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SUMMARY
We focus on key aspects related to the quantification of the uncertainty associated with modeling of
Enhanced Oil Recovery (EOR) through Low Salinity (LS) water injection in a reservoir. Low salinity
waterflooding is an emerging EOR technique in which the salinity of the injected water is controlled to
improve oil recovery, as opposed to conventional waterflooding where brine is usually used. Several
mechanisms have been proposed to underpin the processes leading to additional oil mobility, but none of
them has been conclusively identified as the key driving cause. Literature results suggest that LS water
causes an alteration of the wettability of the porous medium, leading to more favorable conditions for oil
recovery. In this context, simulation models that represent the process using salinity-dependent relative
permeabilities have been developed.
Here, we consider a tertiary coreflood experiment performed at Eni laboratory facilities through LS water
injection, following sea water flooding. Oil and water relative permeability curves are parameterized
through the Corey model. Model parameters and their uncertainties are estimated within a stochastic
inverse modeling approach, upon relying on a classical reservoir simulator to simulate the measured oil
recovery. The likelihood function is maximized through a joint use of the Latin hypercube sampling and
the Metropolis Hastings algorithm, while the process model is coupled with a universal Kriging technique.
The posterior sample of model parameters is then employed to quantify uncertainty propagation to a sector
model of a selected North-East African sandstone reservoir. This enables us to quantify the impact of
parameter uncertainty on the expected oil production resulting from a field scale application of the
technique under study. The reservoir simulation reveals the potential of the LS water injection technique to
improve the recovery in the considered field.
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Introduction 

Low Salinity (LS) waterflooding is an emerging EOR technique based on the premise that injecting 
water with controlled salinity in a reservoir leads to improved oil recovery. The approach exploits the 
beneficial effects of conventional waterflooding, and induces a wettability alteration towards water-
wet conditions, which are most favorable to oil mobilization. 
 
Interpretation and modeling of the observed wettability alteration process relies on a variety of 
physical and chemical mechanisms associated, with diverse effects in sandstone and/or carbonate 
reservoirs. The two most highly regarded interpretive models are respectively based on (a) the 
occurrence of Multicomponent Ion Exchange (MIE) (Lager et al., 2006; Lee et al., 2010; Seccombe et 
al., 2010), or (b) the effects of pH on the adsorption onto the clay surface of polar components of the 
crude oil (Austad et al., 2010; Austad, 2012). Other mechanisms proposed include the migration of 
fines (Tang and Morrow, 1999), and the alkaline-flooding behavior (McGuire et al., 2005). Pu et al. 
(2010) suggest the relevance of mineral dissolution, while Sandengen & Arntzen (2013) discuss the 
role of osmosis. Recent results based on visual inspection of experimental settings evidence that 
formation of water micro-dispersion within the oil phase might takes place (Emadi and Sohrabi, 
2013). In this context, no conclusive results are available in the literature and it is recognized that (a) 
the documented wettability alteration is likely due to a combination of factors, and (b) proper 
modeling of the process would require the integration within a unique theoretical framework of the 
concepts underpinning the models (Rotondi et al., 2014). 
 
The physical-chemical mechanisms underlying the LS effect on EOR have been primarily modeled by 
representing the wettability change through salinity-dependent relative permeabilities (KRs). The 
latter are considered to direct the (multiphase) flow of fluids in porous and fractured media at the 
continuum scale, typical of Darcy-flow and field-scale engineering applications. The most relevant 
modeling-related work is the one proposed by Jerauld et al. (2006). The main features of this study 
are the definition of two sets of KR curves, respectively related to high and low salinity conditions, 
and the way salt is treated, i.e., it is considered as an additional single-lumped component present in 
the aqueous phase. This method was applied, e.g., by Marcolini et al. (2009). 
 
Here, a tertiary laboratory-scale coreflood experiment performed through LS water injection is 
illustrated and modeled (Spagnuolo, 2014). Relative permeability curves are expressed through the 
well-established Corey model (Corey, 1954). The latter is calibrated within a stochastic inverse 
modeling approach. The posterior sample of model parameters is then employed on a field sector 
model representing a North-East African sandstone reservoir. Forecast scenarios, which include the 
injection of LS water, are studied to (a) quantify the propagation to the expected field-scale oil 
production of the uncertainty associated with estimates of the Corey model parameters; and (b) 
assessing the ability of the LS technique to improve oil recovery in the field setting considered. 

