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a b s t r a c t

We study how projective equivalences between rational curves in Rn are transferred to
the elements of smallest degree of the µ-bases of the curves. We show how to compute
these elements of smallest degree without computing the whole µ-basis, and prove
some results on the degrees of µ-bases of curves in Rn. As a result, we provide a way
to reduce the cost of computing the projective equivalences between rational curves in
Rn by replacing the given curves for the curves represented by the elements of smallest
degree of the µ-bases of the curves, which have a much smaller degree compared to
the original degree of the curves.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The notion of a µ-basis for rational curves was introduced in 1998 (see [1]) as a new technique to speed up the
omputation of the implicit form of a rational curve. Since then, much work has been done to improve the algorithms
or finding µ-bases of curves [2–4] and for applying µ-bases not only to the implicitization problem, but also to other
problems like computing singularities of curves [5], inversion and intersection [4], and, more recently, detection of
properness and proper reparametrization of curves [6].

The notion of a µ-basis is usually introduced, in an algebraic fashion, as a basis of a free module related to a given
rational curve. From a more geometric point of view, a µ-basis is a collection of curves derived from an original curve,
hich can replace the curve for certain tasks (e.g. implicitizing, properness detection, singularity computation, etc.)
lthough one might think that replacing one curve by a collection of several curves is not very clever, the great advantage
s that the degrees of these curves are much smaller, which makes computations more efficient.

While algebraic aspects of µ-bases of curves have been extensively studied in, among others, the references in the first
aragraph, geometric questions have not been explored so thoroughly. In this sense, one can wonder whether there are
roperties of the original curve that are somehow inherited by the curves in the µ-basis. The main contribution of this
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paper is to show that projective equivalences between rational curves, and therefore affine equivalences and symmetries,
are inherited by the elements of smallest degree in the µ-bases.

Symmetries and similarities between rational curves were studied in a series of papers by Alcázar et al. (see the bibli-
ographies of [7,8] and of the very recent paper, uploaded to ArXiv, [9]). In [7–9], the problem, with different approaches,
was generalized to computing projective equivalences between rational curves. Although a thorough complexity analysis
of the algorithms in [7–9] is still absent, it is clear that the cost of these algorithms depends strongly on the degrees of the
curves whose projective equivalences one wants to compute. In this paper, we show that the computation of projective
equivalences between two rational curves can be transferred to the curves of minimal degree belonging to the µ-bases of
the given curves. Since the curves in the µ-bases have a much smaller degree compared with the original degrees, using
µ-bases to study projective equivalences can be an advantage.

Additionally, we present a new algorithm for computing µ-bases of rational curves which allows us to compute the
elements of the µ-basis by increasing degree. In particular, if we are only interested in computing the elements of minimal
degree of the µ-basis, we do not need to compute the whole µ-basis. Some new results about the degrees of the elements
in the µ-basis are also provided.

The structure of the paper is the following. The background on projective equivalences and µ-bases of rational curves
is provided in Section 2. The main results about projective equivalences and µ-bases are provided in Section 3. In Section 4
we consider several aspects of the computation of µ-bases, and provide techniques to find only the elements of minimal
degree. Additional questions on the computation of projective equivalences combining µ-bases and known algorithms
re given in Section 5. We present our conclusion in Section 6.

. Preliminaries on projective equivalences and µ-bases of rational curves

.1. Projective equivalences

Let us denote by x the elements of the projective space PRn, i.e.

x = [x1 : · · · : xn+1].

he points x ∈ PRn where xn+1 = 0 are called points at infinity. A projective transformation, also called projectivity, is a
apping f : PRn

→ PRn where

f (x) = Ax, (1)

with A an (n + 1) × (n + 1) nonsingular matrix. If A has the following block structure

A =

[
A b
0 1

]
(2)

then A is an affine transformation or an affinity. Furthermore, if A is orthogonal, i.e. ATA = Id, with Id being the n × n
dentity matrix, we say that f represents an isometry, also called a rigid motion; if A = λQ with Q orthogonal and λ > 0,
f represents a similarity. In particular, isometries preserve angles and distances, while similarities only preserve angles
and scale all distances by a same factor λ.

In order to avoid a cumbersome notation, whenever a vector is multiplied by a matrix, we will understand that the
vector corresponds to a column matrix.

A rational curve C ⊂ Rn, rationally parametrized by

Q(t) =

(
q1(t)

qn+1(t)
, . . . ,

qn(t)
qn+1(t)

)
, (3)

with gcd(q1, . . . , qn+1) = 1, can be embedded into PRn as

Q(t) = [q1(t) : · · · : qn+1(t)]. (4)

By an abuse of notation and since we will be working in PRn, we will also denote the projective parametrization as Q(t).
Given two rational curves C1, C2 ⊂ Rn rationally parametrized by projective parametrizations Q1(t),Q2(t), we will

ay that C1, C2 are projectively equivalent if there exists a projective transformation f mapping C1 onto C2; we say that f
s a projective equivalence between C1 and C2. If f is an affine transformation (resp. an isometry or a similarity), we will
say that C1, C2 are affinely equivalent (resp. isometric or similar), and that f is an affine equivalence. In Fig. 1, from left to
right, we can see a deltoid and the curves resulting after applying an isometry, an affine transformation and a projective
transformation, respectively, to the deltoid. Notice that the first three curves have the same topology; however, the last
one has a different topology because the considered projective transformation maps some affine points of the deltoid to
points at infinity.

In the following discussion we will assume that the parametrizations Q1(t),Q2(t) are proper, i.e. generically injective;
one can always check whether or not a rational parametrization is proper, and properly reparametrize it in case it is not
proper (see [10]).
2
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Fig. 1. From left to right: a deltoid, and its images under an isometry, an affine mapping and a projective transformation.

Suppose now that we are given two rational curves Ci, properly parametrized byQi(t), i = 1, 2, and that f is a projective
equivalence between Ci. Since each Qi(t) is proper by assumption, Q−1

i exists for i ∈ {1, 2}. Thus, there exists a Möbius
transformation ϕ,

ϕ(t) =
at + b
ct + d

, ad − bc ̸= 0

aking the following diagram commutative

C1
f
→→ C2

R

Q1

↑↑

ϕ
→→ R

Q2

↑↑
(5)

Notice that the existence of ϕ follows from the fact that both f ◦Q1 and Q2 are proper parametrizations of C2; thus, they
an differ only in a Möbius transformation (see [10]). We say that ϕ is associated with f . In particular,

f ◦ Q1 = Q2 ◦ ϕ. (6)

.2. µ-bases of rational curves

In this section we shall present the definition and properties of µ-bases for (n + 1)-polynomials in R[t], the ring of
polynomials in one variable with real coefficients (see [4]).

In order to do this, let C ⊂ Rn be a rational curve, not a line, and let Q(t) be a proper parametrization of C as in Eq. (4).
Let (q1(t), . . . , qn+1(t)) be the vector which results from collecting the components in Eq. (4). Also, let syz(q1, . . . , qn+1)
be the syzygy module consisting of all the vectors of polynomials

u(t) = (p1(t), . . . , pn+1(t))

such that

u(t) · Q(t) = p1(t)q1(t) + p2(t)q2(t) + · · · + pn(t)qn(t) + pn+1(t)qn+1(t) = 0. (7)

The set of these (n+1)-tuples has the structure of a free module syz(Q(t)) over the ring R[t], with n generators (see [1]).
This module is called the syzygy module of Q(t). Furthermore, each element in this module can be identified with a
1-parameter family of hyperplanes in Rn

p1(t)x1 + · · · + pn(t)xn + pn+1(t)xn+1 = 0

with the property that for a fixed t , the corresponding hyperplane in the family has a common point with the curve C,
namely the point Q(t); this follows from Eq. (7). Such family is said to be following the curve C, and is called a moving
hyperplane.

We can write u(t) = (p1(t), . . . , pn+1(t)) as

u(t) =

k∑
i=0

(pi1, . . . , pi(n+1))t i, (8)

where the leading coefficient vector satisfies (pk1, . . . , pk(n+1)) ̸= 0. In the following discussion, we define deg(u) =

max{deg(p1), . . . , deg(pn+1)}, and we denote the vector defined by the leading coefficient of each component of the vector
(pk1, . . . , pk(n+1)) by LV(u).

In Definition 1, we introduce the notion of µ-basis. An equivalent definition is given in Definition 3.

Definition 1. A set of n vector polynomials {u1(t), . . . , un(t)}, with each ui(t) given as in Eq. (8), is called a µ-
basis of the parametrization Q(t) = [q1(t) : q2(t) : · · · : qn(t) : qn+1(t)] or equivalently, a µ-basis of the syzygy module
syz(q , . . . , q ), if
1 n+1

3
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(1) {u1(t), . . . , un(t)} forms a basis of the syzygy module syz(q1, . . . , qn+1). That is, ui(t) ∈ syz(q1, . . . , qn+1) for
i = 1, . . . , n, and any ℓ ∈ syz(q1, . . . , qn+1) can be written uniquely as

ℓ = h1u1 + · · · + hnun, (9)

where hi are polynomials in t .
(2) LV (u1), . . . , LV (un) are linearly independent.

We will assume that the elements u1(t), . . . , un(t) are ordered by increasing degree, i.e.

deg(u1(t)) ≤ · · · ≤ deg(un(t)), (10)

nd we will set µ = deg(u1(t)). The following theorem collects some properties of µ-bases (see [2,4]).

Theorem 2. Let {u1(t), . . . , un(t)} be a µ-basis for Q(t) with deg(u1) ≤ · · · ≤ deg(un). Then,

(1) Every ℓ ∈ syz(q1, . . . , qn+1) can be written as in Eq. (9) with deg(hiui) ≤ deg(ℓ), i = 1, . . . , n.
(2) If v1(t), . . . , vn(t) is a set of polynomials in syz(q1, . . . , qn+1) that are linearly independent over the polynomial ring R[t]

with deg(v1) ≤ · · · ≤ deg(vn), then deg(ui) ≤ deg(vi), i = 1, . . . , n.
(3) If {v1(t), . . . , vn(t)} is another µ-basis for Q(t) with deg(v1) ≤ · · · ≤ deg(vn), then deg(ui) = deg(vi), i = 1, . . . , n.
(4) The outer product of u1(t), . . . , un(t) is equal to c · Q(t) for some non-zero constant c ∈ R − {0}.
(5)

∑n
i=1 deg(ui) = deg(Q).

Remark 1. The generalized outer product operation u1(t)× u2(t)× · · · × un(t) referred to in statement (4) of Theorem 2
corresponds to the value of the determinant whose rows are the components of the ui.

Some of the properties stated in Theorem 2 are used in certain references (see for instance [4]) to give another,
equivalent, definition of a µ-basis, which is provided here.

Definition 3. A set {u1(t), . . . , un(t)} ∈ syz(Q(t)) is called a µ-basis of Q(t) if

u1(t) × u2(t) × · · · × un(t) = c · Q(t), (11)

where c ∈ R − {0} and deg(u1) + · · · + deg(un) = deg(Q).

A µ-basis always exists, and algorithms to compute it have been provided in the literature [1,3,4]. Furthermore, µ-
bases are not unique, but the sequence of degrees in any µ-basis is certainly unique (see statement (3) in Theorem 2). In
particular, given Q(t) and a µ-basis {u1(t), . . . , un(t)}, one can consider the subset {u1(t), . . . , ui0 (t)} of elements of the
µ-basis whose degree is equal to µ = deg(u1(t)): then, from statement (3) in Theorem 2, the number i0 is an invariant for
all µ-bases of Q(t). This observation is essential for the problem treated in this paper. Furthermore, from statement (1)
in Theorem 2, for any other µ-basis of Q(t), and assuming that their elements are ordered by increasing degrees, the first
i0 elements of the new µ-basis must be linear combinations of u1(t), . . . , ui0 (t). We express this property by saying that
the elements {u1(t), . . . , ui0 (t)} are unique up to linear combinations or just unique, for short. Additionally, if i0 = 1 then
u1(t) is unique up to multiplication by a non-zero constant, i.e. any other µ-basis of Q(t) must have u1(t) (or a multiple
of u1(t)) as its first element. We refer to the elements of {u1(t), . . . , ui0 (t)} as the elements of least degree, or smallest
degree, or minimal degree of the µ-basis.

3. Projective equivalences and µ-bases (I): results

The goal of this section is to explore how the projective equivalences between two parametric curves in Rn are inherited
by the elements of smallest degree in their µ-bases. In order to see this, let C1, C2 ⊂ Rn be two rational curves properly
and rationally parametrized by Q1(t),Q2(t), and let f (x) = Ax, as in Eq. (1), be a projective equivalence between C1, C2.
Furthermore, let I = {1, . . . , n}, and let {ui(t)}i∈I , {vi(t)}i∈I be µ-bases of Q1(t), Q2(t), where we assume that the ui(t)
and the vi(t) are given by increasing degree. Furthermore, we set µ1 = deg(u1(t)), µ2 = deg(v1(t)), and we represent by
J1 and J2 the subsets of {1, . . . , n} corresponding to the elements of the µ-bases {ui(t)}i∈I , {vi(t)}i∈I whose degrees are
µ1 and µ2 respectively. Thus, if J1 = {1, . . . , i0} then deg(ui(t)) = µ1 for every i = 1, . . . , i0; analogously for J2.

We first need the following lemma, which is a reformulation of Lemma 2 in [11].

Lemma 4. Let C ⊂ Rn be a rational curve projectively parametrized by Q(t), and let f (x) = Ax be a projective transformation.
Let {ui(t)}i∈I be a µ-basis of Q(t). Then {A−Tui(t)} is a µ-basis of (f ◦ Q)(t).

From Lemma 4, if

{u1(t), . . . , un(t)} (12)

is a µ-basis of Q1(t), which parametrizes C1, then

{A−Tu (t), . . . ,A−Tu (t)} (13)
1 n

4



J.G. Alcázar, C. Hermoso, S. Pérez Díaz et al. Journal of Computational and Applied Mathematics 416 (2022) 114571

t

L

f

B

Q
b
w

R
a

b

t

W

T
a
o
t

is a µ-basis of (f ◦Q1)(t), which parametrizes C2 because f is a projective equivalence between C1 and C2. Since projective
ransformations preserve the degree, we have the following result.

emma 5. If C1 and C2 are related by a projective equivalence, then J1 = J2. In particular, u1(t) is unique if and only if v1(t)
is unique.

Taking Lemma 5 into account, let us set J1 = J2 = J . Now since f is a projective equivalence between C1 and C2, by
Eq. (5) f ◦ Q1 = Q2 ◦ ϕ where ϕ is the Möbius transformation associated with f . In particular, Eq. (13) is a µ-basis of
Q2 ◦ ϕ. Additionally, by Lemma 2 in [6]

{(v1 ◦ ϕ)(t), . . . , (vn ◦ ϕ)(t)} (14)

is also a µ-basis of Q2 ◦ ϕ. Since f ◦ Q1 = Q2 ◦ ϕ, Eqs. (13) and (14) are both µ-bases of Q2 ◦ ϕ.
We distinguish now the cases when J consists of just one element or more than one element. In the first case, by

Lemma 5 both u1(t) and v1(t) are unique.
If v1(t) is unique up to multiplication by a non-zero constant, (v1 ◦ ϕ)(t), as an element of a µ-basis of Q2 ◦ ϕ, is also

unique up to multiplication by a non-zero constant. Recall that Eq. (13) is also a µ-basis of Q2 ◦ ϕ. Furthermore, since
projective transformations preserve the degree, we deduce that A−Tu1(t) is the element of smallest degree in Eq. (13).
And by the uniqueness of the first element in the µ-basis, we get that

A−Tu1(t) = λ(v1 ◦ ϕ)(t) (15)

or some nonzero constant λ. Calling γ =
1
λ
, we deduce that

γA−Tu1(t) = (v1 ◦ ϕ)(t). (16)

ut this implies that the rational curves in Rn defined by u1(t), v1(t) are projectively equivalent, and are related by
the projective transformation g(x) = Bx, where B = γA−T . Moreover, since B represents the matrix of a projective
transformation, we can safely make γ = 1. Thus, we have the following result, which summarizes these ideas.

Theorem 6. Let C1, C2 ⊂ Rn be two rational curves properly and rationally parametrized by Q1(t),Q2(t), and let f (x) = Ax as
in Eq. (1) be a projective equivalence between C1, C2. Furthermore, let I = {1, . . . , n}, and let {ui(t)}i∈I , {vi(t)}i∈I be µ-bases of

1(t), Q2(t). If u1(t), v1(t) are unique up to multiplication by a non-zero constant, then g(x) = A−Tx is a projective equivalence
etween the curves defined by u1(t), v1(t) in Rn. Furthermore, if u1(t) and v1(t) are proper, then the Möbius function associated
ith g coincides with the Möbius function associated with f .

emark 2. Notice that u1(t), v1(t) need not be proper. Still, Eq. (16) implies that the curves in Rn defined by u1(t), v1(t)
re projectively equivalent, and in fact are mapped to each other by g(x) = A−Tx.

Theorem 6 provides the following corollary.

Corollary 7. Suppose that the conditions in Theorem 6 hold. If A is orthogonal, then f (x) = Ax is also a projective equivalence
etween the curves in Rn defined by u1(t), v1(t).

In particular, Corollary 7 implies the following.

Corollary 8. Suppose that the conditions in Theorem 6 hold.

(1) If A represents an isometry f where b = 0, then f is also an isometry between the curves in Rn defined by u1(t), v1(t).
(2) If C1 = C2 = C and A represents a symmetry f of C with a fixed point, then f is also a symmetry of the curve in Rn

defined by u1(t).

Now we consider the case when J consists of more than one element. In this case, {v1(t), . . . , vi0 (t)}, as elements of a
µ-basis of Q2(t), are unique up to linear combinations; similarly for {(v1 ◦ ϕ)(t), . . . , (vi0 ◦ ϕ)(t)} as elements of a µ-basis
of (Q2 ◦ ϕ)(t). Since projective transformations preserve the degree and Eq. (13) is also a µ-basis of Q2(t), we get that
each A−Tuj(t), with j ∈ {1, . . . , i0}, must be a linear combination of {(v1 ◦ ϕ)(t), . . . , (vi0 ◦ ϕ)(t)}, i.e. for j ∈ {1, . . . , i0}
here exist constants λ

(j)
1 , . . . , λ

(j)
i0

such that

A−Tuj(t) = λ
(j)
1 (v1 ◦ ϕ)(t) + · · · + λ

(j)
i0
(vi0 ◦ ϕ)(t). (17)

e summarize these ideas in the following result.

heorem 9. Let C1, C2 ⊂ Rn be two rational curves properly and rationally parametrized by Q1(t),Q2(t), and let f (x) = Ax
s in Eq. (1) be a projective equivalence between C1, C2. Furthermore, let I = {1, . . . , n}, and let {ui(t)}i∈I , {vi(t)}i∈I be µ-bases
f Q1(t), Q2(t). If {u1(t), . . . , ui0 (t)} and {v1(t), . . . , vi0 (t)} are unique up to linear combinations, then for each j ∈ {1, . . . , i0}
here exist constants λ

(j)
, . . . , λ

(j) such that g(x) = A−Tx is a projective equivalence between the curves in Rn defined by u (t)
1 i0 1

5
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and λ
(j)
1 v1(t)+· · ·+λ

(j)
i0

vi0 (t). Furthermore, if u1(t) and λ
(j)
1 v1(t)+· · ·+λ

(j)
i0

vi0 (t) are proper, then the Möbius function associated
ith g coincides with the Möbius function associated with f .

Theorems 6 and 9 are useful because they allow to reduce the search of the projective equivalences between C1 and
2 to the projective equivalences between curves with smaller degrees. Nevertheless, notice that while each projective
quivalence between the Ci gives rise to a projective equivalence between the curves corresponding to elements of
inimal degree in the µ-bases, the converse is not true, i.e. not every projective equivalence between the µ-bases
orresponds to a projective equivalence between the Ci. In other words, we must test the projective equivalences
omputed between the elements of minimal degree of the µ-bases, to check which ones correspond to projective
quivalences between C1 and C2.
Applying Theorems 6 and 9 requires knowing if u1(t), v1(t) are unique or not. In the next section we will characterize

this situation, and we will provide an algorithm to find {ui(t)}i∈J , {vi(t)}i∈J without computing the whole µ-basis. We
nd this section with the following two examples.

xample 1. Let C1, C2 ⊂ R2 be the two planar curves defined by

Q1(t) = [q1(t) : q2(t) : q3(t)], Q2(t) = [r1(t) : r2(t) : r3(t)],

where
q1(t) = −809t7 − 2167t6 − 1734t5 + 490t4 + 2035t3 + 1539t2 + 567t + 79,
q2(t) = −7t7 + 19t6 + 8t5 − 80t4 + 105t3 − 53t2 + 6t + 2,
q3(t) = 2187t7 + 10206t6 + 20412t5 + 22680t4 + 15120t3 + 6048t2 + 1344t + 128

nd
r1(t) = 117t7 − 537t6 + 378t5 − 1115t4 − 480t3 − 876t2 − 434t − 49,
r2(t) = 342t7 − 1467t6 + 1918t5 − 1915t4 + 470t3 − 251t2 + 6t + 81,
r3(t) = 223t7 − 958t6 + 1372t5 − 1360t4 − 170t3 − 719t2 − 456t − 126.

he first element in the µ-basis of Q1(t) is the curve

u1(t) = [87t3 + 154t2 + 106t + 28, −57t3 − 104t2 − 71t − 18, 32t3 − 6t2 − 9t − 17],

nd is unique. The first element in the µ-basis of Q2(t) is the curve

v1(t) = [−29t3 + 81t2 − 3t + 63, 51t3 − 29t2 + 47t − 7, −63t3 − 3t2 − 81t − 29],

which is also unique. Furthermore, both u1(t) and v1(t) are proper parametrizations. The computation, following [8], to
find the projective equivalences g(x) = Ax between u1(t) and v1(t) provides two equivalences, which is expected since
one can check that the curves have symmetries. These projective equivalences correspond to

A1 =

[ 1 −1 −1
1 1 1

−1 1 −1

]
, ϕ1(t) =

t
t + 1

,

and

A2 =

[ 1 −1 1
1 1 −1

−1 1 1

]
, ϕ2(t) =

t + 4
7t + 3

,

here we have also included the Möbius functions in Eq. (6). One can directly check that for i = 1, 2, {fi, ϕi}, with
i(x) = A−T

i x, satisfy Eq. (6), so for i = 1, 2, fi(x) = A−T
i x are projective equivalences between C1 and C2.

xample 2. Let C1, C2 ⊂ R3 be the two space curves defined by

Q1(t) = [q1(t) : q2(t) : q3(t) : q4(t)], Q2(t) = [r1(t) : r2(t) : r3(t) : r4(t)],

where
q1(t) = (t − 1)2(16t6 − 124t5 + 388t4 − 568t3 + 438t2 − 178t + 30),
q2(t) = (t − 1)2(−56t7 + 396t6 − 1148t5 + 1722t4 − 1485t3 + 742t2 − 197t + 21),
q3(t) = −8t8 + 62t7 − 194t6 + 299t5 − 220t4 + 35t3 + 59t2 − 40t + 8,
q4(t) = (16t6 − 74t5 + 96t4 + 15t3 − 124t2 + 101t − 27)(t − 1)2

and
r1(t) = −10t7 + 3t6 + 28t5 − 10t4 + 17t3 − 28t2 − 41t − 39,
r2(t) = t8 − 9t7 + 4t6 + 7t5 + 5t4 + 19t3 − 22t2 − 13t − 40,
r3(t) = t8 − 4t7 − 7t5 + 18t4 + 7t3 + 5t2 − 22t − 22,

8 7 6 5 4 3
r4(t) = t − 9t + 3t + 27t − 15t + 4t − 76t + 17.
6
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In this case, the elements of a µ-basis of Q1(t) with minimal degree are the following two curves of degree two:

u1(t) = [2t2 − 2t + 1, (t − 1)t, (t − 1)(3t − 3), 3t2 − 5t + 2],
u2(t) = [(t − 1)t, −t2 + t + 1, (t − 1)(11t − 6), (t − 1)2],

nd the elements of a µ-basis of Q2(t) with minimal degree are the following two curves, also of degree two:

v1(t) = [5t + 17/2, −7t − 27/2, t2 + 4t + 6, −t2 − 2t − 9/2],
v2(t) = [t2 − 11t − 11, −t2 + 13t + 17, −8t − 6, t2 + 5t + 7].

From Theorem 9 and since u1(t), u2(t) are proper, for every projective equivalence f (x) = Ax between Q1(t) and Q2(t),
with associated Möbius function ϕ, we must have λi, µi ∈ R such that

A−Tui(t) = λi(v1 ◦ ϕ)(t) + µi(v2 ◦ ϕ)(t), (18)

for i = 1, 2. Eq. (18) for i = 1 gives rise to a system whose unknowns are λ1, µ1, the parameters of ϕ and the entries of
the matrix defining a projective transformation between u1(t) and λ1v1(t) + µ1v2(t). However, the system has infinitely
many solutions. But if additionally we consider Eq. (18) for i = 2 too, then the system consisting of all the equations
(i.e. the equations obtained from Eq. (18) for i = 1, 2) has only one solution, which corresponds to

λ1 = 2, µ1 = 1, λ2 = −2, µ2 = −2, ϕ(t) =
t

t − 1
, (19)

nd

A =

⎡⎢⎣ 1 2 0 1
0 1 1 1

−1 0 1 0
1 1 1 0

⎤⎥⎦ . (20)

ne can directly check that f (x) = Ax, with A in Eq. (20), and the ϕ(t) in Eq. (19), satisfy Eq. (6). Thus, f (x) = Ax is a
rojective equivalence between C1 and C2.

. Computing the elements of minimal degree of the µ-basis

In the previous section we saw that the projective equivalences of the curves are somehow captured when we
etermine the projective equivalences between the elements of smallest degree of the µ-bases. Furthermore, we saw
hat the most advantageous case is the case when there is just one element of smallest degree.

In this section we will study the situation when there is just one element of minimal degree. Furthermore, we will
rovide an algorithm to compute the elements of a µ-basis by increasing order. This algorithm allows us to compute only
he elements of minimal degree without computing the whole µ-basis. The procedure provided here is inspired by the
lgorithm given in [3] to compute a µ-basis of the syzygy module of n + 1 polynomials of maximum degree d, in one

variable. The method in [3], whose theoretical computational complexity is O(d2n+ d3 + n2), is based on Linear Algebra,
and differs from other algorithms for computing µ-bases, like [1] or [4]. Let us also mention that the notion of a µ-basis
in [12] is extended to arbitrary univariate polynomial matrices. In [12] one can find an efficient algorithm to compute a
µ-basis for a univariate polynomial matrix, based on polynomial matrix factorization; the computational complexity of
the algorithm is O(dn4

+ d2n3).
In order to do this, we consider a projective parametrization Q(t) with degree deg(Q) = m of a curve C ⊂ Rn.

Furthermore, for simplicity we will consider first the case n = 2, and then we will generalize the results to n ≥ 3.

4.1. The case of plane curves

Let us write deg(Q) = m = 2κ + ℓ, ℓ ∈ {0, 1}, and let {u1(t), u2(t)} be a µ-basis of Q(t) where deg(u1(t)) = µ ≤

deg(u2(t)). Notice that

κ = ⌊m/2⌋. (21)

Furthermore, from statement (5) of Theorem 2 we get that 0 < µ ≤ κ and deg(u2(t)) = m − µ. The following lemma is
proved in [6].

Lemma 10. Let {u1(t), u2(t)} be a µ-basis of Q(t) with deg(u1(t)) ≤ deg(u2(t)).

(1) If deg(u1(t)) < deg(u2(t)), u1(t) is unique up to a nonzero constant scalar.
(2) If deg(u1(t)) = deg(u2(t)), {u1(t), u2(t)} is unique up to a linear combination.

Lemma 10 provides the following corollary, which follows from statement (5) of Theorem 2.
7
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Corollary 11.

(1) If m = 2κ + 1 then u1(t) is unique. Furthermore, deg(u1(t)) < deg(u2(t)) and deg(u1(t)) ≤ κ − 1.
(2) If m = 2κ then u1(t) is unique if and only if deg(u1(t)) ̸= deg(u2(t)), i.e. if and only if deg(u1(t)) < κ .

Now let us see how to compute the elements in the µ-basis by increasing degree. In order to do this, we recall the
notation Q(t) = [q1(t) : q2(t) : q3(t)] and we consider a vector polynomial u(t) = (p1(t), p2(t), p3(t)) with deg(u) = µ,
where

pi = aµitµ + · · · + a0i, i = 1, 2, 3.

We impose the condition that u(t) belongs to the syzygy module syz(q1, q2, q),

0 = q1p1 + q2p2 + q3p3 =

= tµ(q1aµ1 + q2aµ2 + qaµ3) + tµ−1(q1a(µ−1)1 + q2a(µ−1)2 + q3a(µ−1)3) + · · ·

· · · + (q1a01 + q2a02 + q3a03)

(see Eq. (7)). Also, let us write

qi = bmitm + · · · + b0i, i = 1, 2, q3 = bmtm + · · · + b0.

Thus, we get a homogeneous system Sµ with (m+µ+1) equations and 3(µ+1) unknowns (the aij, with i ∈ {0, 1, . . . , µ},
j ∈ {1, 2, 3}). We will write the system Sµ as (Mµ|I) = 0, with

I =
(
aµ1 aµ2 aµ3 a(µ−1)1 a(µ−1)2 a(µ−1)3 · · · a01 a02 a03

)T
,

and

Mµ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 0 0 0 0 0 0 . . . 0 0 0
C | | 0 0 0 . . . 0 0 0

| C | | . . .
...

...
...

| | C | . . .
...

...
...

0 0 0 | | . . . 0 0 0
0 0 0 0 0 0 | . . . |

...
...

...
...

...
...

...
...

... . . . | C
0 0 0 0 0 0 0 0 0 . . . |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

which is an (m + µ + 1) × 3(µ + 1) matrix where C is the (m + 1) × 3 matrix

C =

⎛⎜⎜⎝
bm1 bm2 bm

b(m−1)1 b(m−1)2 b(m−1)
...

...
...

b01 b02 b0

⎞⎟⎟⎠ . (23)

Observe that C , as a box, appears µ + 1 times in the matrix Mµ. If the system (Mµ|I) = 0 has nontrivial solutions, these
solutions provide the coefficients of the vector(s) polynomial(s) with degree equal to µ. In particular, the solution provides
u1(t), when u1(t) is unique, or {u1(t), u2(t)}, when the degree of both elements in the µ-basis is the same. Certainly, a
priori we do not know the value of µ: however, we can set µ := 1, check if the system (Mµ|I) = 0 has nontrivial solutions,
and make µ := µ + 1 in case it does not. Then we recursively repeat this scheme.

Observe that one may consider different approaches for dealing with this recursive search. For instance, let us consider
a planar curve of degree 2κ +1. In this case, generically the lowest degree element of the µ-basis has degree κ . Using the
approach suggested above, one would need to test κ cases starting from degree 1. A binary search would start by testing
degree κ/2. If no syzygy of degree κ/2 is found, then we try the value midway between κ/2 and κ . If a syzygy of degree
κ/2 is found, then we try the value midway between 0 and κ/2, and so on. The speed of this binary search is worst case
O(ln(κ)), whereas the speed of the linear search algorithm starting from degree 1 is worst cast O(κ).

4.2. The case of curves in Rn

In this subsection we deal with the general case of a projective parametrization Q(t) of degree m = deg(Q) of a curve
C ⊂ Rn. In order to do this, let {u1(t), . . . , un(t)}, where deg(u1(t)) ≤ · · · ≤ deg(un(t)), be a µ-basis of Q(t). We denote
µi = deg(ui(t)) for i = 1, . . . , n,

κ = ⌊m/n⌋, (24)

and we write m = nκ + ℓ, where 0 ≤ ℓ < n. First we generalize Lemma 10.
8
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C

Proposition 12. Let {u1(t), . . . , un(t)} be a µ-basis of Q(t) with µ1 ≤ µ2 ≤ · · · ≤ µn, where deg(ui) = µi, i = 1, . . . , n,
and deg(Q) = m = nκ + ℓ, 0 ≤ ℓ < n. The following statements are true.

(1) The number µ1 satisfies that 0 ≤ µ1 ≤ κ .
(2) If µ1 < µ2 then u1(t) is unique up to a nonzero constant scalar
(3) If µ1 = µ2 < µ3 then {u1(t), u2(t)} is unique up to linear combinations.
(4) If µ1 = · · · = µk < µk+1 for some 2 ≤ k ≤ n then {u1(t), . . . , uk(t)} is unique up to linear combinations.
(5) If µ1 = m/n, in which case m = nκ , then µ1 = µ2 = · · · = µn, and {u1(t), . . . , un(t)} is unique up to linear

combinations.

Proof.

(1) From Definition 3 we get that µ1 + · · · + µn = m. If µ1 > κ then for i = 1, . . . , n we have µi ≥ κ + 1. Thus,

m = nκ + ℓ =

n∑
i=1

µi ≥ n(κ + 1),

which is impossible since ℓ < n.
(2) Assume that µ1 < µ2, and suppose that there exists ũ1(t) ̸= u1(t) belonging to a µ-basis of Q(t), with

deg(ũ1(t)) = µ1. Then from Definition 3, u1(t) · Q(t) = 0 and ũ1(t) · Q(t) = 0. But this cannot happen since
deg(ũ1(t)) + µ1 + µ2 + · · · + µn < deg(Q(t)).

(3) Assume that µ1 = µ2, and suppose that there exists another µ-basis different from the basis {u1(t), u2(t), u3(t), . . . ,
un(t)} (although with the same degrees). Let us write this µ-basis as {ũ1(t), ũ2(t), u3(t), . . . , un(t)}. By the definition
of a µ-basis, it holds that ũ1(t) =

∑n
i=1 αi(t)ui(t) with µ1 = µ2 < µ3, and that the leading vectors LV (ui) of

ui(t), i = 1, . . . , n linearly independent. Hence αj = 0, j = 3, . . . , n, i.e. ũ1(t) = α1(t)u1(t) + α2(t)u2(t). Similarly,
one also has that ũ2(t) = β1(t)u1(t)+β2(t)u2(t). According to the properties of a µ-basis, deg(ũ1(t))+µ2+· · ·+µn =

m and ũ1(t)×u2(t)×· · ·×un(t) = (α1(t)u1(t)+α2(t)u2(t))×u2(t)×· · ·×un(t) = α1(t)u1(t)×u2(t)×· · ·×un(t) =

α1(t)Q(t). Since deg(ũ1(t)×u2(t)×· · ·×un(t)) ≤ m one gets that α1(t) ∈ K. Analogously for the other coefficients.

Thus (ũ1(t) ũ2(t))T =

(
α1 α2
β1 β2

)
(u1 u2)T where the coefficient matrix is a nonsingular constant matrix.

(4) We argue as in statement (3) for {u1(t), . . . , uk(t)}.
(5) Let µ1 = m/n. We know that µ2 ≥ µ1, so assume that µ2 > µ1 = m/n. Since µj ≥ µ2 for j = 3, . . . , n, we get that

µ1 + µ2 + · · · + µn =
m
n

+ µ2 + · · · + µn > n ·
m
n

= m,

which cannot happen because µ1 + · · · + µn = m. Arguing analogously for the other µj and using statement (4),
the result follows. □

Proposition 12 provides the following corollary, equivalent to Corollary 11.

orollary 13. If m = nκ + ℓ, 0 < ℓ < n, κ ≥ 0, then there exists i0 ∈ {1, . . . , n − 1} such that µ1 = · · · = µi0 <

µi0+1 ≤ · · · ≤ µn and µj ≤ κ − 1 for j ∈ {1, . . . , i0}. Furthermore, {u1(t), . . . , ui0 (t)} is unique up to a linear combination. In
particular, if i0 = 1 then u1 is unique up to a nonzero constant scalar.

Now let us see how to compute the elements of a µ-basis by increasing order. We proceed as in Section 4.1, i.e. we
consider an unknown polynomial vector u(t) = (p1(t), . . . , pn+1(t)) with deg(u) = µ, where

pi = aµitµ + · · · + a0i, i = 1, . . . , n + 1,

and we impose the condition

0 = q1p1 + q2p2 + · · · + qn+1pn+1 =

= tµ(q1aµ1 + q2aµ2 + · · · + qn+1aµ(n+1)) + tµ−1(q1a(µ−1)1 + q2a(µ−1)2 + · · · + qn+1a(µ−1)(n+1)) + · · ·

· · · + (q1a01 + q2a02 + · · · + qn+1a0(n+1))

(see Eq. (7)), with

qi = bmitm + · · · + b0i, i = 1, . . . , n, qn+1 = bmtm + · · · + b0.

This way we get an homogeneous system Sµ with m+ µ + 1 equations and (n+ 1)(µ + 1) unknowns (aij), which can be
written as (Mµ|I) = 0, where

I =
(
a · · · a a · · · a · · · a · · · a

)T
,
µ1 µ(n+1) (µ−1)1 (µ−1)(n+1) 01 0(n+1)

9
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Mµ is an (m+µ+ 1)× (n+ 1)(µ+ 1) matrix with a structure analogous to Eq. (22), and C is the (m+ 1)× (n+ 1) matrix

C =

⎛⎜⎜⎝
bm1 bm2 · · · bm

b(m−1)1 b(m−1)2 · · · b(m−1)
...

...
...

b01 b02 · · · b0

⎞⎟⎟⎠ .

Note that C appears µ + 1 times in the matrix Mµ.
As in Section 4.1, the nontrivial independent solutions of the linear system (Mµ|I) = 0 with µ = µ1 provide the

coefficients of the vector polynomials in {u1(t), . . . , ui0 (t)}. Also as in Section 4.1, a priori we do not know the value of
µ. Thus, we start fixing µ := 1, and check whether or not (Mµ|I) = 0 has nontrivial solutions. If it has trivial solutions,
we set µ := µ + 1 and start again.

5. Projective equivalences and µ-bases (II): computation

In the previous sections we have not really provided a new approach, alternative to those in [7–9], to compute
projective equivalences: rather, we have shown that in order to carry out the computation, we can replace the original
curves by other curves of smaller degree. In this section we want to show how this replacement can benefit the
computations when one uses the approaches in [7–9]. In order to do this, recall that we denote by m the degrees of
the projective parametrizations Q1(t),Q2(t) of the curves C1, C2 ⊂ Rn whose projective equivalences we want to find.
The general idea is that in all the cases, computing the projective equivalences is carried out by solving a polynomial
system whose degree is strongly related to the degree of the parametrizations involved [7,8] or by factoring a polynomial
whose computation also depends on the degrees of the curve parametrizations [9].

5.1. Using the algorithm in [8]

In [8] one has a particularly detailed study of the degrees involved in the computations, which is useful to show how
the results in this paper can help to simplify the process. The idea in [8] is essentially to use Eq. (6), which writing
f (x) = Ax gives rise to

AQ1(t) = Q2(ϕ(t)).

This equation leads to a system of polynomial equations which is linear in the entries of the matrix A, and nonlinear in
the coefficients of the Möbius transformation ϕ. By writing the entries of A in terms of ϕ, using the remaining equations
in the system and exploiting the structure, we arrive (see Section 3.2 in [8]) to a polynomial system, which can be solved
by using Gröbner bases, with the following features:

• Number of coefficients: 5 (the coefficients of the Möbius transformation plus one extra variable).
• The system contains 1 equation of degree (m − n)(n + 1) + 1.
• The system contains (m − n)(n + 1) equations of degree m.

In our case, using Theorems 6 and 9 in Section 3 we can transfer the problem to computing projective equivalences
between the elements {u1(t), . . . , ui0 (t)} and {v1(t), . . . , vi0 (t)} of smallest degree of two µ-bases of Q1(t) and Q2(t). These
elements can be computed by using the results in Section 4, which rely on elementary Linear Algebra, and are, therefore,
computationally cheap.

The most advantageous case arises when i0 = 1. In that case, the problem essentially reduces to computing the
projective equivalences between the curves defined by u1(t) and v1(t). From statement (1) in Proposition 12, the degree
of both u1(t) and u2(t) is bounded by κ = ⌊m/n⌋, so when applying the algorithm in [8] we move from polynomials of
degree m to polynomials of degrees bounded by m/n, resulting in a simpler polynomial system. In more detail, in this
case, following [8], we need to solve a polynomial system with the following features:

• Number of coefficients: 5 (the coefficients of the Möbius transformation plus one extra variable).
• The system contains 1 equation of degree bounded by

(κ − n)(n + 1) + 1.

• The system contains at most

(κ − n)(n + 1)

equations of degree κ .

When i0 ≥ 2, the problem can be transferred to the computation of the projective equivalences between, say, u1(t), and
an unknown linear combination of v1(t), . . . , vi0 (t). Thus, again following [8], the coefficients of this linear combination,

which are the coefficients λ1, . . . , λi0 on the right hand-side of Eq. (17) must also be included as unknowns of the

10
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polynomial system that we need to solve. Thus, the number of unknowns increases from 5 to 5+ i0, although the degree
f the polynomials involved in the computation decreases due to the fact that the degree of u1(t) and of v1(t), . . . , vi0 (t)
s bounded by κ = ⌊m/n⌋. So depending on the size of i0,m, n we may or may not have an advantage. In more detail, in
this case we have:

• Number of coefficients: 5+i0
• The system contains 1 equation of degree bounded by

(κ + 1 − n)(n + 1) + 1.

• The system contains at most

(κ − n)(n + 1)

equations of degree κ + 1.

5.2. Using the algorithms in [7,9]

In [7] the projective equivalences between the curves are computed by first determining the projective equivalences
between finite point sets corresponding to stall points, namely points in the curves where the osculating hyperplane has
contact higher than expected. These stall points are captured as the roots of homogeneous forms of degrees (m−n)(n+1).
n [9], the authors address projective equivalences of space curves by means of differential invariants. In this case the
rojective equivalences are computed by factoring a gcd of two polynomials whose degrees are, roughly, linear functions
n the degree m of the curves involved in the computations.

If there is a unique element of minimal degree in the µ-bases of the curves, in these two approaches we move from
egree m to degree κ . The case when there is more than one element of minimal degree is still an advantage in the case
f [7], since the polynomial system that needs to be solved has a smaller degree. In the case of [9] this is not so useful,
ince the algorithm in [9] requires to compute a gcd, which would be more complicated in the presence of the extra
arameters λ1, . . . , λi0 .

.3. Further experiments

In this subsection we report on experiments carried out in Maple with plane and space curves of higher degree. Some
f the results of our experiments are shown in Table 1, where we provide the timings for seven plane curves, and seven
pace curves of various degrees. The description of the columns in Table 1 is as follows: ‘‘Deg’’. is the degree of the curves;
µ is the number of curves of least degree in the µ-bases (notice that Nµ = 1 implies that the element of least degree in
he µ-basis of each curve is unique); Dµ is the smallest degree in the µ-basis; # is the number of computed equivalences;
1 is the timing in seconds for computing projective equivalences without using µ-bases; tµ is the timing in seconds for
omputing the curves of smallest degree in the µ-bases of the curves; t2 is the timing in seconds of the computation
f equivalences using µ-bases, i.e. applying our ideas. Finally, ‘‘Imp’’. is the percentage of improvement by applying our
lgorithm, which is computed in the following way: if t1 > 120 we interrupt the computation, in which case we set
mp = 100; if t1 ≤ 120, we set

Imp =
t1 − (tµ + t2)

t1
· 100.

The parametrizations used in the examples can be found in the webpage of one of the authors [13]; furthermore, in
he same webpage one can find Maple sheets corresponding to two of the examples in Table 1. For planar curves we
mplemented a simplified version of the algorithm in [8]; for space curves we used the implementation in [9], which
s publicly available, except for Example 11, where we implemented the algorithm in [7], which is better suited for
arameters. In all the cases we used the same algorithm for t1 and t2.
In Table 1 one can see that the benefit of using µ-bases is, in general, higher as the degree of the curves increases;

n particular, the six examples shown in red correspond to examples whose execution we stopped after 120 s without
sing µ-bases, but that could be computed with the help of µ-bases. For curves of small degree, which do not appear in
able 1, existing algorithms for computing projective equivalences are fast and the benefit of using µ-bases is small or
ven non-existent, since we also need to compute the elements of minimal degree in the µ-bases.
Some facts worth mentioning that we observed in our experimentation were the following:

• When the element of smallest degree in the µ-basis is unique, using µ-bases is generally an advantage, an in
some cases, as shown in Table 1, it allows us to perform a computation which is very costly to complete without
this tool. Something that can happen, though, which we observed when picking random parametrizations, is that
the coefficients of the µ-basis can be very big even for parametrizations of small coefficients. In several cases the
advantage is kept despite of this, but in certain cases it can be lost.
11
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Table 1
Experiments.
Ex. Plane/Space Deg. Nµ Dµ # t1 tµ t2 Imp.

1 Plane 18 2 9 1 11.109 2.875 7.000 11.11%
2 Plane 27 1 13 1 21.032 2.297 5.359 63.60%
3 Plane 32 2 16 0 16.750 2.641 7.328 40.48%
4 Plane 39 1 19 1 > 120 5.734 16.969 100%
5 Plane 45 1 22 2 30.672 3.359 7.031 66.12%
6 Plane 59 1 19 1 > 120 6.797 95.969 100%
7 Plane 64 2 32 2 > 120 5.407 32.703 100%
8 Space 23 1 7 1 3.547 2.719 0.562 7.50%
9 Space 23 2 5 0 > 120 4.156 1.120 100%
10 Space 40 1 12 1 18.813 3.782 5.781 49.17%
11 Space 41 1 8 2 7.000 2.672 1.875 35.04%
12 Space 54 1 18 1 24.250 4.719 8.797 44.26%
13 Space 64 1 22 1 > 120 3.109 38.203 100%
14 Space 95 1 31 1 > 120 5.781 90.468 100%

• When the element of smallest degree in the µ-basis is not unique, the polynomial system that we need to solve has
more unknowns. If there are two elements of smallest degree the advantage can still be kept, but not always. For
three or more elements the system is, in general, too complicated, and is better not to use µ-bases.

• One can use µ-bases repeatedly, i.e. one can transfer the computation of the projective equivalences to the elements
of smallest degree, and in turn transfer the computation of the projective equivalences of the latter to their own µ-
bases, etc. We did not take this into account in our experimentation, but that is certainly possible. Of course, the
most advantageous case is the one when there is repeatedly a unique element of minimal degree in the µ-basis.

• Another limitation of the method is that if the elements of minimal degree in the µ-bases have very low degree
(lines, for instance), then they have infinitely many projective equivalences, which is not really useful to compute
the projective equivalences between the original curves.

6. Conclusion

We have shown that projective equivalences between two curves in Rn give rise to projective equivalences between
he curves defining the elements of minimal degree of the µ-bases of the curves. If there exists just one element
ith minimal degree in the µ-bases, the projective transformations between the curves can be recovered from the
rojective transformations between the curves defined by these elements of minimal degree. Otherwise, the projective
ransformations between the curves can be recovered from the projective transformations between the curves defined by
he elements of minimal degree of one of the curves, and linear combinations, with coefficients to be determined, of the
lements of minimal degree of the other curve. On the computational side we have also shown how our results can help
o seriously reduce the cost of computing projective equivalences between two curves in certain cases.

It is natural to wonder about the extension of these results to surfaces. Although µ-bases of rational surfaces do
xist [14], the case of surfaces has not yet been completely well-understood. In particular, unlike curves, algorithms
or computing µ-bases of surfaces are not simple except for some particular cases (ruled surfaces [15,16], quadric
urfaces [17], surfaces of revolution [18], cyclides [19]). Also, the properties satisfied by the degrees of the elements
f the µ-bases in the case of curves do not extend to the case of surfaces [14].
Although the extension of our results to surfaces is desirable, such an extension is not direct, and requires further

esearch. On the one hand, it is still unclear whether the fact that certain properties of µ-bases of curves do not generalize
o surfaces is an obstacle for generalizing our results. On the other hand, while in the case of curves we need to
onsider birational transformations of the line, for surfaces we need to consider birational transformations of the plane.
hese transformations are called Cremona transformations, and their structure is much more complicated than Möbius
ransformations. Additionally, it is not clear whether the notion of uniqueness that we have for µ-bases of curves can be
xtended to surfaces.
It should also be noted that the reduction approach of µ-bases could be loosely related to the reduction method in

he recent paper [20], extending an earlier paper [21], for computing projective equivalences between rational surfaces.
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