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Abstract we consider modeling approaches to characterize solute transport in porous media, integrat-
ing them into a unique theoretical and experimental framework for model evaluation and data interpreta-
tion. To date, development of (conservative and reactive chemical) transport models and formulation of
model calibration methods grounded on sensitivity-based collection of measurements have been pursued
in parallel. Key questions that remain include: For a given set of measurements, which conceptual picture of
the transport processes, as embodied in a mathematical model or models, is most appropriate? What are
the most valuable space-time locations for solute concentration measurements, depending on the model
selected? How is model parameter uncertainty propagated to model output, and how does this propaga-
tion affect model calibration? We address these questions by merging parallel streams of research—model
formulation, reduction, calibration, sensitivity analysis, and discrimination—offering our view on an emerg-
ing framework that guides (i) selection of an appropriate number and location of time-dependent concen-
tration measurements given a transport model and (ii) assessment (through discrimination criteria) of the
relative benefit of applying any particular model from a set of several models. Our strategy is to employ
metrics to quantify the relative contribution of each uncertain model parameter to the variability of the
model output. We evaluate these metrics through construction of a surrogate (or “meta”) transport model
that has the additional benefit of enabling sensitivity analysis and model calibration at a highly reduced
computational cost. We demonstrate the applicability of this framework, focusing on transport of reactive
chemicals in laboratory-scale porous media.

1. Introduction

Mathematical models are typically developed to depict natural phenomena in a manner consistent with the
behavior of observable state variables and, eventually, measurable model parameter values. The complexity
of key physical, chemical, and biological processes taking place in natural systems hampers our ability to
fully and uniquely characterize the system behavior. This is critically evident in settings involving flow and
chemical transport processes in the subsurface, where model predictions are compromised by uncertainties
arising from the lack of data and attempts to deterministically depict system heterogeneity.

With reference to predicting flow and transport behavior in porous and fractured media, application of
models to quantify uncertainty has been studied broadly in the literature. In this context, reliability and
accuracy of predictions hinge on both model selection and on model parameter estimation; the former
should account, in particular, for components of structural uncertainty [Carrera and Neuman, 1986a, 1986b;
Samper and Neuman, 1989a, 1989b; National Research Council, 2001; Ye et al., 2004; Tartakovsky, 2007]. Vari-
ous techniques have been proposed to address key elements and benefits associated with the joint use of
multiple interpretive models, in a multimodel approach, as illustrated in the studies of, e.g., Beven and Binley
[1992], James and Oldenburg [1997], Samper and Molinero [2000], Beven and Freer [2001], and Gaganis and
Smith [2001]. The main hypothesis underlying these works is that it is possible to exploit model reproduc-
tion of past monitored system behaviors to assess the ability of a model to predict unobserved (future) sys-
tem states. All of these studies require computationally intensive Monte Carlo (MC) simulations, which are
typically performed by (randomly) sampling the model parameter space.

CIRIELLO ET AL.

MULTIMODEL FRAMEWORK FOR TRANSPORT IN POROUS MEDIA 1


http://dx.doi.org/10.1002/2015WR017047
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/The 50th Anniversary of Water Resources Research/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/The 50th Anniversary of Water Resources Research/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/

@AG U Water Resources Research 10.1002/2015WR017047

An alternative approach combines Bayesian model averaging (BMA) and maximum likelihood (ML) to assess
the joint predictive uncertainty of multiple competing models [e.g., Neuman, 2002, 2003; Ye et al., 2004; Neu-
man et al., 2012]. This maximum likelihood version of the Bayesian Model Averaging (MLBMA) is fully con-
sistent with model parameter estimation methods and can be compatible with both deterministic and
stochastic models. As an additional feature, it allows updating of model posterior probabilities (which can
be calculated according to Bayes’ rule) and parameter estimates at an affordable computational cost, as
data become available. Recent applications of MLBMA include quantifying the worth of additional data
(before they are actually collected) for geostatistical characterization of aquifer heterogeneity, with (a) multi-
ple variogram models (and eventually measured values) of system hydraulic parameters [Neuman et al.,
2012; Lu et al, 2012] and (b) alternative conceptual models of flow in a randomly heterogeneous aquifer
[Xue et al., 2014].

These ideas offer a basis to improve our ability to distinguish among different—and sometimes compet-
ing—mathematical formulations of flow and transport behavior in natural geological systems. Rigorous
model selection criteria (MSC), or model information criteria, have been formulated to (a) rank models or (b)
assign probabilistic posterior weights to each model in a multimodel interpretive framework. Among the
available theoretical formulations for MSCs, we recall the AIC [Akaike, 1974] and AICc [Hurvich and Tsai,
1989], as well as the Bayesian criteria BIC [Schwarz, 1978] and KIC [Kashyap, 1982]. These criteria enable dis-
crimination among alternative models on the basis of their (i) ability to reproduce system behavior and (ii)
structural complexity in terms of number of parameters to estimate. ML can be used to estimate model
parameters and the associated estimation uncertainty against available data on the state variable (and pos-
sibly, but not necessarily, of the parameters themselves). A detailed discussion on the theoretical and practi-
cal features of these MSCs is presented by, e.g., Ye et al. [2008] to which the reader is referred for additional
details.

Application of multimodel approaches in the literature has been devoted mostly to predicting flow behav-
ior in natural porous and/or fractured media. Consideration of transport processes in the above context is
more difficult. Various studies have led to the critical conclusion that continuum-scale formulations used to
interpret (conservative and reactive) transport experiments are typically dependent on the type and
strength of physical and chemical processes occurring at the level of individual pores [see, e.g., Rashidi
et al, 1996; Cao and Kitanidis, 1998; Gramling et al., 2002; Tartakovsky et al., 2008, 2009; Edery et al., 2010;
Sanchez-Vila et al., 2010, and references therein]. An intrinsic weakness of continuum-scale interpretive for-
mulations is an inadequate, averaged (or upscaled) description of pore-scale processes; under many condi-
tions, such processes cannot simply be homogenized and transferred to a macroscale effective model. With
particular reference to reactive transport settings, slow advection zones, where displacement is controlled
mainly by diffusion, hinder instantaneous contacts among chemicals species. In this context, incomplete
mixing has been observed in laboratory experiments [e.g., Gramling et al., 2002], where this effect is most
relevant at the lowest concentration levels [e.g., Rashidi et al., 1996; Cao and Kitanidis, 1998; Sanchez-Vila
et al.,, 2010]. Accounting for non-Fickian or anomalous transport observed at a macroscale [see, e.g., Dagan
and Neuman, 1991; Cushman and Ginn, 1993; Berkowitz and Scher, 1997; Haggerty et al., 2000; Cirpka and
Kitanidis, 2000; Sanchez-Vila and Carrera, 2004; Berkowitz et al., 2006; Rubin et al., 2012; Edery et al., 2014] has
been accomplished by various mathematical conceptualizations, including particle-based (or particle track-
ing, PT) methods [e.g., Gillespie, 1977; Lindenberg and Romero, 2007; Srinivasan et al., 2007; Palanichamy
et al., 2007; Yuste et al., 2008; Edery et al., 2010].