Field overview 

A giant onshore North-East African field was selected by eni S.p.A. for chemical EOR evaluation 
study on the basis of preliminary considerations based on the documented high (under-saturated) oil 
in place, low oil recovery and the system petrophysical attributes. The field was discovered in 1954 
and production started in 1955 as primary depletion. Water injection, with an unfavorable mobility 
ratio, has been gradually implemented since 1985. The field is currently under secondary recovery. 
The latter is managed through waterflooding and high water cut is observed in most of the wells. The 
field can be described as an anticline, 10 km long and 4 km wide. A depth map of the field is depicted 
in Figure 1. 
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Figure 1 Depth map for the selected North-East African field. 
 
The field is a multilayer system with interbedded shales and anhydrite intercalations ranging from 
Lower to Upper Miocene Age. Two major faulting systems roughly subdivide the structure into 
twelve sandstone reservoirs, which are in partial hydraulic communication. One of these, denoted as 
sector A, is a shallow system and is identified as a candidate zone for chemical EOR evaluation due to 
its relatively lower temperature distribution, good geological knowledge, high permeability and 
moderate heterogeneity, short distances between injectors and producers, documented beneficial 
effect of water injection, and relatively modest water cut. Relevant properties of sector A are listed in 
Table 1.  
 
Table 1 Relevant properties of sector A. 

Reservoir temperature [°C] 76 

Oil density [kg/Sm3] 933 

Oil viscosity [cP] 8 

Formation water salinity [ppm] 220,000

Average porosity [%] 19 

Average permeability [mD] 400 

Laboratory scale coreflooding test 

Sector A of the considered field was designated by eni for EOR evaluation study. A new well was 
drilled in the area in 2010 and a core acquisition was performed. Plugs depicted in Figure 2 were 
selected for chemical EOR study on the basis of criteria including homogeneity of the porous 
medium, absence of fractures, mineralized material with limited clay content, and absence of 
cemented zones. 
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Figure 2 Selected plugs from sector A. 
 
A coreflooding test was then performed to evaluate the additional oil recovery after tertiary LS water 
injection following High Salinity (HS) flooding. The geometrical and petrophysical plug 
characteristics are listed in Table 2. Fluid displacement was performed using two brines with different 
salinities: the HS water is seawater at salinity of 39,000 ppm Total Dissolved Solids (TDS), in line 
with actual water injection properties, while the LS water is characterized by a salinity of 3,000 ppm 
TDS. The HS water properties were measured, while the properties of LS water were estimated using 
salinity-dependent relationships. The dead oil, with density at standard conditions of 0.93 g/cm3, was 
mixed with 25% of toluene, to match reservoir oil viscosity. Table 2 lists the properties of the fluids 
employed in the experiment. Fluid densities are given at standard conditions (15.5 °C and 1 atm), 
while fluid viscosities are evaluated at reservoir temperature and atmospheric pressure. 
 
Table 2 Plug characteristics and fluid properties. 

Plug characteristics Fluid properties 

Length [cm] 7.85 Water (HS – LS) salinity [ppm] 39,000 – 3,000 

Diameter [cm] 3.75 Water (HS – LS) density [g/cm3] 1.05 – 0.98 

Porosity [%] 22.54 Water (HS – LS) viscosity [cP] 0.54 – 0.36 

Initial water saturation [%] 22 Oil density [g/cm3] 0.915 

Brine permeability [mD] 237 Oil viscosity [cP] 8 

 
The experimental equipment used for the displacement test is sketched in Figure 3. The test was 
performed in a confined Hassler-type cell containing the core and placed inside an oven to reproduce 
reservoir temperature. 
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Figure 3. Sketch of the experimental set-up. 
 
The sample was cleaned with toluene and methanol at room temperature and dried before the test. It 
was then saturated with HS brine and aged to achieve equilibrium at ambient conditions. Flooding 
with oil at 76°C was performed, until irreducible water saturation was established, i.e., until no more 
water production was observed at the outlet of the plug. The flooding test was performed in two steps 
with constant injection rate of 1 cm3/min. The first step was a flood with HS brine for a duration of 8 
Pore Volumes (PV). The second step was a flood with LS brine for a duration of 72.5 PV. The fluid 
eluted from the core was weighted and sampled. 
 
The experimental oil Recovery Factor (RF) is depicted in Figure 4, as a function of the volume of 
water injected. There is evidence of good oil recovery improvement as the RF increases from 44.2% 
(HS flood) to 59.3% (LS flood). 
 

 
Figure 4 Dependence of oil RF on volume of water injected. 
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Coreflooding simulation 

Simulation of the measured oil recovery is performed through the reservoir simulator ECLIPSE™ 100 
(Schlumberger, 2012). The core sample is reproduced using a one-dimensional model. The domain is 
discretized through 100 grid blocks placed between two dummy wells, respectively serving as injector 
and producer. The simulation grid considered is depicted in Figure 5. The homogeneous petrophysical 
attributes and fluid properties listed in Table 2 are considered. 
 

 
Figure 5 Simulation grid. 
 
The system is assumed to be isothermal and composed of two fluid phases (aqueous and oil phase), 
and three mass components (water, oil, and salt), which are treated as single pseudo-components 
within the implemented Black Oil model. The two liquid components (water and oil) are assumed to 
be present only in their associated phases. Salt is contained only in the aqueous phase and subject to 
convection and dispersion processes. No chemical reactions or inter-phase mass exchange are 
considered. Adsorption of salt on the rock surface and the effects of capillary pressure are neglected. 
 
The system is parameterized through the standard Corey model to express the two-phase KR curves: 
 

k୰,୵ ൌ k୰,୵° ൬
S୵ െ S୵୧୰

1 െ S୵୧୰ െ S୭୰
൰
୒౭

  (1)

k୰,୭ ൌ k୰,୭° ൬
1 െ S୵ െ S୭୰
1 െ S୵୧୰ െ S୭୰

൰
୒౥

  (2)

 
Here, Sw is the water saturation, k°

r,o and k°
r,w respectively are the endpoint of the oil and water KR 

curves, No and Nw are the Corey exponents, and Swir and Sor are the irreducible water saturation and 
the residual oil saturation, respectively. 
The wettability alteration is represented with the LOWSALT option, implemented in ECLIPSE™. 
Two sets of saturation functions and two salinity thresholds (cs,max=39,000 ppm and cs,min=3,000 ppm) 
are defined. A linear interpolation of the values associated with HS and LS curves is employed to 
calculate local relative permeability, i.e., 
 

k୰ ൌ ωk୰ୌୗ ൅ ሺ1 െ ωሻk୰୐ୗ (3)
 
The weight ω being dependent on local salt concentration. HS and LS curves are used when the 
calculated local salt concentration is outside the interval [cs,min, cs,max]. 
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Stochastic model calibration 

Estimate of model parameters and the associated uncertainty are assessed in a stochastic framework. 
Parameter estimation and model validation are performed within a stochastic inverse modeling 
framework, based on Maximum Likelihood Estimation (MLE) (Tarantola, 2005). Based on Eq. (1) 
and Eq. (2), the vector of model parameters is ܕ ൌ ൣk୰,୭° , k୰,୵° , N୭, N୵, S୵୧୰, S୭୰൧. The observed data 
are the RF measurements, collected in vector ܛ܊ܗ܌, while the simulated values of oil recovery, ܌መ, are 
linked to model parameters through the forward operator ܏ሺ∙ሻ, i.e., ܌መ ൌ  is ܕ ሻ. The MLE ofܕሺ܏
obtained by maximizing the likelihood function ࣦሺܕሻ. If, as commonly assumed, measurement errors 
are Gaussian distributed, ࣦሺܕሻ can be expressed as: 
 

ࣦሺܕሻ ൌ
1

ඥሺ2πሻ୬ detሺ۱۲ሻ  
exp ൤െ

1
2
൫܌መ െ ൯ܛ܊ܗ܌

୲
۱۲
ିଵ൫܌መ െ ൯൨ (4)ܛ܊ܗ܌

 
۱۲ being the covariance matrix of measurement errors. The latter are considered to be uncorrelated 
and homoscedastic, i.e., associated with a constant variance σୈ

ଶ , so that ۱۲ ൌ σୈ
ଶ ۷, ۷ being the identity 

matrix. In this setting, minimizing the Negative Log Likelihood (NLL) is tantamount to minimize the 
following Objective Function (OF): 
 

OF ൌ
1
n
෍

൫d୭ୠୱ,୧ െ d෠୧൯
ଶ

σୈ
ଶ

୬

୧ୀଵ
  (5)

 
n being the number of available measurements. It is worth observing that minimizing the OF 
corresponds to simulated values very close to the observed ones, i.e. models able to correctly 
reproduce the historical observations. 
 
