq 3$. Let $S=U \cup W$ is the unique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$. Let1 $\leq r \leq 3$. If $r \geq 4$, then every $\gamma_{g c t}(G)$-set is of the form $S=$ $\left\{u_{i_{1}}, u_{i_{2}}, w_{j_{1}}, w_{j_{2}}\right\}$ where $1 \leq i_{1} \leq i_{2} \leq r$ and $1 \leq j_{1} \leq j_{2} \leq s$. Since S is not the unique geodetic cototaldominating set containing any of its proper subset, By Theorem $f_{\gamma g c t}(G)=4$.

Theorem 2.11. For the wheel $G=K_{n}+C_{n-1}(n \geq 5)$,
$f_{\text {rgct }}(G)=\left\{\begin{array}{l}1, \text { ifniseven } \\ 2, \text { ifnisodd }\end{array}\right.$

Proof: Let x be the central vertex of G and C_{n-1} be $v_{1}, v 2, \ldots, v_{n-1}, v_{n}$.
Case 1: n is even.
Then $S_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-3}, v_{n-1}\right\}, S_{2}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{n-2}, v_{n}\right\}$ are the only two $\gamma_{g c t}$-sets of G such that $f_{\gamma g c t}\left(S_{1}\right)=f_{\gamma g c t}\left(S_{2}\right)=1$ so that $f_{\gamma g c t}(G)=1$.
Case 2: n is odd.
Then $S_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n}\right\}, S_{2}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{n-1}, v_{1}\right\}, \ldots, S n / 2=\left\{v_{n} / v_{2}, v_{n}+1\right.$, $\ldots, v_{1}, v_{3}, v n / 2^{-1}$ \}are the $n / 2 \gamma_{g c t}$-sets of G such that $f_{\gamma g c t}\left(S_{1}\right)=f_{\gamma g c t}\left(S_{2}\right)=\ldots=$ $4 f_{\gamma g c t}(S n / 2)=2$ sothat $f_{\text {rgct }}(G)=2$.

Theorem 2.12. For the helm graph $G=H_{r}, G=T, f_{\gamma g c t}(G)=0$, for $n \geq 6$.
Proof: Let S be the set of end vertices and the cut vertices of G. Then S is theunique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$.

Theorem 2.13. For the Triangular snake graph $G=T_{r}, f_{\gamma g c t}(G)=0$.
Proof: Let S be the set of extreme vertices of G. Then S is the unique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$.

Theorem 2.14. For the fan graph $F_{n}=K_{1}+P_{n-1}$,
$f_{\text {rgct }}(G)=\left\{\begin{array}{c}0, \text { ifn }-1 \text { isodd } \\ 1, \text { ifniseven }\end{array}\right.$
Proof: Let $V\left(K_{1}\right)=\{x\}$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Let $n-1$ is odd. Let $n-1=2 k+1$. Then $S=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{2 k+1}\right\}$ is the unique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$.
Let $n-1$ be even. Let $n-1=2 k$. Then $S_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{2 k-1}, v_{2 k}\right\}, S_{2}=$ $\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{2 k-2}, v_{2 k}, v_{2}\right\}$ are the two $\gamma_{g c t}$-sets of G such that $f_{\gamma g c t}\left(S_{1}\right)=$ $f_{\gamma g c t}\left(S_{2}\right)=1$.so that $f_{\gamma g c t}(G)=1$.

Theorem 2.15. For the Banana tree graph $G=B_{r, s}, f_{\gamma g c t}(G)=0$.
Proof: Let x be the centre vertex of G and the set of all end vertices of G. Then $S=$ $Z \cup\{x\}$ is the unique $\gamma_{g c t}$-set of G so that $f_{\gamma g c t}(G)=0$.

Theorem 2.16. For the sunflower graph $G=S F_{n}, f_{\gamma g c t}(G)=0$.
Proof: Let S be the set of extreme vertices of G. Then S is the unique $\gamma_{g c t}$-set of G. So that $f_{\text {ygct }}(G)=0$.