Ciriello et al. [2013a] first explored the applicability of MSC and global sensitivity analysis (GSA) to compare
among different models of conservative transport at the laboratory scale. The use of GSA enabled these
authors to identify, within an available data set, the subsets of observations carrying the highest informa-
tion content to characterize the sensitivity of a model response to its uncertain input parameters. The mod-
eling strategy proposed by these authors was then based on the use of data collected at such most
sensitive (in space and time) locations to calibrate a given transport model. Identification of subsets of
observations which, among the complete set of available data, are most informative for model parameter
estimation is then critical, as evidenced by, e.g., Tiedeman et al. [2003, 2004] and Barth and Hill [2005a,
2005b]. Ciriello et al. [2013a] observed that, in general, the composition of such optimal data (sub-)sets
depends on the selected model. Hence, the key point of the strategy introduced by Ciriello et al. [2013a]
relies on combining information provided by (a) MSC and (b) sensitivity-based model calibration to
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compare alternative models. This approach relies on global sensitivity analysis (GSA) [e.g., Sobol, 1993; Salt-
elli et al.,, 2000], which allows simultaneous consideration of all possible (and unknown) parameter values
within their likely ranges of variability. This element is the main distinction between GSA and local
sensitivity-based approaches and provides remarkable advantages in the context of model calibration [e.g.,
Fajraoui et al., 2011; Ciriello et al., 2013a, and references therein].

GSA and model calibration are typically computationally demanding, because they require a large number
of runs with each model. Computational efforts can be reduced by replacing a given system model by a
simplified (reduced-order) model that renders an acceptable approximation of the target system response.
These reduced-order models are typically referred to as model proxies, and/or lower complexity, or surro-
gate models. In this context, the Polynomial Chaos Expansion (PCE) has recently gained increasing popular-
ity (in the context of subsurface flow and transport, over many scales, see e.g., Lin et al. [2010], Oladyshkin
and Nowak [2012], Oladyshkin et al. [2012, 2013], Ciriello and Di Federico [2013], Ciriello et al. [2013b], Laloy
et al. [2013], Ashraf et al. [2013], Sun et al. [2013], Formaggia et al. [2013], Liao and Zhang [2013, 2014], Porta
et al. [2014], Rajabi et al. [2015], Esfandiar et al. [2015], and Riva et al. [2015, and references therein]). In this
approach, the (finite-variance) response surface of a given model is projected onto a probabilistic space,
generated by a basis of polynomials orthonormal with respect to the joint probability density function (pdf)
of the uncertain model parameters [Wiener, 1938; Ghanem and Spanos, 1991]. Once the PCE approximation
of the model response has been constructed, the first two moments (i.e.,, ensemble mean and variance) and
global sensitivity measures associated with the target state variable may be defined analytically as functions
of the coefficients of the expansion. Approaches based on PCE can be considered as well established to per-
form GSA [Sudret, 2008, and references therein] and have been tested under several flow and transport sce-
narios in porous media [e.g., Fajraoui et al., 2011; Formaggia et al., 2013; Ciriello and Di Federico, 2013; Ciriello
et al, 2013b; Porta et al., 2014].

In this work, we extend the methodology proposed by Ciriello et al. [2013a] to consideration of transport of
reactive chemicals in laboratory-scale porous media. Reactive transport is an emerging field of research giv-
ing rise to various models; comparison among models and parameter relationships within each model pro-
vides insight into mechanisms of transport and reactions. We consider two representative mathematical
models. The first one employs a continuum approach in which the macroscopic system behavior is
described by means of a typical Advection-Dispersion-Reaction equation (ADRE), which assumes Fickian
transport, with continuum-scale chemical reactions employing a kinetic reaction rate. This rate is propor-
tional to the local reactant concentration, with a time-dependent coefficient being employed to account for
pore-scale mixing [Sanchez-Vila et al., 2010]. The second model is based on a particle-tracking approach
within the continuous time random walk (CTRW) framework [Edery et al., 2010], which accounts for non-
Fickian transport, with chemical reactions based on a probability of local particle-particle interactions
(where particles are representative of amounts of dissolved chemical species). In this scheme, chemical
transport and the degree of mixing are modeled using an appropriate probability density function of parti-
cle transition rates [Berkowitz et al., 2006]. Given the computational cost associated with these models, we
merge the methodology of Ciriello et al. [2013a] with that of Porta et al. [2014], Esfandiar et al. [2015], and
Riva et al. [2015], where the construction of a PCE-based surrogate model serves as a basis for GSA and
model calibration.

We discuss each step involved in our strategy and explore the potential of the approach by (re-) analysis of
the reactive transport experiments of Gramling et al. [2002], where a simple bimolecular reaction is consid-
ered. We show how parallel streams of research (modeling, calibration, GSA, and MSC concepts) can be
blended seamlessly into a unique framework that guides the selection of sensitivity-based sets of concen-
tration measurements to calibrate subsurface transport models. Moreover, the framework enables identifi-
cation (through MSC) of the relative advantages of a given model within a collection of available models.

2. Transport Modeling in Porous Media

While experimental analyses of conservative solute transport in laboratory-scale porous media are abundant
in the literature [e.g., Silliman and Simpson, 1987; Silliman et al., 1987; Rashidi et al., 1996; Berkowitz et al.,
2000; Raje and Kapoor, 2000; Gramling et al., 2002; Jose and Cirpka, 2004; Zinn et al., 2004; Rahman et al.,
2005], these are chiefly focused on the use of observed data to calibrate a single mathematical model.
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Ciriello et al. [2013a] analyzed conservative transport experiments documented by Gramling et al. [2002] in a
multimodel framework. For this purpose, three widely employed transport models were selected: (i) the
advection-dispersion equation (ADE), (ii) a dual-porosity model, and (iii) CTRW. The main idea introduced in
Ciriello et al. [2013a] is the application of formal model selection criteria, not necessarily relying on the entire
available data set, but rather on subsets of observations that are identified through GSA as being the most
sensitive for a given model. As such, model parameters are estimated following a variance-based sensitivity
analysis, so that one can assess the ability of each model to interpret subsets of observations that carry high
levels of information on system variability. A final analysis step, where the resulting calibrated model predic-
tions are compared against an augmented data set, provides information on the ability of each model to
interpret the particular dynamic processes. Ciriello et al. [2013a] concluded that the ADE ranked as the best
model when approximating a subset of most sensitive observations, the latter being determined through
GSA. However, comparison of predictions from calibrated models against an augmented data set showed
the CTRW to offer the best overall performance. These results suggest that the sensitive observations
related to CTRW contribute to the model predictive capability more than the most sensitive counterparts
associated with the other tested models.

Conceptualizations of solute transport at a continuum scale are typically grounded on the assumption that
spreading can be described through a Fickian analogy. In this case, a (spatially and temporally constant) set
of dispersivity coefficients is estimated through observed solute concentrations. On the other hand, several
laboratory experiments document the occurrence of anomalous transport, the latter terminology typically
being used to identify system behavior departing from the Fickian analog [e.g., Silliman and Simpson, 1987;
Berkowitz and Scher, 1995; Levy and Berkowitz, 2003; Bromly and Hinz, 2004; Kuntz et al., 2011]. The occur-
rence of spatially distributed slow advection zones, which are visited by solute particles and within which
diffusive processes strongly influence transport, tends to markedly affect chemical migration. These features
are critical both for conservative transport and in the presence of reacting chemicals. With reference to
reactive transport, these zones constitute a limiting factor that controls the way reactants come into contact
in the system [e.g., Raje and Kapoor, 2000; Gramling et al., 2002]. As a consequence, it is critical to properly
account for the effects of incomplete mixing of reactants. Use of continuum-scale models and failure to
properly account for these dynamics might lead to severe over- (or under-) estimation of solute concentra-
tions, reaction rates, and reaction products. Typically, these effects are most significant for the lowest con-
centration levels [e.g., Rashidi et al., 1996; Cao and Kitanidis, 1998; Sanchez-Vila et al., 2010].

In this context, it is clear that one can consider several alternative modeling formulations to interpret
observed transport scenarios. Once the transport scenario and a set of models are selected, the key parame-
ters linked to each of the models must be identified. Complexity of model calibration generally increases
with the number of parameters. As stated in section 1, GSA methodologies provide valuable approaches to
quantify the relative importance of each model parameter. This information, in turn, enables one to assess
the degree of reliability that can be associated with each estimated parameter. In this sense, the critical
importance of GSA is also clear in the design phase of an experiment [Ciriello et al., 2013al].

Following calibration, discrimination/ranking of the selected models can be performed by employing crite-
ria such as those referenced in section 1. These criteria allow evaluation of the model performance in a rela-
tive sense, on the basis of the agreement between model predictions and hydrologic observations through
maximum likelihood (ML) estimate of model parameters.

We consider here the data set of Gramling et al. [2002], which documents results of laboratory-scale, con-
servative, and reactive transport experiments. As mentioned above, the conservative experiment was exam-
ined in a multimodel framework by Ciriello et al. [2013a]. The reactive transport experiment of Gramling
et al. [2002] was performed in a rectangular glass chamber (36 cm long) filled with crushed cryolite grains
(average diameter 0.13 cm). The porous material (with an estimated porosity equal to 0.36) was first satu-
rated with EDTA*" and the reactant CuSO, was then injected into the system. A bimolecular irreversible
reaction among the chemical species Cu®" and EDTA*~ occurred in the pore space, yielding CUEDTA?™ as a
reaction product. The concentration of the reaction product was reported at 4 times (1, =619 5; 7, =916 's;
3= 1114 s; 14, = 1510 s), for a flow rate of 2.67 mL/min. This is the data set referred to in the remainder of
the paper. We focus on the way two existing models, which account for incomplete mixing, can be
employed in a multiple-model analysis framework. One model (hereinafter ADRE-KM) is the empirical ADRE
formulation proposed by Sanchez-Vila et al. [2010], according to which, as stated in section 1, a kinetic
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model (KM) is employed; this involves a reaction rate taken to be linearly proportional to the local reactant
concentration [Hering and Morel, 1988]. The second model is based on a particle tracking form of CTRW, as
presented by Edery et al. [2010]; we hereafter refer to this model as CTRW-PT. A summary of the key points
associated with the mathematical framework underlying these two models is provided as supporting
information.

The following section is devoted to a complete illustration of the methodology we propose for the consist-
ent analysis (and design) of model-driven chemical transport experiments. Key questions that can be
addressed include: (a) which conceptual picture of the (reactive) transport processes, as embodied in a
mathematical model (or models), is most effective to interpret a given set of observations? (b) What space
and time locations for chemical concentration measurements provide the most valuable information,
depending on the choice of model? and (c) How is model parameter uncertainty propagated to model out-
put, and how does this propagation affect model calibration? We employ an approach based on the seam-
less fusion of model formulation, calibration, and discrimination, as well as rigorous sensitivity analysis, to
define a coherent framework for the characterization of chemical transport in porous media.

3. Methodological Framework

Our methodological framework relies on Polynomial Chaos Expansion (PCE) theory, which is employed here
as a basis to construct proxies of given transport models whose parameters are affected by uncertainty. The
theory underlying PCE was introduced by Wiener [1938] to characterize Gaussian processes. Nevertheless,
adoption of this approach to engineering applications is quite recent, being due to Ghanem and Spanos
[1991] in the context of the stochastic finite element method (SFEM) [see also Matthies, 2008, and referen-
ces therein]. The main idea of the approach relies on projection of the selected model response (i.e., the
state variable of interest) onto a probabilistic space (which is usually termed Polynomial Chaos) to derive a
polynomial approximation of the response surface associated with the model. Xiu and Karniadakis [2002]
extended the approach to non-Gaussian distributions by introducing the Askey family of hypergeometric
polynomials, on which the so-called generalized Polynomial Chaos (gPC) is based.

This methodology has received increasing attention in the recent years due to its versatility of use in charac-
terizing diverse physical problems. Recent examples of application of the gPC in the hydrogeological con-
text include, e.g., GSA, uncertainty quantification, and Bayesian inference [Ciriello et al., 2013b; Laloy et al.,
2013; Ashraf et al., 2013; Sun et al.,, 2013; Liao and Zhang, 2013, 2014; Porta et al., 2014; Rajabi et al., 2015;
Riva et al., 2015]. A critical limitation of the approach relates to its ability to efficiently treat a large number
of uncertain model parameters, i.e, if the number of model parameters subject to uncertainty increases
together with the variance and the complexity of the model response surface (representing the given
model output), then the computational cost required to construct a gPC approximation may be significant
[e.g., Crestaux et al., 2009]. Nevertheless, within the range of theoretical applicability of the gPC, the method
has generally provided accurate results even for complex modeling scenarios [e.g., Ciriello et al., 2013b;
Porta et al., 2014; Esfandiar et al., 2015; Riva et al., 2015].