From an operational standpoint, MLE is implemented in the software MEPO, a reservoir optimization 
and risk analysis tool (SPT Group, 2012). The solution of the stochastic inverse problem is then 
obtained upon coupling (a) the Latin Hypercube (LH) sampling method (Helton and Davis, 2003), to 
generate the starting point in the parameter space according to prior probability distribution settings, 
and (b) the Metropolis Hastings Algorithm (MHA) (Tarantola, 2005), which allows exploring the 
model parameter space within the regions of significant likelihood of model parameters. Speed up of 
computational time is obtained by replacing the full system at each time step through a surrogate 
model that approximates the model input-output relation through a universal Kriging technique 
(Roustant et al., 2012). 
 
Estimation of the LS relative permeability curves starts with the definition of the prior distribution of 
model parameters, which is specified independent of the observed data. The Corey parameters are 
assumed to be uncorrelated and described by uniform distributions. Ranges of parameter variability 
are defined according to literature (Stiles, 2010). Starting parameter values are defined on the basis of 
a preliminary manual model calibration. Table 3 lists these settings.  
 

Table 3 Limits for the assumed prior uniform distribution and initial values of model parameters. 
Corey parameter Lower limit Upper limit Start value 
Swir 0.20 0.24 0.22 
Nw 2 6 3 
k°

r,w 0.1 0.5 0.3 
k°

r,o 0.8 1 1 
No 2 6 3.25 
Sor 0.15 0.4 0.28 
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The One-Variable-At-Time (OVAT) analysis is performed to assess the impact of the Corey 
parameters on the OF. The tornado chart depicted in Figure 6 displays the relative change on the OF 
due to the upper and lower limits defined in Table 3, compared to the base case (all parameters set to 
start value). These results reveal the relevant impact on the computed OF of Sor and No. It is noted that 
the computed OF is not sensitive to Swir, due to the assigned narrow range of variability as it was 
experimentally measured, and k°

r,o, which is physically of less importance as the displacement was 
performed in a tertiary way. The latter is then removed from the model parameter vector and is 
assigned a deterministic unit value. 
 

 
Figure 6 Tornado chart from OVAT analysis. Upper and lower limits assumed for the definition of the 
parameter space are listed in Table 3. 
 
A number of 200 simulations are performed by sampling the model parameter space through the LH 
sampler. Surrogate models of the simulator are then built through a universal Kriging technique based 
on this initial collection of model parameter values, which is denoted as the current ensemble of 
model parameter. During the optimization loop, starting from 16 different set of model parameter 
values, the MHA generates chains of model parameter values according to a Gaussian distribution. 
The transition from one set of model parameters to another is accepted or rejected according to the 
Metropolis rule (Tarantola, 2005). The first 1,000 steps (burn-in length) in the model parameter space 
are excluded from the analysis to minimize dependency of results from the starting point. At each of 
the selected six iterations of the MHA, one sample of each chain is selected and the current ensemble 
of model parameter is updated. 
 
Results of the stochastic model inversion are expressed through sampling from the posterior 
distribution of model parameters. Table 4 lists mean and standard deviation of 48 realizations of 
Corey parameters associated with the last three iterations (respectively denoted as IT4, IT5, IT6) of 
the MHA. Figure 7.a depicts the comparison between measured oil recovery and simulated values, 
Figure 7.b depicts the ensuing LS relative permeability curves. The shapes of these curves 
qualitatively reflect the expected water-wet conditions obtained, i.e., estimates of Corey parameters 
fall within the range of values characterizing water-wet settings (Stiles, 2010). 
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Table 4 Sample mean and standard deviation of the set of estimated Corey parameters. 

Corey parameter Mean Standard deviation

Swir 0.210 0.007 

Nw 2.41 0.21 

k°
r,w 0.236 0.056 

k°
r,o 1 0 

No 4.53 0.32 

Sor 0.222 0.012 

 

 
Figure 7 MHA (IT4, IT5, IT6): (a) comparison between experiment and the set of 48 Monte Carlo 
inverse results; (b) associated LS KR curves. 

Analysis of the posterior distribution of Corey parameters reveals that these are cross-correlated. 
Figure 8 depicts the histograms of samples of selected oil and water Corey parameters, together with 
scatter plots to provide an appraisal of the degree of their correlation. The uniform prior probability 
density functions are also displayed for comparison. One can note that No and Sor are characterized by 
a high negative correlation. 
 

 
Figure 8 Posterior sample of Corey parameters: histograms and scatter plots with Pearson 
correlation coefficient ρ୔. 
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Reservoir sector simulation 

The estimated uncertainty of model parameters is then propagated to the computed field-scale oil 
recovery. This is achieved by numerically simulating low salinity waterflooding in the sector model of 
the considered field. 
 
This model includes 78  82  8  grid blocks (respectively along two normal horizontal axes and the 
vertical directions) with corresponding average cell dimensions of 50  50  2.5 m. Values of 
petrophysical and fluid properties are based on previous proprietary studies. In these works history 
matching was performed using the Ensemble Kalman Filter (EnKF) technique (Oliver et al., 2008), 
resulting in multiple model realizations that honors pressure and rate history of the sector. 
 
For the purpose of our comparative study, we simulate the wettability alteration in ECLIPSE™ using 
the LOWSALT option on a calibrated model scenario. High salinity KR curves were previously 
obtained from Special Core Analysis (SCAL) tests and are already implemented in the sector model. 
The water endpoint was considered an uncertain parameter during the history matching phase. A 
number of 30 EnKF realizations of high salinity KR curves are considered. Low salinity KRs are 
generated through the posterior sample of 48 realizations of Corey parameters found within the 
inverse modeling of the coreflood test described above. Figure 9 depicts the sets of HS and LS 
relative permeabilities implemented in the sector model. 
 

 
Figure 9 (a) HS relative permeability curves; (b) LS relative permeability curves. 
 
The current deployment strategy in the area includes 12 oil producers and 3 peripheral seawater 
injectors, as showed in Figure 10. A new injector (NEW-INJ) is defined at a selected location, 
hereafter identified Region 2, which is considered as an optimal area to implement future chemical 
EOR techniques. The selected site, identified in red color in Figure 10, allows injecting through a 
dispersed pattern in a zone that is likely to reside within the drainage area of seven production wells, 
denoted as target wells in Figure 10. The new well injects LS water (salinity of 3,000 ppm TDS) at a 
constant rate (400 Sm3/day) for a forecast duration of 10 years. 
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Figure 10 Sector model with Region 2 coloured in red. NEW-INJ is the new injector considered. 
Producers in region 2 are identified by “t” (target) before their well number. “H” stands for 
horizontal, “I” for injector. 

 
Forecast scenarios are assessed in terms of incremental production as compared to a development 
strategy based on HS seawater (salinity 39,000 TDS) injection in the new well. Figure 11.a depicts the 
salt concentration at the final time for a selected setting. It is observed that only Region 2 is affected 
by a reduction of the salt concentration below the seawater salinity level. Figure 11.b depicts the 
collection of calculated oil production rate curves at well t4, the closest producer to the new injector, 
with the median of the values in bold line. Beneficial effects, as compared with the injection of HS 
seawater, are detected after the breakthrough of the main oil bank, which corresponds to the peak of 
oil production. The shut-in time for this well, i.e., the time at which the well is closed due to an 
exceedingly water production, is delayed by 1.5 years using LS water injection. 
 

 
 
Figure 11 Forecast scenarios: (a) salt concentration for a selected simulation; (b) collection of 
calculated oil production rate curves at well t4. 
 
Key conclusions can be obtained upon analyzing the RF of Region 2, i.e., 
 

RF ൌ
ROPTଶ
OOIPଶ

  (6)

 
representing the ratio of the Region 2 Oil Production Total (ROPT2) and the Oil Originally In Place 
(OOIP2). Figure 12.a depicts the oil RF curves, obtained for the LS and HS water injection scenarios. 
The reservoir response to LS waterflooding appears to be limited by the high salinity of the formation 
water (220,000 ppm TDS), which is suspected to be the main cause of reduction of the benefits 
associated with LS water to the improvement of oil recovery (Jerauld et al., 2006). Figure 12.b depicts 
boxplots of RF୐ୗ and RFୌୗ at July 2024. Sample means are 37.8% and 38.7%, respectively for HS 
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and LS water injection scenarios. It is concluded that there is evidence of enhanced oil recovery 
associated with LS water injection. Respectively denoting with μ୐ୗ and μୌୗ the average values of 
RF୐ୗ and RFୌୗ, the width of the 95% confidence interval for (µLS – µHS) at July 2024 is (0.8 – 0.9)%. 
When compared against results associated with HS water injection, the additional oil production due 
to LS water injection is estimated to be 2.3%. 
 

 
Figure 12 Oil RF forecast in Region 2: (a) oil RF curves; (b) boxplots for ultimate oil recovery. 

Conclusions 

We focus on the quantification of the uncertainty related to the prediction of Enhanced Oil Recovery 
(EOR) through Low Salinity (LS) waterflooding. 
 
We perform stochastic inverse modeling of a tertiary coreflood experiment, conducted at eni 
laboratory with LS water. System parameterization is performed through the Corey model to express 
the salinity-dependent relative permeability (KR) curves. Model parameter estimation is based on 
laboratory-scale measured oil recovery. The likelihood function is maximized through a joint use of 
(a) the Latin Hypercube (LH) sampling method, and (b) the Metropolis Hastings Algorithm (MHA). 
Process modeling takes advantage of a surrogate model, which is built through a universal Kriging 
technique. A posterior sample of 48 low salinity KR curves has been obtained through a set of 200 LH 
realizations and 6 MHA iterations. 
 
The estimated model parameters are then employed for reservoir simulation forecasts within a 
sandstone North-East African field sector model, selected for low salinity EOR evaluation. This 
enables us to estimate the propagation of the uncertainty of Corey parameters assessed at the core-
scale to the computed oil recovery in the field-scale simulations. Forecast scenarios are simulated and 
compared with corresponding results from the adoption of HS water as an injection strategy. Our 
analysis suggests that LS water injection allows increasing the oil recovery in the monitoring area by 
approximately 0.8 - 0.9 %. 
 
Further steps which are under scrutiny to assess actual LS waterflooding implementation include (a) 
implementation of pilot tests, in particular the Single Well Chemical Tracer Test (SWCTT), which 
was successfully executed with LS water in 2014 (Callegaro et al., 2014); (b) feasibility studies of the 
required desalination facilities; and (c) additional uncertainty quantification studies. These studies, 
which could constitute further developments of the methodological framework illustrated in this work, 
may be related toward improved evaluation study. These can be performed, e.g., by fully coupling the 
effects of model parameter uncertainty (i.e. permeabilities and porosities) stemming from the history 
matching phase with those related to the stochastic inverse modeling approach. Model uncertainty 
could be analyzed through the application of model identification criteria (e.g., Bianchi Janetti et al., 
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2012 and references therein) to evaluate the uncertainty arising from the use of alternative conceptual 
models to express KR curves. 
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Nomenclature 

Abbreviations 
EnKF Ensemble Kalman Filter 
EOR Enhanced Oil Recovery 
HS High Salinity 
KR Relative permeability 
LH Latin Hypercube 
LS Low Salinity  
MHA Metropolis Hastings Algorithm 
MIE Multicomponent Ion Exchange 
MLE Maximum Likelihood Estimation 
NLL Negative Log Likelihood 
OF Objective Function 
OOIP Oil Originally In Place 
OVAT One-Variable-At-Time 
PV Pore Volume 
RF Recovery Factor 
ROPT Region Oil Production Total 
TDS Total Dissolved Solids 

 
Symbols 

cୱ Salt concentration 

۱۲ Covariance matrix of measurement errors 

 መ Predicted data܌

 Observed data ܛ܊ܗ܌

 ሺ∙ሻ Forward operator܏

k୰,୭ Oil relative permeability 

k୰,୭°  Oil endpoint relative permeability 

k୰,୵ Water relative permeability 

k୰,୵°  Water endpoint relative permeability 

ࣦሺ∙ሻ Likelihood function 

 Model parameters ܕ

n Number of data 

N୭ Oil Corey exponent 

N୵ Water Corey exponent 

S୭୰ Residual oil saturation 

S୵ Water saturation 

S୵୧୰ Irreducible water saturation 

μ Random variable mean 

ρ୔ Pearson correlation coefficient 

σୈ
ଶ  Data variance 

ω Interpolation function 
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