Theorem 2.17. For every pair a, b of integers with $0 \leq a<b, b \geq 2$, there exists a connected graph G such that $f_{\gamma g c t}(G)=a$ and $\gamma_{g c t}(G)=b$.
Proof: Let $P: u, v, z$ be a path of order three. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq a)$ be a copyof path on two vertices. Let H be a graph obtained from P and $P_{i}(1 \leq i \leq a)$ byjoining each $u_{i}(1 \leq i \leq a)$ with v and each $v_{i}(1 \leq i \leq a)$ with z. Let G be thegraph obtained from H by introducing new vertices $z_{1}, z_{2}, \ldots, z_{b-a+1}$ joining each $z_{i}(1 \leq i \leq$ a) with z. The graph G is given in Figure 2.4.

S. L. Sumi, V. Mary Gleeta and J. Befija Minnie

First, we show that $\gamma_{\mathrm{gct}}(\mathrm{G})=\mathrm{b}$. Let $\mathrm{Z}=\left\{\mathrm{u}, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{b}-\mathrm{a}+1}\right\}$ be the set of endvertices of G . By Theorem 1.1, Z is a subset of every geodetic cototal dominating set of G. Let $H_{i}=\left\{u_{i}, v_{i}\right\}$. Then it is easily observed that every geodetic cototaldominating set containing at least one vertex from each $H_{i}(1 \leq i \leq a)$ and $\operatorname{sor}_{g c t}(G) \geq b-a+a=$ b. Let $\mathrm{S}=\mathrm{Z} \cup\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{a}}\right\}$. Then S is a minimum geodeticcototal dominating set of G so that $\gamma_{\mathrm{gct}}(\mathrm{G})=\mathrm{b}$.
Next, we prove that $\mathrm{f}_{\mathrm{ygct}}(\mathrm{G})=\mathrm{a}$. Since every geodetic co-total dominating set ofGcontains Z , it follows thatf $\gamma_{\gamma \mathrm{gct}}(\mathrm{G}) \leq \gamma_{\mathrm{gct}}(\mathrm{G})-|\mathrm{Z}|=\mathrm{b}-(\mathrm{b}-\mathrm{a})=\mathrm{a}$.Now, since $\gamma_{\mathrm{gct}}(\mathrm{G})=\mathrm{b}$ and every γ_{gct}-set of G contains Z , it is easily seen that every γ_{gct}-set of G is of the form $S=Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T beany proper subset of S with $|T|<a$. Then there exists an edge $e_{j}(1 \leq j \leq a)$ suchthat $e_{j} \notin$ T. Let f_{j} be an edge of H_{j} distinct from e_{j}. Then $\mathrm{W}_{1}=\left(\mathrm{S}-\left\{\mathrm{e}_{\mathrm{j}}\right\} \cup\left\{\mathrm{f}_{\mathrm{j}}\right\} \mathrm{is}\right.$ a γ_{gct}-set properly containing T . Thus W is not the unique γ_{gct}-set containingT. Thus T is not a forcing subset of S . This is true for all minimum geodetic cototaldominating sets of G and so it follows that $\mathrm{f}_{\text {ygct }}(\mathrm{G})=\mathrm{a}$.

Figure 2.3

3. Conclusion

In this paper we studied the concept of forcing geodetic cototal domination number of some standard graphs some general properties satisfied by this concept are studied. In future studies, the same concept is applied for the other graph operations.

References

[1] F. Harary, Graph Theory, Addison - Wesley, (1969).
[2] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, (1990).
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[4] V.R. Kulli, B. Janakiram and Radha Rajamani Iyer, The cototal domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 2 (2), (1999), $179-184$.
[5] Gary Chartrand and P. Zhang, The Forcing Geodetic number of a Graph, Discussiones Mathematicae Graph Theory 19(1999), 45 - 58.
[6] S. L. Sumi, V. Mary Gleeta and J. Befija Minnie, The Geodetic cototal domination Number of a graph, ICDM 2021, ISBN:978-93-91077-53-2.

[^0]: ${ }^{1}$ Research Scholar, Register No.20123042092007, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 629004, Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India. sumikrish123@gmail.com.
 ${ }^{2}$ Assistant Professor, Department of Mathematics, T.D.M.N.S College, T. Kallikulam - 627 113, Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India. gleetass@gmail.com.
 ${ }^{3}$ Assistant Professor, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil 629004, Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India, Mail Id: befija@gmail.com
 ${ }^{4}$ Received on June 11th, 2022.Accepted on Sep 9st, 2022.Published on Nov 30th, 2022.doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.895$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement

