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ABSTRACT 

 

 

Direct Torque Control (DTC) is a well-known AC control scheme for its robustness and 

simplicity. Although DTC provides excellent dynamic torque control performance, but it has 

several drawbacks. The digital implementation of the hysteresis band controller, which 

causes a delay action, may result in huge ripple and switching frequency inconsistency for 

DTC torque performance. Since the torque slope is already disturbed in the hysteresis 

bandwidth in various operating conditions, the limiting voltage vector of the two-level 

inverter in the conventional DTC limits the control switching frequency in the hysteresis 

controller. Another drawback of conventional DTC is that the presence of voltage drop in a 

stator resistance at low operating speeds causes a droop in stator flux performance. This 

problem occurs as the voltage vectors deviate from the usual state, where it manifests itself 

as a change in the boundary sector of the circular flux locus. Therefore, an optimal DTC 

switching strategy and an optimal DTC sector rotation strategy to overcome the problems in 

a three-phase induction motor have been proposed. A five-level cascaded H-bridge (CHB) 

inverter was used in the optimal DTC switching strategy because it had many voltage vectors 

and could be used for a variety of speed operations. Its objectives were to propose the optimal 

switching vector in minimizing torque ripple and controlling switching frequency at the 

steady-state of various speed operations. A modification torque error status and a look-up 

table of a five-level CHB inverter were used to implement the specified optimal voltage 

vectors. Another objective was to formulate and evaluate the optimal DTC sector rotation 

strategy that can reduce stator flux droop in the variation of torque and speed in steady-state 

and dynamic response. The optimal sector rotation strategy is determined using an analytical 

model of shifted angle that incorporates speed and torque variables which is dynamically 

tuned. Both proposed strategies were compared with conventional method and verified 

through simulation and experimentation works. MATLAB/Simulink software is used to 

simulate the proposed strategies while a complete setup system consists of a DS1104 digital 

signal processor (DSP)-board (to implement the DTC algorithm), Field-programmable Gate 

Arrays (FPGA) (to implement the blanking circuit), two-level and five-level (CHB) inverter 

circuit, gate driver circuit, and a 1.1 kW induction motor with 2 kW DC generator as a load 

is developed for testing and verification purpose. A compromise between simulation and 

experimentation works resulted in significant improvements; 1) a reduction of torque ripple 

up to 50% and a reduction of switching frequency up to 40%, 2) an ability to maintain a 

similar magnitude of stator flux by eliminating the droops. In conclusion, the method 

introduced demonstrates the effectiveness of DTC performance which maintains its simple 

structure as well as offers ease in modification for a desired control purpose. 
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PENGURANGAN RIAK DAYAKILAS DAN KEJATUHAN FLUKS MENGGUNAKAN 

STRATEGI PENSUISAN DTC DAN PUTARAN SEKTOR YANG OPTIMUM   

 

 

ABSTRAK 

 

 

Kawalan Dayakilas Langsung (DTC) diakui sebagai satu keteguhan dan struktur kawalan 

AC yang ringkas. Walaupun DTC menyediakan prestasi cemerlang kawalan dayakilas yang 

dinamik, tetapi ia menyebabkan beberapa kekurangan. Pelaksanaan digital pengawal jalur 

histerisis, yang memicu tindakan lengah, boleh mengakibatkan riak besar dan 

ketidakseragaman pensuisan frekuensi untuk prestasi dayakilas DTC. Oleh kerana 

kecerunan dayakilas terganggu dalam lebar jalur histerisis dalam pelbagai keadaan operasi, 

vektor voltan penyongsang dua peringkat yang terhad dalam DTC konvensional telah 

menghadkan frekuensi pensuisan kawalan dalam pengawal histeresis. Satu lagi kelemahan 