As mentioned in sections 1 and 2, Ciriello et al. [2013a] suggested the adoption of the gPC approach as the
basis of a strategy to combine sensitivity-based model calibration and model selection criteria, to compare
alternative conservative transport models. Here we extend this strategy to more complex transport scenar-
ios in porous domains, by considering reactive behavior of solutes. Given the computational cost associated
with reactive transport models, we propose to employ the gPC technique not only for GSA, as in Ciriello
et al. [2013a], but also in the context of model calibration, along the lines of Esfandiar et al. [2015]. Figure 1
depicts a sketch of the workflow associated with the methodology we propose. In the following, we
describe the details of the theoretical framework of our methodology. We do so upon recalling some of the
basic concepts illustrated by Ciriello et al. [2013a].

3.1. Generalized Polynomial Chaos Representation of a System Model

The response surface of a selected model, Y=f(x, t, X), can be approximated by resorting to the gPC tech-
nique if Y has finite variance. Here vector X collects the model parameters whose values are considered as
uncertain. The gPC approximation, Y, of Y is given by a finite series of polynomials, orthogonal with respect
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Selection of a set of models, My (k=1, ...,
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Comparison of the interpretive capability of
models against the entire available dataset

Figure 1. Sketch of the workflow associated with the proposed methodology.

to the joint probability density function of the parameters collected in X [Wiener, 1938; Ghanem and Spanos,
1991], i.e.,
P—1

Y(x,t,X) = Y(x,t, Q)=Z aj(x, t)\¥;(Q). (M
=0

In (1), P=(M+p)!/(M! p!) represents the number of terms included in the expansion, which depends on
the largest degree retained in the expansion, p, and on the number of model parameters, M; \¥; denotes a
multivariate orthogonal polynomial and g; is a deterministic coefficient of the expansion. Vector € contains
a set of independent random variables whose distribution is linked to the selected polynomial basis [Xiu
and Karniadakis, 2002]. Variables collected in € are related to the corresponding variables in X through an
isoprobabilistic transformation [Sudret, 2008]. Computation of the deterministic set of coefficients g; in (1)
can be performed by means of a nonintrusive regression-based approach. The optimum set of regression
points in the random parameter space is determined on the basis of the probabilistic collocation method
[Webster et al., 1996; Huang et al., 2007]. This strategy employs the roots of the polynomial of 1 order higher
than p, to ensure appropriate sampling of the region associated with largest probability in the parameter
space, according to the adopted distributions of the parameters. Combinations of the roots of the polyno-
mial of order (p + 1) are taken as the optimum set of regression (or collocation) points for the polynomial of
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order p [Webster et al., 1996; Sudret, 2008; Ciriello et al., 2013a, b]. Minimization, with respect to the unknown
coefficients in (1), of the variance of the difference between the solution given by the original model and
the surrogate model response calculated at the collocation points in the parameter space renders the val-
uesofa; (j=0,1,...,P—1).

Once the gPC representation is defined, at each space-time location (x,t) of interest, global sensitivity
measures such as the Sobol indices [Sobol, 1993]

Ss=Y  aE[WZ]/V(Y) 2)

LIS

can be analytically determined. In (2), ¢5:{a ENM:kcd = oy #0,k=1, ...,M} denotes a set of multi-
indices depending exactly on the subset of random model parameters identified by 8={i,...,is}, with
=1,...,M. The computation of E[\Iﬂ] can be performed following, e.g., Abramowitz and Stegun [1970].

p=1
Terms ao and V(Y)=Var [Z a¥ }— {Z asz[‘sz(Q)u in (2), respectively, represent the mean and
=

the total variance of Y [Sudret, 2008]. Sobol indices defined in (2), considering all the possible sets & of
model parameters, sum up to unity. For each model parameter, one can use (2) to compute (i) the principal
sensitivity index (which is associated with s=1), representing the reduction in the variance of the response
if that parameter is not uncertain, and (ii) the total sensitivity index, related to the expected residual var-
iance of the response if only the selected parameter is uncertain [Sobol, 1993; Saltelli et al., 2000]. Note that
if the principal and total sensitivity indices show similar values, then higher-order effects accounting for
interactions among parameters are negligible [Sobol, 1993].

3.2. Sensitivity-Based Model Calibration
A sensitivity-based model calibration requires computation of the sensitivity indices (2) at each space-time
location at which an observation of the system response is available, i.e., (x, t)fbs, 1 <i <N, N being the
number of available observations. This allows identification of the observations corresponding to the high-
est information content for a given selected model [Ciriello et al., 2013al. Let YO = [Y?%, ...Y%%] be the vec-
tor including the complete set of available observations and By the covariance matrix of measurement
errors, here considered to be diagonal with nonzero terms equal to the observation error variance a,-z [Car-
rera and Neuman, 1986a, 1986b]. Performing model calibration in a maximum likelihood (ML) framework
requires calculation of model outputs at each (x, t);’bs for a number of times until one reaches a minimum
of the target objective function. As this can be computationally demanding, especially in the case of com-
plex models, one can drastically reduce the computational cost by replacing the full system model Y=f(x,t,
X) with its gPC approximation (or surrogate model) evaluated at each (x, t)"bs The ML estimate X of the
vector of the M model parameters can be obtained by minimizing, with respect to X, the negative log likeli-
hood criterion [Carrera and Neuman, 1986a, 1986b; Bianchi Janetti et al., 2012, and references therein]

N
Ji
NLL=Y" = +In [By|+Nn (27), 3)
i=1 i
where Jj= (Y Y, ) Y; being the output of the surrogate model at (x, t)°, i.e.,
P—
= .0 (). @
=

Following section 3.1, the vector Y= [fﬁ , 4..\7,\,} of the surrogate model outputs at locations where measure-
ments are available may be obtained as

14 al al al_, al Fol) ]
. e al | | P@
=172 | —pots o ay G Op—3 Gp_4 (5)
. Yr-2(Q)
Yn a ay .. ay,
Wi (Q)
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where we denote aj=aj(x, t),f’bs for brevity. Note that, once the surrogate model has been constructed, cal-
culation of (5) does not require additional computational cost, because the terms composing the matrix of
coefficients, A°”, have been already computed. We further note that the form of the approximation is the
same at each (x, t)fbs, i.e.,, the vector ¥ does not depend on the specific space-time location considered,
thus rendering the approach highly convenient.

Minimization of (3) using, e.g., the iterative Levenberg-Marquardt algorithm as embedded in the code PEST
[Doherty, 2002], may then be easily performed at negligible computational cost, by taking advantage of the
observation that the constructed surrogate model is expressed in a simple polynomial form. The computa-
tional effort involved with model calibration may be further decreased by considering only reduced sets of
observations that correspond to the largest sensitivity index values associated with model parameters.
Given a sensitivity-based subset of observations defined in this way, with B < N denoting dimension, the
system (5) reduces to

v _pob v _ psBob
Y1 =A3%p - Wox1 — Ve =Agsp - Prxa. (6)

We indicate space-time locations corresponding to the observations included in the sensitivity-based subset
as (x, t)°°*; the matrix A% includes the gPC coefficients computed at each (x, t);%.

3.3. Comparison of Alternative Interpretive Models

When multiple models are considered, one may repeat the steps described in sections 3.1-3.3 for each
model formulation. In this case, once the parameters associated with each model are calibrated, either on
the basis of the entire set of available observations or by considering only sensitivity-based subsets, the
alternative formulations can be ranked by various criteria [e.g., Neuman, 2003; Ye et al., 2004, 2008; Bianchi
Janetti et al., 2012, and references therein], including

AIC=NLL+2M, (7)
2M(M+1)
=NLL+2M+=———

AIC=NLL+2M+ S22, @)

KIC=NLL—M In (27)—In|Q|, )

where the Akaike information criterion, AIC, is due to Akaike [1974], AIC. to Hurvich and Tsai [1989], and KIC
to Kashyap [1982]. Note that the lowest value of a given model identification criterion indicates the most
favored model (according to the criterion itself) at the expenses of the remaining models. In (9), Q repre-
sents the Cramer-Rao lower-bound approximation for the covariance matrix of parameter estimates, i.e., the
inverse expected Fisher information matrix (see Ye et al. [2008] for details). In a multimodel analysis, model
discrimination criteria (7)-(9) can also be employed to assign posterior probability weights to the diverse
model considered. The posterior probability related to model My (k=1, ..., Ny, with Ny, the number of
available process models) is calculated as [Ye et al., 2008]

exp (— 3 AIG) p(Mi)
Ny 1 :
Z exp (f 3 AIC;)p(M,«)
=1

Here AIC, = ICy — ICin, With IC, being either AIC (7), AIC. (8), or KIC (9) and IC,,;, = min{IC;} its minimum
value across the models considered; p(M,) is the prior probability associated with each model. If no prior
information is available, then p(My) = 1/N,,, so that all models are associated with equal prior probability.
Equation (10) can also be employed in the context of Bayesian model averaging to weight each model
prediction.

(10)

p(Mk‘YObS) —

Note that model selection criteria and the posterior probability provide a rigorous way to compare alterna-
tive formulations based on the sets of observations selected for model calibration. These sets generally
contain different observations for each model when they are constructed by the sensitivity-based
approach described in section 3.2. Note that from a collection of tested models, a model identified as
“best"—based on its ability to approximate the corresponding set of most sensitive observations—might
not prove to be “best” when its predictive ability is then tested against an augmented data set [Ciriello
et al, 2013al.
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Table 1. Model Parameters and Adopted Sampling Distributions

Parameter Model Distribution Mean Standard Deviation
Effective velocity (v) ADRE-KM Normal 121 X 10 * m/s 1.00 X 10"° m/s
Longitudinal dispersivity (c) ADRE-KM Lognormal 145X 10> m 450 X 10 *m
Coefficient of the reaction rate (o) ADRE-KM Normal 240 L/(mol s'~™) 48 L/(mol s'™™)
Exponent of the reaction rate (m) ADRE-KM Normal 93x 107" 186 X 102
Transport velocity (v,) CTRW-PT Normal 1.21 X 10" * m/s 1.00 X 10 °m/s
Generalized dispersion coefficient (D) CTRW-PT Normal 175 X 1077 m*/s 544 X 10" ®m?/s
Exponent of TPL distribution (f) CTRW-PT Normal 1.96 9.80 X 102
Cutoff time (t,) CTRW-PT Lognormal 10° s 5.0 % 10*s
Reaction radius (R) CTRW-PT Normal 30X 10 °m 50X 10 *m

4. Application and Discussion

Here we apply the methodological framework illustrated in section 3 to the set of data from the reactive
transport experiment (mentioned in section 2) [Gramling et al, 2002]. The data set comprises depth-
averaged concentration measurements of reaction product in a laboratory flow cell, measured at 4 times
(11 =619, 1,=9165; 13 = 1114 5; 74 = 1510 5) from the beginning of the experiment.

The first step of our methodology, which constitutes the basis for a sensitivity-based model calibration,
relies on computation of Sobol indices (see section 3.1). These indices are associated with each model
parameter at the space-time locations at which observations are available. The parameters of each model
we analyze are considered as the only sources of uncertainty. As no information or theoretical evidence
indicates parameter correlation, the parameters are treated as statistically independent random variables,
described by the probability distributions listed in Table 1. In principle, parameter correlations can be con-
sidered [see, e.g., Li et al.,, 2009] if marginal probability density functions of the uncertain parameters and
the associated correlation matrix are known. Four flow and transport parameters need to be estimated for
the ADRE-KM (see supporting information): the effective velocity, v; the longitudinal dispersivity, «; and the
coefficient and exponent of the reaction rate, denoted as f3, and m, respectively. Five parameters are con-
sidered for the CTRW-PT model (see supporting information): the transport velocity, v, the generalized dis-
persion coefficient, Dy; the exponent of the TPL distribution, f5; the cutoff time, t,; and the reaction radius, R.
Each model parameter is associated with (i) a mean value, assessed on the basis of calibration results
obtained by Gramling et al. [2002] and preliminary calibration against the complete available data set, and
(i) a value of standard deviation adequate to ensure that relatively wide intervals in the parameter space
are explored (see Table 1). We assume that most of the parameters are described by normal distributions. A
lognormal density is preferred for parameters whose selected range of variability could entail unphysical
negative values. Average values associated with such distributions are selected on the basis of preliminary
manual model calibration. The variance associated with each parameter distribution is selected to allow
exploration of a wide range of parameter combinations during model calibration. In this context, the GSA
results are only minimally affected by the selected functional format of the parameter distributions [see also
Ciriello et al., 2013al.

Considering the probability distributions adopted for model parameters, Hermite polynomials are selected
as a basis to generate a second-order approximation of the model response surface [Xiu and Karniadakis,
2002]. As shown in section 3, adoption of such polynomials enables us to derive analytically the Sobol indi-
ces employed in the GSA [e.g., Sudret, 2008]. We remark that selection of the order of the gPC is a critical
step in applying the approach. Note that (a) increasing the order of the gPC might improve the accuracy of
the surrogate model but yields a considerably increased number of collocation points, with a decrease in
computational efficiency; and (b) assessing the accuracy associated with a given gPC order requires imple-
menting the solution at higher orders. Computation of the coefficients of the gPC requires, at the order we
consider, a number of full model runs equal to (i) 15 for the ADRE-KM, and (ii) 21 for CTRW-PT. This allows
considerable efficiency in terms of computational cost. Construction of a gPC of order 3 would require a
number of full model runs equal to (i) 71 for the ADRE-KM and (ii) 116 for CTRW-PT. We verified that a
second-order approximation provides a good representation of the response surface associated with the
full model solutions. We do so by comparing the results obtained through the proxy and original (full) sys-
tem models with the same input parameter sets. The latter were randomly selected in the parameter space
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Figure 2. (a-d) Spatial distributions of normalized concentrations, c/co (with ¢, the inflow concentration of reactant CuSO, at the upstream boundary at x = 0 and the initial concentra-
tion of reactant EDTA*™ inside the domain) of the reaction product CUEDTA?~ documented by Gramling et al. [2002]; total sensitivity indices resulting from the (GSA of the) selected
models: (e-h) ADRE-KM; and (i-I) CTRW-PT. Note that the vertical axes denote the main direction of transport in the flow cell, as denoted by the arrow in Figures 2a-2d, while the hori-
zontal axes denote relative concentration or sensitivity index. Each row i =1, ..., 4 depicts results associated with a given time, corresponding to observation times t; reported by Gram-
ling et al. [2002], i.e., 7, = 6195, 7, =916 ;73 =11145; 7, = 1510 s.

at locations not coinciding with those of the collocation points (not shown). Below, we provide additional
comments on this point.

Figure 2 depicts the available spatial distributions of normalized concentrations, c/cy (o being the inflow
concentration of reactant CuSO, at the upstream boundary at x = 0 and the initial concentration of reactant
EDTA*" inside the domain) of the reaction product CUEDTA? ™ together with the values calculated for the
total sensitivity indices associated with each model parameters at all space-time locations at which observa-
tions are available. Table 2 lists the average values of the total sensitivity indices associated with the
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parameters of the two selected models. As a pre-

Table 2. Average Values of the Total Sensitivity Indices L. . . .
liminary conclusion, these results highlight that o,

Associated With the Two Models and Calculated on the Complete

Set of Available Concentration Data and f display the highest sensitivity along the
Mean flow cell, respectively, for ADRE-KM and CTRW-PT.

IPEEIERE itoetsl Values of Sy This is in accord with the observation that «; and

v ADRE-KM 0.110 ., respectively, drive the spread (in the ADRE-KM

. ADRE-KM 0.751 . . .

b e . formulation) and the overall dispersive nature of

m ADRE-KM 0.043 transport, particularly the tails (in the CTRW-PT

vy CTRW-PT 0.129 formulation) of the reactants and reaction prod-

Dy CTRW-PT o161 uct, thus controlling the way reactants come into

] CTRW-PT 0.741 ' 9 y

t CTRW-PT 0.091 contact and react.

R CTRW-PT 0.092

With reference to the ADRE-KM model parame-
ters, one can conclude that:

. The two parameters linked to the reaction rate, i.e., o and m, exhibit strongest influence at spatial loca-
tions corresponding to the peak of concentration at the various observation times; their rate of decrease
in space is qualitatively similar to that of the relative concentration profiles.

2. Longitudinal dispersivity, ¢, is important along the entire flow cell, albeit with significantly diminished

influence at locations where the highest concentrations are recorded. This result is consistent with find-
ings of Ciriello et al. [2013a], in the context of conservative transport analysis, and reflects the fact that
dispersivity drives spreading of concentration around the solute center of mass.

3. The total Sobol index associated with fluid effective velocity displays two peaks at spatial locations

approximately corresponding to change of concavity of concentration profiles. This result corresponds to
the observation that displacement of solute center of mass is typically governed by advective processes;
these spatial locations are relatively close to the center of mass of the two reactants which are located
upstream and downstream of the peak displayed by the reaction product.

4. The sum of the total sensitivity indices associated with the four parameters of the model is about unity at

each space-time location, indicating negligible second-order effects due to joint effects of parameters.

With reference to the CTRW-PT model parameters, Figure 2 reveals that:

1

. The exponent of the TPL distribution, f, is the most influential parameter along almost the entire length
of the column, its relative importance increasing with time. A qualitatively similar result was obtained by
Ciriello et al. [2013a] in their analysis of conservative transport experiments. This implies that obtaining
accurate estimates of f is key to the proper calibration of CTRW-PT, while the influence of the actual val-
ues of the remaining model parameters on the variability of the model results tends to decrease signifi-
cantly with time. This result is consistent with the physical meaning of f5, which governs, in particular, the
extreme values of the distribution of concentration fluctuations and, ultimately, the way reactants come
into contact and react.

2. The behavior of the total sensitivity indices associated with the other four model parameters indicates

that the magnitude of their contribution to the variance of the model response (i.e., the reaction product
concentration) ranges in space between approximately 0-40%.

3. The sum of the total sensitivity indices is larger than unity at a non-negligible number of space-time loca-

tions. This suggests that the GSA of this model requires an accounting of the combined effect of parame-
ter pairs on the variance of the model response. The relevance of this effect can be quantified through
the second-order Sobol indices. For this specific case study, the contribution to the variance of the
response of each second-order Sobol index, averaged over all the space-time locations of the data set,
was found to vary between 1.5 and 3.5% (not shown).

Our methodology relies on GSA to identify subsets of observations containing sufficient information for
model calibration. In this context, it is the local magnitude of the Sobol indices which provides a clear indi-
cation of the space-time locations at which a model is most sensitive to its parameter values. Therefore, we
classify as sensitive the observations corresponding to the largest values of the total sensitivity indices.
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MULTIMODEL FRAMEWORK FOR TRANSPORT IN POROUS MEDIA 11



@AG U Water Resources Research

10.1002/2015WR017047

We investigate the potential useful-
ness and robustness of a sensitivity-
Number of X .
Subset Description Observations based model parameter estimation
approach by calibrating the two

Table 3. Calibration Sets for the Three Selected Models

1 Observations from concentration 86 .
profile at 7, and <5 models with two subsets of observa-
2 Most sensitive observations from 20 tions (Table 3). The first subset

concentration profiles at t; and 3 (termed hereinafter as subset 1) is

composed of 86 observations uni-

formly distributed in space and
selected from the relative concentration curves measured at times 7, and 3. The second subset (hereinafter
termed as subset 2) is composed of the 20 most sensitive observations identified among those belonging
to subset 1. This subset comprises about 25% of the elements of subset 1. Note that subset 1 is not based
on GSA and is the same for both models. The entries of subset 2 in general differ for the two models,
because of the diverse space-time distributions of the total Sobol indices associated with the models.

We then estimate the parameters of the selected models through minimization of the negative log likeli-
hood (NLL) criterion for each data subset. We do so by employing the iterative Levenberg-Marquardt algo-
rithm as embedded in the code PEST [Doherty, 2002]. As illustrated in section 3, this step relies on
calibration of the model proxies resulting from the application of the gPC technique, already employed for
GSA assessment in the previous step. This enables us to markedly reduce computational costs associated
with model calibration, which may be significant for reactive transport problems.

Table 4 lists the results of model calibrations against subsets 1 and 2. Results are listed in terms of the
estimated value of each parameter, denoted as C in Table 4, Gaussian 95% confidence intervals (in paren-
theses, computed on the basis of the same linearity assumption adopted in PEST for parameter estima-
tion [Doherty, 2002]), and the ratio, &, of the difference between the upper (U) and lower (L) limits
identifying the 95% uncertainty bounds and the estimated value, C, i.e.,, R = (U — L)/C. We observe that
parameter estimates are generally associated with small values of R, exceptions being given by parame-
ters fio and m of the ADRE-KM. The quality of these parameter estimates appears to be relatively poor.
This is consistent with the observation that the model is sensitive to these parameters only in a relatively
small range of spatial locations, at which dispersivity, o, still has a primary role. Hence, it can be con-
cluded that these parameters do not affect significantly the model performance against both calibration
subsets [Ciriello et al., 2013a].

It is also interesting to note that the estimated values of the parameters which GSA identifies as the most
sensitive of each model, i.e., o, for the ADRE-KM and f for the CTRW-PT, do not change significantly when

Table 4. Calibrated Values, C, of Model Parameters, Gaussian 95% Confidence Intervals, in Parentheses, and Ratio, i, of the Difference
Between the Upper and Lower Limits Identifying the 95% Estimate Confidence Limits and C

Subset 1 Subset 2

Parameter Model C R C R

v ADRE-KM 1.24E-04 0.02 1.26E-04 0.06
(1.23E-04, 1.25E-04) (1.22E-04, 1.30E-04)

o ADRE-KM 1.07E-03 0.28 1.07E-03 0.90
(0.92E-03, 1.22E-03) (0.59E-03, 1.55E-03)

Po ADRE-KM 190 6.70 190 8.18

(—446.33, 826.34) (—587.35, 967.35)

m ADRE-KM 9.53E-01 0.94 9.44E-01 1.15
(5.10E-01, 13.99E-01) (4.01E-01, 14.86E-01)

Vy CTRW-PT 1.21E-04 0.01 1.20E-04 0.01
(1.20E-04, 1.21E-04) (1.19E-04, 1.20E-04)

Dy CTRW-PT 1.64E-07 0.20 1.45E-07 0.39
(1.48E-07, 1.80E-07) (1.17E-07, 1.73E-07)

p CTRW-PT 1.95 0.01 1.97 0.02

(1.94,1.97) (1.96, 1.99)
ty CTRW-PT 116804.50 0.60 104347.04 0.60
(81614, 151995) (73032, 135662)

R CTRW-PT 3.51E-03 0.13 2.89E-03 0.19

(3.29E-03, 3.75E-03) (2.62E-03, 3.17E-03)
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Table 5. Results From Model Calibration and Identification Criteria®

ADRE-KM
Subset NLL AIC AlC, KIC Posterior Probability
1 —384.2 —376.2 —375.7 —348.3 0.00
2 -115.2 -107.2 —104.6 —84.8 0.91
CTRW-PT
Subset NLL AIC AlC, KIC Posterior Probability
1 —435.0 —425.0 —424.3 —383.6 1.00
2 —1125 —102.5 —98.2 —63.8 0.09

“The smallest values for each subset are emphasized in bold.

calibrating on subset 1 instead of subset 2. This result supports the basic idea that a minimum set of
selected sensitive observations allows capture of the parameter behavior. Moreover, we observe that
parameters which GSA has revealed as less influential display remarkably different estimated values
depending on the calibration data set considered. We remark that these results are consistent with the way
sensitivity-based subsets of observations are constructed, i.e., favoring parameters associated with high val-
ues of total sensitivity indices at a non-negligible number of space-time locations.

Once parameter estimates are obtained, we investigate the accuracy with which the two models represent
the elements of the calibration subsets. To this end, Table 5 lists values of (i) NLL (3), (ii) model selection cri-
teria (7)-(9), and (iii) posterior probability (10), computed for each model in both calibration scenarios. We
observe that all of these quantities indicate the ADRE-KM as the favored model when the sensitivity-based
subset (subset 2) is used for calibration. We further note that the goodness of the performance of the two
models is quite similar in this case; only the value of posterior probability clearly favors the ADRE-KM.
CTRW-PT is considered as preferable in the case of subset 1, where model quality metrics are different from
those related to ADRE-KM and the performance of the CTRW-PT model is clearly preferred.

As a final step, we assess the interpretive power of each model though a validation step, which entails com-
paring model predictions (based on the parameters estimated according to the procedure detailed above)
against the entire data set of Gramling et al. [2002]. Figures 3a and 4a depict solutions provided by the two
full system models (ADRE-KM and CTRW-PT, respectively), with parameter estimates based on gPC for the
case of subset 1 (observations belonging to subset 1 are highlighted in red in the figures). The solutions are
seen to match the measurements. Figures 3b and 4b depict the corresponding model solutions with parame-
ter estimates based on gPC and relying on subset 2. The sensitive observations (which differ for the two mod-
els) constituting the elements of subset 2 are highlighted in red in the figures. Model predictions are also
seen to be accurate, which is remarkable considering (i) the limited number of data employed for calibration
and (ii) the adoption of proxies for parameter estimation. Accuracy of the approximations represented in Fig-
ures 3 and 4 is quantified in Table 5, which lists the mean square error (MSE) calculated between model pre-
dictions and available data. The CTRW-PT model always renders the lowest values of MSE at all the
observation times for calibration subset 2. This suggests that, even as the ADRE-KM provides a high-quality fit
of its sensitive observations (see Table 5), its predictive power is less than that of CTRW-PT when considering
the entire experimental data set. Sensitive observations associated with CTRW-PT tend to provide a stronger
basis for the model predictive capability than do their counterparts associated with the ADRE-KM. This result
is consistent with the varying spatial distributions of the most sensitive observations associated with the two
models (Figures 3b and 4b). These spatial distributions are linked to the different mathematical formulations
of the two models and to the way model parameters govern the phenomena we investigate. The parameters
of CTRW-PT tend to describe the overall behavior of the concentration profile, in terms of peak value, spread-
ing and tailing. As a consequence, the most sensitive observations associated with CTRW-PT are distributed in
a relatively uniform fashion along several parts of the concentration profile. In contrast, the ADRE-KM tends to
describe the concentration profile in terms of two key moments, i.e., its mean and variance (the latter related
to the spread). As a consequence, the most sensitive observation for this model are mainly concentrated
around the center of mass and close to the tails of the concentration profile.

As an additional element, Table 6 lists the difference AMSE between the MSE values associated with subset
2 and 1. We observe that for the CTRW-PT model the interpretation of the complete data set generally
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Figure 3. ADRE-KM model approximation (black lines) of the entire data set of Gramling et al. [2002] (blue dots), with model parameters estimated via gPC against (a) subset 1 and (b)
subset 2 (see Table 4). Observations belonging to the subsets are represented by red dots.

improves when sensitivity-based model calibration is performed, as seen from the negative values of AMSE.
The opposite is observed to occur for the ADRE-KM, for which the MSE associated with predictions based
on calibration subset 2 is higher at most times (with the exception of the earliest sampling time). This sug-
gests that when a model appears to be suitable to capture the behavior of a selected system, calibration
against extended subsets (including also observations to which model parameters are not sensitive) may
compromise the accuracy of predictions. This observation provides additional support for the effectiveness
of our proposed methodology.

We remark that the use of proxies (in our case, the gPC technique) to perform GSA and model calibration
should be accompanied by assessment of the accuracy of these approximations against the results of the
full system model. Figure 5 depicts scatter plots between results obtained by the full model and the corre-
sponding proxy at all space-time location where observation are available, relying on parameter estimates
obtained by model calibration against subsets 1 (Figures 5a and 5b) and 2 (Figures 5c and 5d). We
observe that results for both models are clustered around a 45° regression line. Spreading of points
around the regression line is virtually negligible for the ADRE-KM. The coefficient of determination for the
CTRW-PT is also very high, denoting very good performance of the model proxy. The latter observation,
together with the facts that (i) the CTRW-PT results are by their nature influenced by statistical fluctuations
and (ii) computational time can increase dramatically with the number of particles, does not justify use of
higher order approximations in the construction of the gPC, at least for the purpose of the current
application.

We end the analysis by emphasizing that the gPC renders approximations of the model response surface
(in the random parameter space) at each space-time location of interest and, as shown in section 3, the
coefficients of the polynomial expansion depend on space and time. Hence, each point depicted in Figure 5
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Figure 4. CTRW-PT model approximation (black lines) of the entire data set of Gramling et al. [2002] (blue dots) with model parameters estimated via gPC against (a) subset 1 and (b)
subset 2 (see Table 4). Observations belonging to the subsets are represented by red dots.

is associated to a unique set of coefficients multiplying the orthogonal polynomials of the second-order
gPC that we employed in this case study. If poor accuracy of the proxy is evidenced at a given order of
expansion, one can still employ the methodological framework we propose by noting that an increase in
the polynomial order is typically accompanied by an increase of the overall computational cost [e.g., Ciriello
etal, 20133, b].

Note that the methodology described here is relevant for integration of experimental design and model
application, at both laboratory and field scales. For any given model, the methodology can identify (i) the
most influential parameters, and, significantly, (ii) the space and time locations where measurements

Table 6. Results of Model Validation in Terms of Mean Square Error (MSE) for Each of the Four Observation Times t; (i= 1, 2, 3, 4) and
Observation Subsets 1 and 22

MSE
Observation Time Model Subset 1 Subset 2 AMSE
T ADRE-KM 1.19E-03 8.63E-04 —3.27E-04
CTRW-PT 4.75E-04 3.64E-04 —1.11E-04
T ADRE-KM 6.71E-04 1.24E-03 5.69E-04
CTRW-PT 9.01E-04 7.03E-04 —1.98E-04
T3 ADRE-KM 5.05E-04 1.09E-03 5.85E-04
CTRW-PT 8.79E-04 9.22E-04 4.30E-05
T4 ADRE-KM 6.90E-04 1.74E-03 1.05E-03
CTRW-PT 1.62E-03 1.41E-03 —2.10E-04
All times jointly ADRE-KM 7.59E-04 1.26E-03 5.01E-04
CTRW-PT 9.06E-04 8.90E-04 —1.60E-05

*The smallest values for each model are in bold. AMSE is the difference between the MSE values associated with subset 2 and 1.
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Figure 5. Comparison of concentrations computed by the full models and the corresponding gPC proxies, at the space-time locations in
which observations are available, and for values of parameters obtained by calibration against (a) subset 1 and (b) subset 2 (see Table 4). The
coefficient of determination, R? associated with the regression (continuous) line is also shown together with the 45 degrees (broken) line.

provide the most valuable information (in terms of model calibration). This information defines, at least
ideally, where measuring efforts should be concentrated and the amount of data that should be collected.
Moreover, by analysis of subsets of measurements, applicability of various models can be compared.

5. Conclusions

Quantification of transport phenomena in porous and fractured media involves three key questions: (i) For a
given set of measurements, which conceptual picture of the (reactive) transport processes, as embodied in a
mathematical model or models, is most appropriate? (ii) For a given model, what are the most valuable space
and time locations for solute concentration measurements? (iii) How is model parameter uncertainty propa-
gated to model output, and how does this propagation affect model calibration? To address these questions,
we merged aspects of model formulation, calibration, global sensitivity analysis and discrimination, illustrating
application of a methodology for sensitivity-based parameter estimation. The proposed methodology is gen-
eral and may be employed in different contexts for model assessment and parameter estimation.

We have shown how this GSA-based approach addresses the questions defined above. Here measurements
from a reactive transport experiment were employed to demonstrate the methodology and examine the
interpretive capability of two reactive transport models (ADRE-KM and CTRW-PT). In the specific case study,
we find that while the ADRE-KM fits the most sensitive observation points closely, the CTRW-PT offers
improved predictive capabilities when results from both models are compared against the entire experi-
mental data set (in the context of model validation). Moreover, we show in this application that the most
sensitive observations associated with the CTRW-PT provide a stronger basis for model prediction than the
corresponding most sensitive observations for the ADRE-KM.
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