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Abstract  
 
In hybrid structures, made of elastically restrained concrete members, the state of 
stress and strain due to load or imposed deformation is significantly influenced by 
the delayed deformation of concrete. The structural analysis of such complex 
structural arrangements can be approached in general form by means of the 
Reduced Relaxation Function Method (RRFM), or in an approximate form, 
according to the Trost-Bazant algebraic Age Adjusted Effective Modulus Method 
(AAEMM). This way of operating, suggested by various Codes, leads to the 
solution of linear algebraic systems for point elastic restraints and linear 
differential equations for distributed elastic restraints. In any case, the related 
computations are tedious, as we have to work in a pseudo-elastic domain with 
imposed deformation depending on the initial stress. In the present paper, an 
alternative procedure, based on a theorem proven by the first of the authors, is 
discussed. This approach allows the AAEMM procedure to be reduced to a 
convenient combination of linear elastic problems. Some case studies, regarding 
outstanding hybrid structures, will point out the effectiveness and the feasibility of 
the proposed approach.  
 

1 INTRODUCTION 

In the last three decades, hybrid structures have become very popular and nowadays they 
represent a reference point in modern structural engineering. Hybrid structures generally consist of 
two interacting parts, made of different materials, in particular reinforced or prestressed concrete and 
structural steel. The restraints connecting the two parts can be various, in particular point or 
distributed. The first type regards structures composed by two different homogeneous materials 
mutually connected by means of localized elastic restraints. The shear-resisting systems in tall 
buildings, collaborating with steel frames or trusses, belong to this category , Figure 1a); more 
examples are represented by reinforced concrete frames containing steel members of large 
dimension introduced in order to increase structural stiffness, Figure 1b); or by steel frames working 
as a supports for structures of complex architectural shape, collaborating with shear resisting concrete 
cores, Figure 1c). 
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Figure 1:  a) Tall building shear restraint core and steel frame b) Concrete frames with large steel 
elements c) Steel frames collaborating with shear resisting concrete cores 

For these structural types, the structural role of each part is clearly defined, as each one is able to 
counterbalance action effects. Hybrid structures of different nature can be observed when one of the 
two parts can counterbalance only special sets of actions, in particular the ones deriving from the 
interaction with the other structural part. In this case, the first part acts as a restraint on the second 
one. This category includes the outstanding case of cable-stayed bridges, Figure 2, in which the stays 
act as a system of internal elastic restraints connecting the antenna and the deck. 
 

            

Figure 2: Cable-stayed Bridge 

Other interesting examples are the continuous reinforced or prestressed concrete beams 
supported by elastic restraints, e.g. the decks of arch bridges, Figure 3. 

  

       

Figure 3: Deck of r.c. arch bridge 

Besides the examples now discussed, other hybrid structures with distributed elastic restraints are 
of relevant importance. At this regard, we can remember composite steel-concrete columns and 
beams, Figure 4. For the columns, the restraint between concrete and steel can be assumed rigid, 
provided by bonding and by connecting devices. For composite beams, the connection between the 
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two parts is provided by special, elastically deformable connectors, so that they can be assimilated to 
hybrid structures with distributed elastic restraints.  
 

  

Figure 4: Composite steel-concrete columns and beams 

Another example of this type is represented by prestressed concrete members with grouted 
tendons, Figure 5. In these arrangements, the ordinary reinforcement and the prestressing cables can 
be regarded as distributed elastic restraints.  
 

  

Figure 5: P.c. members 

Finally, an interesting example is the slab resting on an elastic soil, Figure 6, in which a set of piles 
with specified elastic stiffness has been introduced. In this case, the system of the elastic restraints is 
both distributed and concentrated. In hybrid structures, the non-homogeneous behaviour of the two 
collaborating parts generates a significant redistribution of stress accompanied by a pronounced 
variation of strain and displacements, which have to be carefully evaluated.  
  

      

Figure 6: Slab resting on elastic soil and piles 
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 In the following, the solution of the problem related to the evaluation of the state of stress and 
deformation in hybrid structures subjected to sustained loads will be discussed. The general approach 
based on the application of FFRM will be briefly outlined, while the approximate approach based on 
Trost-Bazant approach, applied according to the procedure derived from the Fundamental Theorem 
stated by the author, will be discussed in detail. Some case studies will illustrate the feasibility of the 
proposed approach. 
 

2 LONG TERM ANALYSIS OF HYBRID CONCRETE –STEEL STRUCTURES 

2.1 General Approach 

In hybrid structures with point elastic restraints, applying the force method, the two collaborating 
parts are made independent, pointing out the vector Xሺtሻ of the mutual reactions at time t, Figure 7a). 
An analogous procedure can be followed also for distributed restraints, Figure 7b).   

 

 
 

 

Figure 7: Force method, point and distributed restraints  

In this case the mutual reaction is represented by the function x(z, t), so that indicating by Xሺtሻ the 
vector of the concentrated reactions acting on a small length ∆z, the i-th component of Xሺtሻ is defined 
by the relationship X୧ሺtሻ ൌ xሺz୧, tሻ ∙ ∆z. When external loads constant in time are applied, the 
compatibility equation can be written in the following way: 

 

׬ ቂFୡ ∙ Eୡሺt଴ሻ ∙ Jሺt, tᇱሻ ൅ Fୱቃ ∙ dXሺt′ሻ
୲
଴ ൅ δୡ଴ ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ ൌ 0     (1) 

  
In eq. (1) Fୡ	, Fୱ are respectively the elastic flexibility matrices of the two parts and δୡ଴ is the vector 

of the elastic displacements produced by the external loads. Fୡ	, 	δୡ଴ are calculated referring to the 

modulus Eୡሺt଴ሻ. 
At initial time t0 the structure behaves in the linear elastic field, so eq. (1) becomes: 
 

ቀFୡ ൅ Fୱቁ ∙ X଴ ൅ δୡ଴ ൌ 0         (2) 

 
where X଴ ൌ Xሺt଴ሻ is the initial value of the unknown vector Xሺtሻ. 
From eq. (2) we derive: 
 

X(t) 

zi 

z 

Xi (t) 

x (zi, t) 

a) 

b) 
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X଴ ൌ െቀFୡ ൅ Fୱቁ
ିଵ
∙ δୡ଴         (3) 

 
Introducing the matrices: 
 

D ൌ ቀFୡ ൅ Fୱቁ
ିଵ
∙ Fୡ			; 			I െ D ൌ ቀFୡ ൅ Fୱቁ

ିଵ
∙ Fୱ      (4) 

 
with I unit matrix, eq. (1) assumes the following form: 

 

׬ ቂD ∙ Eୡሺt଴ሻ ∙ Jሺt, tᇱሻ ൅ I െ Dቃ ∙ dXሺt′ሻ
୲
଴ ൌ X଴ ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ     (5) 

 
Let us define the linear transformation: 
 
X ൌ K ∙ Y           (6) 

 
with K modal matrix of D. Substituting eq. (6) in eq. (5) we can derive: 

 

׬ ቂΩ ∙ Eୡሺt଴ሻ ∙ Jሺt, tᇱሻ ൅ I െ Ωቃ ∙ dYሺt′ሻ
୲
଴ ൌ I ∙ Y଴ ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ     (7) 

 
where 
 
Ω ൌ Kିଵ ∙ D ∙ K          (8) 

is the modal matrix of D. Matrix Ω is diagonal and allocates along the principal diagonal the 

eigenvalues of matrix D. 

Consequently, the system of Volterra integral equations (7) is diagonal and the components Yi(t) of 
the vector Y are uncoupled. 

In order to solve system (7) we introduce the diagonal matrix J∗ሺt, t଴ሻ of the Varied Creep Functions 

by means of the following equality: 
 
Eୡሺt଴ሻ ∙ J∗ሺt, t଴ሻ ൌ Ω ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ ൅ I െ Ω       (9) 

 
from which: 
 
I ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ ൌ Ωିଵ ∙ Eୡሺt଴ሻ ∙ J∗ሺt, t଴ሻ ൅ I െ Ωିଵ      (10) 

 
and eq. (7) can be written in the following form: 
 

׬ Eୡሺt଴ሻ ∙ J∗ሺt, tᇱሻ ∙ dYሺt′ሻ
୲
଴ ൌ ൤Ωିଵ ∙ Eୡሺt଴ሻ ∙ J∗ሺt, t଴ሻ ൅ I െ Ωିଵ൨ ∙ Y଴    (11) 

 
Introducing the diagonal matrix R∗ሺt, t଴ሻ of the Reduced Relaxation Function 1, solution of the 

subsequent set of uncoupled Volterra integral equations: 
 

׬
பୖ∗ሺத,୲ᇱሻ

பத
∙

୲
଴ J∗ሺt, τሻ ∙ dτ ൌ I         (12) 

 
the solution of eq. (11), according to McHenry principle of superposition 2,assumes the form: 
 

Yሺtሻ ൌ Ωିଵ ∙ ൤I ൅ ቀΩ െ Iቁ ∙
ୖ∗ሺ୲,୲బሻ

୉ౙሺ୲బሻ
൨ ∙ Y଴        (13) 

 
From eq. (13), remembering eq. (6), we finally obtain: 
 



Franco Mola 

  6
  

X ൌ K ∙ Ωିଵ ∙ ൤I ൅ ቀΩ െ Iቁ ∙
ୖ∗ሺ୲,୲బሻ

୉ౙሺ୲బሻ
൨ ∙ Kିଵ ∙ X଴       (14) 

 
Eq. (14) is the general form of the reaction vector Xሺtሻ. This form, in the uncoupled expression 

(13), shows that the reactions Yi(t) increase in time, as the components R୧୧
∗ ሺt, t଴ሻ Eୡሺt଴ሻ⁄  of the 

diagonal matrix R∗ሺt, t଴ሻ are functions monotonically decreasing in time and the eigenvalues ii lie at 

the interior of the interval 0  ii  1. These properties are illustrated in Figure 8 where the functions 
௖ଶ଼ܧ ∙ ௜௜ܬ

∗ ሺݐ, ܴ௜௜		଴ሻ;ݐ
∗ ሺݐ, ଴ሻݐ ⁄௖ଶ଼ܧ  are reported for various values of ii . 

 
Figure 8: J* and R* functions 

 
The application of the (RRFM) is quite complex as the determination of the eigenvalues of D 

requires long and time-consuming computations. For this reason, when the number of unknowns is 
large, the method becomes too complicate. As an example in Figure 9, the results related to a cable 
stayed bridge 3, involving seven unknowns are illustrated. 

  
 

 
 

 

Figure 9: Cable-stayed bridge (from Ref. [3]) 
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2.2 Trost-Bazant algebraic formulation  

In order to simplify the structural analysis, Trost 4 introduced the hypothesis of a linear relationship 
between the deformation (t) of concrete and the creep coefficient (t,t0), according to the following 
expression: 

 
εሺtሻ ൌ a ൅ b ∙ φሺt, t଴ሻ          (15) 

 
with a, b arbitrary constants. 
As φሺt, t଴ሻ ൌ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ െ 1 , eq. (15) can be written in the equivalent form: 
 
εሺtሻ ൌ ሺa െ bሻ ൅ b ∙ Eୡሺt଴ሻ ∙ Jሺt, t଴ሻ        (16) 

 
From eq. (16), remembering the basic theorems of linear viscoelasticity 5, for the state of stress we 

write: 
 
σሺtሻ ൌ ሺa െ bሻ ∙ Rሺt, t଴ሻ ൅ b ∙ Eୡሺt଴ሻ        (17) 

 
From eq. (15) we derive εሺt଴ሻ ൌ a ൌ σሺt଴ሻ Eୡሺt଴ሻ⁄ , so that eq. (17) can be written: 
 

σሺtሻ ൌ σሺt଴ሻ ∙
ୖሺ୲,୲బሻ

୉ౙሺ୲బሻ
൅ b ∙ ሾEୡሺt଴ሻ െ Rሺt, t଴ሻሿ       (18) 

 
From eq. (18) we so obtain: 
 

b ൌ
஢ሺ୲ሻି஢ሺ୲బሻ∙

౎ሺ౪,౪బሻ
ుౙሺ౪బሻ

୉ౙሺ୲బሻିୖሺ୲,୲బሻ
          (19) 

 
and combining eq. (19) and eq. (15) we can finally write: 
 

εሺtሻ ൌ σሺtሻ ∙
஦ሺ୲,୲బሻ

୉ౙሺ୲బሻିୖሺ୲,୲బሻ
൅

஢ሺ୲బሻ

୉ౙሺ୲బሻ
∙ ቂ1 െ

ୖሺ୲,୲బሻ∙஦ሺ୲,୲బሻ

୉ౙሺ୲బሻିୖሺ୲,୲బሻ
ቃ      (20) 

 
Introducing the function (t,t0) 

6, by means of the following expression: 
 

χሺt, t଴ሻ ൌ
ଵ

ଵି
౎ሺ౪,౪బሻ
ుౙሺ౪బሻ

െ
ଵ

஦ሺ୲,୲బሻ
         (21) 

 
eq. (20), after simple algebraic transformations, can be written in its final form: 
 

εሺtሻ ൌ
஢ሺ୲ሻ

୉ౙሺ୲బሻ
∙ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ ൅

஢ሺ୲బሻ

୉ౙሺ୲బሻ
∙ φሺt, t଴ሻ ∙ ሾ1 െ χሺt, t଴ሻሿ    (22) 

 
Introducing in eq. (22) the equalities: ߝሺݐሻ ൌ ;ߝ ሻݐሺߪ	 ൌ ;ߪ ଴ሻݐሺߝ	 ൌ ;଴ߝ ଴ሻݐሺߪ	 ൌ ଴ሻݐ௖ሺܧ	;଴ߪ ൌ  ௖ andܧ

neglecting for the various functions to write the dependence on t, t0, the following straightforward 
relationship can be written: 

 
ε ൌ

஢

୉ౙ
∙ ሾ1 ൅ χ ∙ φሿ ൅

஢బ
୉ౙ
∙ φ ∙ ሾ1 െ χሿ        (23) 

 
giving at time t0 the elastic form: 
 
ε଴ ൌ

஢బ
୉ౙ

           (24) 

 
Eqs. (23) – (24) can be immediately extended to force – displacement relationship. In particular for 

a force F(t), applied at the abscissa zi, the associate displacement s, evaluated for a prescribed 
direction at the abscissa zj, assumes the form: 

 
s ൌ F ∙ δ୨୧ ∙ ሺ1 ൅ χ ∙ φሻ ൅ F଴ ∙ δ୨୧ ∙ φ ∙ ሺ1 െ χሻ       (25) 
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where ji is the elastic influence coefficient representing the elastic displacement at z = zj produced 

by a unit force F = 1 applied at z = zi. 
The application of eq. (25) to the problem of Figure 7 drives to the linear algebraic system: 
 

ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X ൅ Fୡ ∙ φ ∙ ሺ1 െ χሻ ∙ X଴ ൌ െδୡ଴ ∙ ሺ1 ൅ φሻ     (26) 

 
and for t = t0: 
 

ቀFୡ ൅ Fୱቁ ∙ X଴ ൌ െδୡ଴          (27) 

 
Remembering eq. (4) for the vector X we obtain: 
 

X ൌ ൤I ൅ ቀI ൅ D ∙ χ ∙ φቁ
ିଵ
∙ φ ∙ ቀI െ Dቁ൨ ∙ X଴       (28) 

 
As we can observe, from the results of the example of Figure 9, eq. (28) exhibits a very good level 

of approximation and can be adopted in structural engineering as suggested by the Codes 7, 8. 
Despite its apparent simplicity, nonetheless eq. (28) requires to take into account the initial conditions 
of the problem, so that when the number of the unknowns is large, e.g. in problems with distributed 
restraints, the application of eq. (28) becomes tedious and time consuming. In order to make simpler 
the application of eq. (28), in the following will be discussed the criteria allowing to reach this goal. 

 

2.3 Alternate form for the application of Trost-Bazant approach: the Fundamental Theorem 

The alternate procedure for the application of eq. (25) is based on a theorem discovered by the 
first author 9, oriented to define a more convenient form to compute the displacement at first member 
of eq. (25), without modifying the related approximation level. For this we can observe that the 
displacement of eq. (25) can be regarded as sum of the following two contribution: 

- the displacement: 
 

sଵ ൌ F ∙ δ୨୧ ∙ ሺ1 ൅ χ ∙ φሻ         (29) 
 
produced by the force F at time t, calculated in the elastic stage assuming the varied elastic 

modulus Eୡᇱ ൌ Eୡሺt଴ሻ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ⁄ ; 
 
- the displacement: 
 
sଶ ൌ F଴ ∙ δ୨୧ ∙ φ ∙ ሺ1 െ χሻ         (30) 

 
produced by the force F calculated at time t0. 
For this second contribution we can assume the following form: 
 
sଶ ൌ μ ∙ s଴ ൅ λ ∙ sଵ଴          (31) 

 
where s0 is the elastic displacement F଴ ∙ δ୨୧ evaluated at t = t0 assuming the elastic modulus Ec(t0) 

and s10 is the elastic displacement produced by the force F0, calculated assuming the varied elastic 
modulus Eୡᇱ ൌ Eୡሺt଴ሻ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ⁄  . ,  are two functions of t,t0 to be determined. 

It is immediate to observe that: 
 
sଵ଴ ൌ s଴ ∙ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ        (32) 

 
and introducing eq. (31) in eq. (30) we obtain: 
 
F଴ ∙ δ୨୧ ∙ ൣμ ൅ λ ∙ ൫1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻ൯൧ ൌ F଴ ∙ δ୨୧ ∙ φሺt, t଴ሻ ∙ ሾ1 െ χሺt, t଴ሻሿ    (33) 
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Eq. (33) expresses the equality of two first degree polynomials in the variable (t,t0). This equality 
postulates the equality of the related coefficients. From eq. (33) we consequently derive: 

 
μ ൅ λ ൌ 0; 			λ ∙ χ ൌ 1 െ χ         (34) 

 
or 
 
λ ൌ

ଵି஧

஧
; 			μ ൌ െλ ൌ െ

ଵି஧

஧
         (35) 

 
Introducing the second of eqs. (35) in eq. (30) and remembering eq. (29) for the displacement we 

can write: 
 
s ൌ sଵ ൅ μ ∙ ሺs଴ െ sଵ଴ሻ          (36) 

 
Eq. (36) is very suitable for application as it allows the displacements to be obtained by means of 

two elastic computations. Eq. (36) can be furtherly simplified when the applied load is constant in 
time. In this case F = F0 so that eq. (36) becomes: 

 
s ൌ sଵሺ1 െ μሻ ൅ μ ∙ s଴          (37) 

  
eqs. (36) – (37) allow to obtain the solution of the problem, computing the vector X by means of a 

simple elastic analysis. Referring to the general case of eq. (36), the compatibility equation for the 
vector X assumes the form. 

 

							ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X ൅ μ ∙ Fୡ ∙ X଴ െ μ ∙ Fୡ ∙ ሺ1 ൅ χ ∙ φሻ ∙ X଴ ൅ δୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ 

൅μ ∙ δୡ଴ െ μ ∙ δୡ଴ ∙ ሺ1 ൅ χ ∙ φሻ ൌ 0        (38) 
 
At initial time eq. (38) gives: 
 

ቀFୡ ൅ Fୱቁ ∙ X଴ ൌ െδୡ଴          (39) 

 
So that, adding and subtracting at first member of eq. (38) the quantity μ ∙ Fୱ ∙ X଴, combining eqs. 

(38), (39) we obtain: 
 

ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X ൅ δୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ μ ∙ ቀFୡ ൅ Fୱቁ ∙ X଴ ൅ μ ∙ δୡ଴ ൅  

െμ ∙ ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X଴ െ μ ∙ δୡ଴ ∙ ሺ1 ൅ χ ∙ φሻ ൌ 0     (40) 

 
Remembering eq. (39) we reach: 
 

ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X ൌ െδୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ μ ∙ ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X଴ ൅ μ ∙ δୡ଴ ∙ ሺ1 ൅ χ ∙ φሻ (41) 

 
Applying the principle of superposition the vector X can thus be obtained by the sum of the solution 

of the three following linear systems: 
 

								ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ Xୟ ൌ െδୡ ∙ ሺ1 ൅ χ ∙ φሻ 

ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ Xୠ ൌ μ ∙ ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ X଴     (42) 

								ቂFୡ ∙ ሺ1 ൅ χ ∙ φሻ ൅ Fୱቃ ∙ Xୡ ൌ μ ∙ δୡ଴ ∙ ሺ1 ൅ χ ∙ φሻ 

 
for which it is immediate to assume: 
 
Xୟ ൌ Xଵ           (43) 

 
elastic solution assuming the actions at time t and the modulus Eୡᇱ ൌ Eୡሺt଴ሻ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ⁄  
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Xୠ ൌ μ ∙ X଴           (44) 
 
initial elastic solution magnified by the factor  
 
Xୡ ൌ െμ ∙ Xଵ଴          (45) 

 
elastic solution assuming the loads at time t0 and the elastic modulus 

Eୡᇱ ൌ Eୡሺt଴ሻ ሾ1 ൅ χሺt, t଴ሻ ∙ φሺt, t଴ሻሿ⁄  magnified by the factor (-). 
Summing up eqs. (42), (43), (44) we reach: 
 
X ൌ Xଵ ൅ μ ∙ ൫X଴ െ Xଵ଴൯         (46) 

 
so that also for the reaction vector X a relationship similar to eq. (36) can be derived. For constant 

actions it results: Xଵ ൌ Xଵ଴, and eq. (46) becomes: 
 
X ൌ Xଵሺ1 െ μሻ ൅ μ ∙ X଴         (47) 

 
similar to eq. (37). 
From eqs. (46), (47) we can thus conclude that the structural analysis according to (AAEMM) can 

be performed by superposing the results of three elastic analysis, combined by the factor . For 
constant actions the elastic analyses are only two and the same can be said for the case of variable 
actions, expressing the action A at time t by means of the action A0 at time t0, using the following 

relationship A ൌ cሺtሻ ∙ A଴. In this case Xଵ଴ ൌ
ଡ଼భ
ୡሺ୲ሻ

 and eq. (46) can be written: 

 

X ൌ Xଵ ∙ ቀ1 െ
ஜ

ୡ
ቁ ൅ μ ∙ X଴         (48) 

 
which coincides with eq. (47) when A = A0 or c = 1. 
The preceding relationship can be extended to the state of stress and strain in the two interacting 

parts of the hybrid structure. For the restraining elastic part, sustaining only the reaction vector X 
proportional to the displacements, the extension is obvious. Regarding the viscoelastic homogeneous 
concrete part, the state of stress can be written in the following way: 

 

Sሺt, zሻ ൌ S୅ሺt, zሻ ൅ Sଡ଼ୣ
୘ ∙ ቂXଵ ∙ ቀ1 െ

ஜ

ୡ
ቁ ൅ μ ∙ X଴ቃ       (49) 

 
with SA(t, z) state of stress generated by the applied actions at time t,	Sଡ଼ୣ the column vector of the 

state of stress generated by the unit vector X. 
Adding and subtracting in eq. (49) the quantity μ ∙ S୅ሺt଴, zሻ, from eq. (49) we obtain: 
 
Sሺt, zሻ ൌ S୅ሺt, zሻ ൅ Sଡ଼ୣ

୘ ∙ Xଵ ൅ μ ∙ ൣS୅ሺt଴, zሻ ൅ Sଡ଼ୣ
୘ ∙ X଴൧ െ μ ∙ ൣS୅ሺt଴, zሻ ൅ Sଡ଼ୣ

୘ ∙ Xଵ଴൧   (50) 
 
Eq. (50), expressing the first theorem of linear viscoelasticity, allows the following relationship to 

be immediately written: 
 
Sሺt, zሻ ൌ Sଵሺt, zሻ ൅ μ ∙ ሾS଴ሺt଴, zሻ െ Sଵ଴ሺt଴, zሻሿ       (51) 

 
similar to eq. (36). 
In the same way for the displacements in the viscoelastic part we can write: 
 

									sሺt, zሻ ൌ s୅ଵሺt, zሻ ൅ μ ∙ ሾs୅଴ሺt଴, zሻ െ s୅ଵ଴ሺt଴, zሻሿ ൅ sଡ଼ୣ
୘ ∙ ሺ1 ൅ χ ∙ φሻ ∙ ൣXଵ ൅ μ ∙ ൫X଴ െ Xଵ଴൯൧ ൅ 

൅μ ∙ sଡ଼ୣ
୘ ∙ X଴ െ μ ∙ sଡ଼ୣ

୘ ∙ X଴ ∙ ሺ1 ൅ χ ∙ φሻ        (52) 
 
where sଡ଼ୣ is the column vector of the elastic displacements produced by the unit vector X . 
From eq. (52) we immediately reach: 
 

								sሺt, zሻ ൌ s୅ଵሺt, zሻ ൅ sଡ଼ୣ
୘ ∙ Xଵ ∙ ሺ1 ൅ χ ∙ φሻ ൅ μ ∙ ൣs୅଴ሺt଴, zሻ ൅ sଡ଼ୣ

୘ ∙ X଴൧ ൅ 
െμ ∙ ൣs୅ଵ଴ሺt଴, zሻ ൅ sଡ଼ୣ

୘ ∙ Xଵ଴ ∙ ሺ1 ൅ χ ∙ φሻ൧       (53) 
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so that: 
 
sሺt, zሻ ൌ sଵሺt, zሻ ൅ μ ∙ ሾs଴ሺt଴, zሻ െ sଵ଴ሺt଴, zሻሿ       (54) 

 
similar to eq. (36). 
The possibility to operate by means of the combination formulae expressed by eqs. (46), (47) or 

(47), (48) in order to evaluate all the significant variables of the problem has thus been thoroughly 
proven. They express the Fundamental Theorem allowing the Trost-Bazant formulation to be turned 
into a combination of linear elastic solutions maintaining the approximation level of original approach. 
These equations, which can be conveniently applied for problems with distributed restraints, assume 
a general character and enable us to easily solve complex problems as it will be illustrated in the 
following case histories. 

 

3 CASE STUDIES 

The algebraic procedure based on the theorem discussed in 2 has been applied for the solution of 
three outstanding cases of hybrid structures. The first case regards the evaluation of the state of 
stress and deformation in the frame of Figure 10, located on the facade of a tall building. The frame is 
composed of four r.c. columns pinned to a steel beam. The columns are subjected to sustained axial 
loads of 1000 t for the internal columns and 500 t for the external ones. The elastic restraint on the 
column, provided by the beam, reduces the relative column shortening and for this the bending 
moment in the beam increases in time while the axial load in the internal columns reduces and 
increases in the lateral ones.  

 

  

Figure 10: Concrete frame with belt steel beam 

Applying eq. (47) to the statically determined scheme of Figure 10, from elementary structural 
mechanics, neglecting shear deformation in the beam, we derive: 

 

X଴ ൌ
୕/ସ

ଵା୩బ
           (55) 

 

Xଵ ൌ
୕/ସ

ଵା୩భ
           (56) 

 
with 

k଴ ൌ
ୟయ

ଵଶ୦
∙
ሺ୉୅ሻౙ
ሺ୉୍ሻ౩

∙ ቀ
ଷ୪

ୟ
െ 4ቁ         (56) 

kଵ ൌ
ୟయ

ଵଶ୦
∙
ሺ୉୅ሻౙ
ሺ୉୍ሻ౩

∙
ቀ
యౢ
౗
ିସቁ

ሺଵା஧∙஦ሻ
         (57) 

 
and 
X ൌ Xଵ ∙ ሺ1 െ μሻ ൅ μ ∙ X଴         (58) 
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In Figure 11 the bending moment in the beam is reported for t = t0 and t = . We observe that the 
maximum bending moment in the beam nearly redoubles its initial value, while the corresponding 
vertical displacement increases of about 4 times with respect its initial value. The axial load in the 
lateral columns increases of about 15% and in central columns we observe a reduction of 10%. A 
different scenario takes place for reinforced columns, in particular for composite columns.  

In this case the reactions X0, X are given by eqs. (55)-(56), assuming for k0, k1 the following 
values: 

 

k଴
∗ ൌ k଴ ∙

୅ౙ
∗

୅ౙ
           (59) 

 

kଵ∗ ൌ kଵ ∙
୅ౙభ
∗

୅ౙ
           (60) 

 
with 

Aୡ∗ ൌ Aୡ ∙ ቂ1 ൅
୉౩
୉ౙ
∙ ρୱቃ          (61) 

Aୡଵ∗ ൌ Aୡ ∙ ቂ1 ൅
୉౩
୉ౙ
∙ ሺ1 ൅ χ ∙ φሻ ∙ ρୱቃ        (62) 

 
In the present example, where the geometrical steel ratio s  16% of a composite steel-concrete 

column has been assumed, we observe a dramatic reduction of the bending moment in the beam with 
a maximum increase of 44%. The reinforcement in the columns markedly reduces the vertical 
displacements for the internal columns which in this case are about 22% of the corresponding ones of 
the previous case. The axial loads in this columns also present a variation accompained by a 
redistribution of the stresses  acting on concrete, which are markedly reduced, while on steel we 
observe a significant increase. 
      

 
 

 
 

 

Figure 11: Bending moment, vertical displacement and axial load in the column 

    The second study regards the r.c. beam resting on an elastic soil represented in Figure 12. 
Besides the elastic restraint provided by the soil, the beam is restrained by six elastic piles of 
variable stiffness. The loads, applied in correspondence of the piles are respectively 500 t for the 
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internal piles and 250 t for the external ones. Indicating by kW the Winkler subgrade coefficient 
and by k଴ ൌ k୛ ∙ b ∙ l a reference stiffness, with b width of the beam, the stiffness of the piles has 
been assumed η ∙ k଴ and the cases η ൌ 0; 1; 1.5; 2 have been studied. Applying the fundamental 
theorem, the problem is reduced to the well known one regarding the structural analysis of a 
beam resting on an elastic soil, governed by the following relationships: 

ቀFୡ ൅ Fୱቁ ∙ X଴ ൌ െδୡ଴          (63) 

ቀFୡଵ ൅ Fୱቁ ∙ Xଵ ൌ െδୡ଴,ଵ          (64) 

where Fୡ , δୡ଴ are respectively the flexibility matrix and the vector of load effects computed for a 

beam resting on an elastic soil, assuming the parameter: 

α ൌ ට୩౓∙ୠ∙୪

ସ୉୍

ర
           (65) 

Fୡଵ , δୡ଴,ଵ are the flexibility matrix and the vector of load effects related to a beam resting on an 

elastic soil described by the parameter: 

αᇱ ൌ α ∙ ඥሺ1 ൅ χ ∙ φሻర           (66) 

 

 

Figure 12: Beam on elastic soil 

The results, assuming  = 0.8;  = 2.5, b = 4m , E  33500 MPa, I = 2.11 m4, l = 3.5m, kW = 104 
N/mm3, are reported in Figure 13. We observe that for η = 0, the settlements increase in the central 
part of the beam and decrease in the lateral part. This produces a generalized reduction of the 
bending moment in the beam, with a maximum decrease of about 35%. The maximum variation of the 
settlements is about 11% in the central section and -20% at the edges. The presence of piles strongly 
mitigates the settlements and the bending moments in the beam. For the maximum value of the piles 
stiffness, the corresponding bending moment in the beam reduces in time of about 70%, with an 
increase of about 10% of the mid-span settlement. The obtained results clearly point out the 
significant contribution of the piles in reducing the settlements and the bending moment in the r.c. 
beam. 
   

l l l l l l/2 l/2 

250 t 250 t 
500 t 500 t 500 t 500 t 
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Figure 13: Bending moments and vertical settlements 

As a last example we consider the r.c. column of Figure 14, subjected to a bending moment M and 
to an axial load P applied at the top, where is active an elastic lateral restraint whose deformability is  

௦ߜ ൌ
௖∙௟య

ଷ∙ா೎∙ூ೎
. The slenderness of the column requires to take into account second order effects.  

 

 

Figure 14: Slender concrete column elastically restrained  

The problem can be solved by generalizing Timoshenko linear elastic approach10, obtaining the 
following solutions: 

 

X଴ ൌ
ଷ

ଶ
∙
୑

୪
∙ ቂ

ଶ஑୪∙ሺଵିୡ୭ୱ஑୪ሻ

ଷୱ୧୬ሺ஑୪ሻା஑୪∙ୡ୭ୱሺ஑୪ሻ∙ሺୡ∙஑మ୪మିଷሻ
ቃ        (67) 

 

α ൌ ට୔

୉୍
           (68) 

 

Xଵ ൌ
ଷ

ଶ
∙
୑

୪
∙ ൥

ଶ஑భ୪∙ሺଵିୡ୭ୱ஑భ୪ሻ

ଷୱ୧୬ሺ஑భ୪ሻା஑భ୪∙ୡ୭ୱሺ஑భ୪ሻ∙൬
ౙ∙ಉభమ∙ౢమ

భశಟ∙ಞ
ିଷ൰

൩       (69) 

 
αଵ ൌ α ∙ ඥሺ1 ൅ χ ∙ φሻ          (70) 
X ൌ Xଵ ∙ ሺ1 െ μሻ ൅ μ ∙ X଴         (71) 

 
 

M 
P P 

M 

l l 

s X 
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Assuming  = 0.8;  = 2.5, in Figure 15, for t = t0 and for t  , the variation of the adimensional 

reaction Xl/M of the elastic restraint with the parameter αl ൌ ට ୔

୉∙୍
∙ l is reported. At initial time, for 

݈ ൌ  the unrestrained column reaches instability, so its stiffness vanishes. For this, the reaction of , 2/ߨ
the restraint is the same, irrespectively of its rigidity. It is noteworthy to observe that for  ݈ߙ ൏  the 2/ߨ
reaction of the elastic restraint reduces when reducing the rigidity, while for ݈ߙ ൐  the reaction of 2/ߨ
the elastic restraint increases. This means that for ݈ߙ ൏  the behaviour of the column is governed 2/ߨ
by the restraint rigidity, while for ݈ߙ ൐  .second order effects are prevailing 2/ߨ

 

     

Figure 15: Adimensional restraint reaction 

The effects of the delayed deformation due to creep are different if the contribution of 
reinforcement is accounted for. The corresponding solutions are expressed by the following 
relationships: 

 

X଴ ൌ
ଷ

ଶ
∙
୑

୪
∙ ቂ

ଶ஑∗୪∙ሺଵିୡ୭ୱ஑∗୪ሻ

ଷୱ୧୬ሺ஑∗୪ሻା஑∗୪∙ୡ୭ୱሺ஑∗୪ሻ∙ሺୡ∙஑∗మ୪మ∙ஒమିଷሻ
ቃ       (72) 

α∗ ൌ
஑

ஒ
			 ; 			β ൌ ට1 ൅

୉౩∙୍౩
୉ౙ∙୍ౙ

         (73) 

 

Xଵ ൌ
ଷ

ଶ
∙
୑

୪
∙ ቎

ଶ஑భ
∗ ୪∙ሺଵିୡ୭ୱ஑భ

∗ ୪ሻ

ଷୱ୧୬൫஑భ
∗ ୪൯ା஑భ

∗ ୪∙ୡ୭ୱ൫஑భ
∗ ୪൯∙ቆୡ∙஑భ

∗మ୪మ∙
ഁభ
మ

భశഖക
ିଷቇ

቏       (74) 

 

αଵ∗ ൌ
஑భ
ஒభ
			 ; 			βଵ ൌ ටβଶ ൅

୉౩
୉ౙ
∙ χ ∙ φ ∙

୍౩
୍ౙ

        (75) 

 
 

Assuming 
୍౩
୍ౙ
ൌ 0.15;		

୉౩
୉ౙ
ൌ 5.5, Figure 16 shows that the initial instability point is reached for ݈ߙ ≅ 2 

and the various curves of parameter c exhibit lower values for l constant as a consequence of the 
higher rigidity of the column due to the distributed internal elastic restraint provided by the steel 
reinforcement. 

 

  
 

Figure 16: Effect of column reinforcement on the adimensional restraint reaction 

l l 

c 

c 

c 

c 
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4 CONCLUSIONS 

 
The structural analysis of hybrid structures subjected to sustained loads can be approached in an 

exact way according to RRFM, by arriving for point elastic restraint to diagonal systems of Volterra 
integral equations and to integro-differential equations in space and time for distributed elastic 
restraints. A consistent simplification of the mathematical procedure can be achieved by adopting the 
algebraic approach AAEMM, reducing the problem to the solution of linear algebraic systems in the 
pseudo elastic domain with imposed deformation depending on the initial state of stress. This 
procedure guarantees a good level of approximation; nevertheless, it requires a lot of computations, 
so it becomes unpractical when a large number of unknowns is involved. An alternative procedure, 
stated by the author and yielding the same results of AAEMM, allows the problem to be solved by 
means of the superposition of two elastic solutions which can be easily obtained by recurring to 
standard methods of structural analysis. Some interesting case histories point out the feasibility of the 
proposed approach and the need of a reliable analysis in order to correctly evaluate the evolution of 
the state of stress and deformation in hybrid structures subjected to long-term action.  
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