DTC konvensional ialah penurunan voltan dalam rintangan pemegun pada operasi kelajuan 

rendah yang menyebabkan penurunan prestasi fluks pemegun. Masalah ini berlaku apabila 

vektor voltan menyimpang daripada keadaan biasa, di mana ia dipamerkan sebagai satu 

perubahan dalam sempadan sektor lokus fluks bulatan. Oleh itu, strategi pensuisan DTC 

dan strategi putaran sektor DTC yang optimum untuk mengatasi masalah dalam motor 

aruhan tiga fasa telah dicadangkan. Penyongsang tetimbang-H lima-peringkat (CHB) telah 

digunakan dalam strategi pensuisan optima DTC kerana ia mempunyai banyak vektor voltan 

dan boleh digunakan untuk pelbagai operasi kelajuan. Objektifnya adalah untuk 

mencadangkan pensuisan vector yang optimum dalam meminimumkan dayakilas riak dan 

mengatur freqkuensi pensuisan pada keadaan mantap pelbagai operasi kelajuan. 

Pengubahsuaian status ralat dayakilas dan jadual carian bagi penyongsang CHB lima-

peringkat telah digunakan bagi melaksanakan penentuan vektor voltan yang optima. Satu 

lagi objektif adalah untuk merumus dan menilai putaran sektor DTC yang optimum yang 

boleh mengurangkan kejatuhan fluks pemegun dalam variasi dayakilas dan kelajuan dalam 

keadaan mantap dan tindak balas dinamik. Strategi putaran sektor optimum ditentukan 

menggunakan model analitik peralihan sudut yang menggabungkan pembolehubah kelajuan 

dan dayakilas yang ditala secara dinamik. Kedua-dua strategi yang dicadangkan telah 

dibandingkan dengan kaedah konvensional dan disahkan melalui kerja-kerja simulasi dan 

eksperimen. Perisian MATLAB/Simulink digunakan untuk mensimulasikan strategi-strategi 

yang dicadangkan manakala sebuah sistem binaan lengkap terdiri daripada papan 

pemproses isyarat digital (DSP) DS1104 (untuk melaksanakan algoritma DTC), 

Tatasusunan Gerbang Medan Terprogram (FPGA) (untuk melaksanakan litar padaman), 

litar penyongsang dua-aras dan lima-aras (CHB), litar pemacu get, dan motor aruhan 1.1 

kW dengan penjana DC 2 kW sebagai beban dibangunkan untuk tujuan ujian dan 

pengesahan. Kompromi antara kerja-kerja simulasi dan eksperimen menghasilkan 

penambahbaikan yang ketara; 1) pengurangan riak dayakilas sehingga 50% dan 

pengurangan frekuensi pensuisan sehingga 40%, 2) keupayaan menyingkirkan kejatuhan 

untuk mengekalkan magnitud fluks pemegun yang serupa. Kesimpulannya, kaedah yang 

diperkenalkan menunjukkan keberkesanan prestasi DTC yang tetap mengekalkan struktur 

ringkasnya serta menawarkan kemudahan dalam pengubahsuaian untuk sesuatu tujuan 

kawalan yang dikehendaki. 
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          and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

picture at medium_1 operating speed 

4.12 The simulation results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠  (middle)      165 

          and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified 

                picture at medium_1 operating speed 

4.13 The experimental results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠 (middle)    166 

          and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

picture at medium_2 operating speed 

4.14 The simulation results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠 (middle)        167 

           and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

 picture at medium_2 operating speed 

4.15 The experimental results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠 (middle)   168 

           and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

 picture at high_1 operating speed 

4.16 The simulation results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠 (middle)       168 

          and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

picture at high_1 operating speed 
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4.17 The experimental results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠 (middle)    169 

          and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

picture at high_2 operating speed 

4.18 The simulation results of torque, 𝑇𝑒 (upper), phase current, 𝐼𝑠  (middle)      170 

           and phase voltage, 𝑉𝑠 (lower) in; (a) real picture and (b) magnified  

          picture at high_2 operating speed 

4.19 Stator flux (upper), 𝜑𝑠  sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower)             173 

           through the; (a) experimental and (b) simulation result at 500 rpm 

4.20 Stator flux (upper), 𝜑𝑠 sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower)               174 

           through the; (a) experimental and (b) simulation result at 450 rpm 

4.21 Stator flux (upper), 𝜑𝑠 sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower)                174 

          through the; (a) experimental and (b) simulation result at 300 rpm 

4.22 Stator flux (upper), 𝜑𝑠 sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower)                175 

          through the; (a) experimental and (b) simulation result at 200 rpm 

4.23 Stator flux (upper), 𝜑𝑠 sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower)               175 

          through the; (a) experimental and (b) simulation result at 150 rpm 

4.24 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                  177 

          (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

1.9 Nm at 450 rpm 

4.25 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                  177 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

                      1.5 Nm at 450 rpm 

4.26 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                   178 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

  1.1 Nm at 450 rpm 
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4.27 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                  178 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

 1.9 Nm at 300 rpm 

4.28 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                    179 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

1.5 Nm at 300 rpm 

4.29 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                   179 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

 1.1 Nm at 300 rpm 

4.30 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                  180 

          (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

1.9 Nm at 200 rpm  

4.31 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                  180 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

  1.5 Nm at 200 rpm 

4.32 (a) The experimental and (b) simulation result of stator flux, 𝜑𝑠                   180 

           (upper), sector, 𝜃𝑛 and modified sector, 𝜃𝑛′ (lower) for the torque of  

1.1 Nm at 200 rpm 

4.33 The experimental results of torque, 𝑇𝑒 (upper), phase voltage, 𝑉𝑠                  182 

          (middle) and speed, 𝜔𝑚  (lower) for the torque at; (a)1 Nm and  

(b)1.5 Nm at steady-state operation  

4.34 The simulation results of torque, 𝑇𝑒 (upper), phase voltage, 𝑉𝑠                     183 

          (middle) and speed, 𝜔𝑚 (lower) for the torque at; (a)1 Nm and 

 (b)1.5 Nm at steady-state operation  

4.35 The experimental results of stator flux, 𝜑𝑠 (upper) and phase current, 𝐼𝑠      184 
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          (lower) for the torque at; (a)1 Nm and (b)1.5 Nm at steady-state  

operation 

4.36 The simulation results of stator flux, 𝜑𝑠 (upper) and phase current, 𝐼𝑠          184 

          (lower) for the torque at; (a)1 Nm and (b)1.5 Nm at steady-state  

operation 

4.37 The experimental results of torque, 𝑇𝑒 (upper), phase voltage, 𝑉𝑠                  185 

          (middle) and speed, 𝜔𝑚 (lower) in the conventional method for the  

conversion of torque from; (a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm 

4.38 The simulation results of torque, 𝑇𝑒 (upper), phase voltage, 𝑉𝑠                      185 

          (middle) and speed, 𝜔𝑚 (lower) in the conventional method for the 

         conversion of torque from; (a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm 

4.39 The experimental results of stator flux, 𝜑𝑠 (upper) and phase current, 𝐼𝑠      186 

           (lower) in the conventional method for the conversion of torque from;  

(a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm 

4.40 The simulation results of stator flux, 𝜑𝑠 (upper) and phase current, 𝐼𝑠          187 

          (lower) in the conventional method for the conversion of torque from;  

(a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm 

4.41 The experimental results of torque, 𝑇𝑒 (upper), modified angle, ∆𝜗′              188 

           (middle) and speed, 𝜔𝑚 (lower) in the proposed method for the  

 conversion of torque from; (a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm. 

4.42 The simulation results of torque, 𝑇𝑒 (upper), modified angle, ∆𝜗′                  188 

          (middle) and speed, 𝜔𝑚 (lower) in the proposed method for the  

 conversion of torque from; (a)1.5 Nm to 1 Nm, and (b)1 Nm to 1.5 Nm 

4.43 The experimental results of stator flux, 𝜑𝑠 (upper) and phase current, 𝐼𝑠      189 

          (lower) in the proposed method for the conversion of torque from;  




