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ABSTRACT

The focus of our work is on the most recent results in fixed point theory related to contractive mappings. We describe
variants of (s, g, ¢, F)-contractions that expand, supplement and unify an important work widely discussed in the
literature, based on existing classes of interpolative and F-contractions. In particular, a large class of contractions
in terms of s, ¢, ¢ and F for both linear and nonlinear contractions are defined in the framework of b-metric-like
spaces. The main result in our paper is that (s, ¢, ¢, F')-g-weak contractions have a fixed point in b-metric-like
spaces if function F or the specified contraction is continuous. As an application of our results, we have shown the
existence and uniqueness of solutions of some classes of nonlinear integral equations.
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1 Introduction

Fixed point theory has been studied for a long time. Its application relies on the existence
of solutions to mathematical problems that are based on the contraction principle. An interesting
generalization of the Banach contraction principle was given by Wardowski [1,2] using a different
type of contraction called F-contraction and by Karapinar in [3] defining the type of interpolative
contractions. These approaches have been extended by weakening the contractive conditions, removing
some of the imposed conditions on the used mappings or relaxing axioms of the defined spaces.
Starting from these aspects, many researchers have constructed new fixed point theorems in different
types of spaces such as metric, b-metric and other generalized metric spaces, as cited in [3-31].
Nevertheless, in the papers of Younis et al. [4,5] the notion of Kanan mappings in the view of F-
contraction in the setting of h-metric-like spaces has been expanded and an example related to electrical
engineering has been given. In this paper, we introduce general types of (s,¢, F) and (s, ¢, ¢, F)-
contractions, which are variants of Wardowski contractions in the setting of h-metric-like spaces. Using
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these classes of contractive mappings, we establish unique fixed point theorems that unify and extend
recent results on this topic.

2 Preliminaries
In this section, we list some well-known definitions and lemmas in terms of b-metric-like spaces.

Definition 2.1 [9]. Let V' be a nonempty set and s > 1 be a given real number. A mapping b :
V x V — [0, +00) is called a b-metric-like if for all y, 8, v € V these conditions are satisfied:

(@) b(y,8) =0 implies y = §;
(i) b(y,8) =b(@,y);
@ity  b(y,8) <sb(y,v) +b(v,d)].

The pair (V, b) is called a b-metric-like space (in the sequel we use b — m.l.s for short).

In a b-metric-like space (V, b), if y,8 € V and b(y,8) = 0, then y = §. However, the converse
need not be true, and b(y, y) may be positive for y € V.

Definition 2.2 [10]. Let (V, b) be a b — m.l.s with parameter s > 1, {v,} be any sequence in }J and
v € V. Then, the following applies:

(a) The sequence {v,} is said to be convergent to v if lim b(v,,v) = b(v, v);
n—-+o00
(b) The sequence {v,} is said to be a Cauchy sequence in (V, b) if lim b(v,, v,) exists and is finite;
n,m—+00
(c) The pair (V, b) is called a complete b —m.[.s if for every Cauchy sequence {v,} C V, there exists
v € Vsuch that lim b(v,,v,) = lim b(v,,v) = b(v, V).
n,m—+00 n—+o0

Definition 2.3 [10]. Let (V,b) be a b — m./.s with parameter s > 1 and f be a self-mapping on V.

We say that the function f is continuous if and only if lim b(fv,,fv) = b(fv, fv), for each sequence
n—+00
{v,} C V, which satisfies lim b(v,,v) = b(v, v).
n—+00

Note that in a b — m.l.s with parameter s > 1, if lim b(v,, v,) = 0 then the limit of the sequence

n,m——+00
{v,} is unique if it exists.
Lemma 2.1[11,12]. Let (V, b) be a complete b — m.l.s with parameter s > 1 and {v,} be a sequence
such that b(v,,v,.,1) < Ab(v,_1,v,), for alln € N, where A € [0,1). Then {v,} is a b-Cauchy sequence
such that lim b(v,,v,) = 0.

n,m——+00

Lemma 2.2. [9]. Let (V, b) be a b — m.l.s with parameter s > 1 and suppose that {v,} converges to
avandb(v,v) =0. Then

s7'b(v,z) < liminf b(v,, z) < limsup b(v,,z) < sb(v, z),

n—>+00 n—+o0

forallz e V.
Lemma 2.3. [9]. Let (V, b), be a b — m.l.s with parameter s > 1. Then, the following applies:
(a) If b(y,8) =0, then b(y,y) = b(38,8) = 0;
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(b) If {v,} is a sequence such that lim b(v,, v,,;) = 0, then we have

n—+00

hm b(\),,, vn) = hm b(anrla 1)nJrl) = 07
400

n—+o00 n—

(c) If y # 6, then b(y,8) > 0.

Lemma 2.4. [13]. Let (V,b) be a complete b — m.l.s with parameter s > 1. Let {v,} C V bea
sequence such that lim b(v,, v,,;) = 0. If for sequence {v,} holds lim b(v,,v,) # 0, then there exist

n—+00 n,m——+00

¢ > 0 and sequences {m,},”; and {n,},°] of natural numbers with n, > m, > k, such that
b(mG, vnk) Z 83 b(vmk’ Vnk—l) < 83

< limsup, b(v,, 1, v, 1) < &s,

k—+00

< lim sup, b(v

k—+o0

_1,Vy,) < es’and

i

< limsup, b(v,,_;,v,,) < 5.

k—+o0

%Im%l(‘afnwlm

3 Results

We begin the main section with a definition that is an expanding outlook of Wardowski type
(¢, F)-contractions in the frame of a generalized metric space such as b — m.L.s.

Definition 3.1. Let (V,b) be a b — m.l.s with parameter s > 1 and f be a self-mapping on V. We
say that f is a (s, ¢, ¢, F)-contraction if there exist the functions F : (0, 4+00) — Rand ¢ : (0, +00) —
(0, +00) such that

(a) F is strictly increasing;
(b) lim i+nf¢(r) > 0 forall z > 0;

r—t

(c) Forallv,§ € V with fv # f§, and for some g > 0
¢ (bv,8) + F(s'b(fv,[8)) < F(b(v,9)). (1
Remark 3.1. In the above definitions property F and conditions (1) yield
b(fv,f8) < s'b(fv,f8) < b(v,$§).

The continuity of the mapping f follows from the inequality b(fv, ) < b(v, ).
Remark 3.2.

e Our definition generalizes the previous definitions given in [14-16]. It contains a reduced
number of conditions compared with the previous definitions.

e The definition of (s, ¢, F)-contraction is an immediate consequence of Definition 2.1, if we take
¢ : (0,+00) — (0,400) to be a constant function.

o If s = 1 we get the definition of Wardowski in [1,2] in the case of metric spaces.
e For s = 1 the definition is valid in the framework of a metric space.

The following is the first fixed point theorem for (s, ¢, ¢, F)-contraction type mapping.
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Theorem 3.1. Let (V,b) be a complete b — m.l.s with parameter s > 1. If f is a (s,q, ¢, F)-
contraction on V, then the function f has a unique fixed point in V.

Proof. Let be v, € V and the Picard iterative sequence {v,} defined by v,,, = f(v,) forn €
{0,1,2,...}. The proof is clear in the case that there exists n, € N, with v, ,; = v,,. So, we will assume
that v,., # v,, which implies fv, # fv,_, and b(fv,, fv,_,) > 0, for all n € NU{0}. Using inequality (1),
we have

F(s"b(v,,v,:1)) < @(b(v,-1,1,)) + F(s'b(v,,,11))
=@ (bW,-1,v.)) + F(s'b(fv,-1,/v,))
S F(b(vn—la vn))' (2)

Further from inequality (2), we get
qu(vn’ vn+1) < b(U,,_] s vn):

which implies
1

b(l),,, 1)nJrl) < —b(l),,,l, vn)-
K4

In view of Lemma 2.1, the corresponding Picard sequence {v,} with the initial point v, is a Cauchy
sequence such that lim b(v,.v,) = 0. Since (V, b) is a complete b-metric-like space, we conclude that

n,m—~+00

there exists v € V' such that
lim b(v,,v) = b(v,v) = lim b(v,,v,) =0. 3)

n—+00 n,m——+00

According to the (1), it follows:

F(s'b(fv.fv.) < @b, v,)) + F(s'b(fv,fv,) < F(b(v,v,)),
that from property of F we get

s'b(fv,fv,) < b(v,v,). “4)
From triangular property and (4), we have
b(fv.fv) < 2sb(fv,fv,) < 25"b(fv,fv,) < 2b(v,v,).
Since f is continuous and using (3), (4) we obtain
b(fv,fv) = lim b(fv,,fv) < lim 2b(v,,v) = 2b(v,v) = 0. 5
n—+00 n—+00

Since b(v, fv) < s[b(v,fv,) + b(fv,fv,)], as n — 400 we obtain that b(v, fv) = 0. Thus fv = v
and so f has a fixed point. Also from (3), we have b(v,v) = 0. To prove the uniqueness of the fixed
point, suppose that u € V' is another different fixed point. From u # v follows fu # fv, then

F(s"b(u,v)) = F(s"b(fu, fv)) < ¢(b(u,v)) + F(s"b(fu, fv)) < F(b(u,v)),

which implies
1

b(u,v) < —b(u,v).
§4

Previous inequality is a contradiction, so b(u, v) = 0 and the fixed point is unique.
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Corollary 3.1. Let (V,b) be a b — m.l.s with parameter s > 1 and f be a self-mapping on V. If
there exist an increasing function F : (0, 400) — R and a positive constant t such that

T+ F(s'b(fv.f8)) < F(b(v,9)) (6)
forallv,§ € V with fv # f§, and for some ¢ > 0, then f has a unique fixed pointin V.
Proof. Inequality (1) implies (6) if we set ¢ (r) =t > 0.

Example 3.1. Let ' = [0, +00) and b(x,y) = x* + )* + |x — y|*, for all x,y € V. Itis clear that
b is a b-metric-like on V', with parameter s = 2 and (V, b) is complete. Also, b is not a metric-like

In(1
nor b-metric (nor a metric on V). Consider the self-mapping /' : V' — V by fx = M For all

)

X,y € V and constant ¢ = 2, we have

Sh(fx, fy) = 4 (f*x + 12y + [fx — fx])

=4((1n(x5—|—1)) +(1n(y5—i—1)) N

Inx+1) In(+1
5 5

x? N by y2 4
<4l 4|2 L] | = =[x+ ? _ 2
{25 25 5 5‘ 25[ Vi yl]
<—1b( )
X, V).
=3 y

Taking the logarithms in the above inequality and fixing © = In5 and the function F(r) = In¢
then the conditions of Corollary 3.1 are satisfied and clearly x = 0 is a unique fixed point of /.

With the aim of expanding the initiated Definition 2.1 and starting a result that includes Theorem
3.1 and its respective corollaries, we will use a class of implicit relations, which makes simultaneously
effective enormous literature on this topic.

Let T, be the set of all continuous functions g : [0, +00)* — [0, +00) satisfying
(a) gis non-decreasing with respect to each variable:
(b) g(t,t,t,1) < tfort e [0,+00).
Definition 3.2. Let (V/,b) be a b — m.l.s with parameter s > 1 and f : V' — V be a self mapping.
We say that f is generalized (s, ¢, ¢, F)-g-weak contraction, if there exist functions F : (0, +o0) — R,
¢ : (0,400) — (0,+00) and g € T', such that
(a) F is strictly increasing;
(b) lim i+nf¢(r) > (O forall z > 0;

r—>t

©) ¢(b(x,y)) + F(s'b(fx,fy)) < F (g (b(x,y), b(x,fx),b(y,fy),

W) H00)) g

4s

for all x,y € V with fx # fy, and for some ¢ > 1.
Remark 3.3.

e The above definition reduces to a generalized (s, ¢, F)-g-weak contraction by setting ¢
(0, +00) — (0, +00) to be a constant function ¢ (r) = v > 0.

e Fixing the parameter s = 1 we get the definition of (¢, F)-g-weak contraction in the setting of
metric and metric-like spaces.
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e Fixings = 1 and ¢(r) = t > 0 we get the definition of (F-g)-weak contraction in the setting of
metric and metric-like spaces.

Theorem 3.2. Let (V,b) be a b — m.l.s with parameter s > 1 and the self mapping f : V' — V be
a generalized (s, ¢, ¢, F)-g-weak contraction. If f or F is continuous, then f has a unique fixed point
inV.

Proof. Let u, € V be arbitrary and construct the Picard iterative sequence {u,} as u,,, = f (u,) for
n€{0,1,2,...}. The proof is clear in the case that there exists n, € N, with u, ., = u,,. Therefore, we
assume that u,,, # u,, which means fu,, # fu,_, or b(fu,, fu,_,) > 0 for alln € N U {0}. Using (7) for
X =u, y=u,, we have

& (b(u,, 1)) + F(s"b(u,, ty11))
== d)(b(f,un—lafun)) + F(qu(fun—lafun))

<F (g (b(unl, ), Bty 1s Lty 1), Bty ft), 2o ””)jsb(“”’f ”)))

b U1, Uy + b Uy, Uy,
= (g (b(unla un)a b(un,l,un)’b(un’ U,,H), ( 1 +lj's ( )))
2
E (g (b(unlj u;l), b(un—ly un)a b(una un+l)7 Sb(unil’ un) + Sb(un;.:nJrl) + Sb(un—lz U, ))
b una un + 3b Z/ln7 s un
- (g (b(unl’un)’ b(unfl’un)y b(uny un+l)’ ( +1) 4 ( 1 ))) ) (8)

If we assume that b(u,_,, u,) < b(u,, u,,,), then inequality (8) yields
¢ (D, 1)) + F ("D 10,11)) < F (g (Dhyy 1), Dy 1), Dy 111), (U U41)))
< F(b(u,, u,11)),
for all n € N. So, we obtain
F(s'b(u,, 1) < F (b, 1)) — ¢ (b(hy, Uy11))
< F(b(u,, 1)),
which is a contradiction. Therefore
b(uy, tyy1) < D(u,1, 1),

for all » € N. Thus, the sequence {b(u,_,u,)} is decreasing and bounded below. Consequently, there
exists / > 0 such that b(u,_,,u,) — [ asn — +o0. If [ > 0, then by taking the limit in (8) we get

¢() + F(s'D < F(D),
which is a contradiction. Therefore, we conclude that / = 0 and

lim b(u, ,,u,) = 0. )

n——+00
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Next, we show that lim b(u,,u,) = 0. Suppose the opposite, lim b(u,,u,) > 0. Then by Lemma

n,m—00

2.4, there exist ¢ > 0 and sequences {m,} and {n,} of positive integers, with n, > m, > k, such that
b(umk) unk) z 85 b(umka unk—l) < 8:

< lim sup, bty 1, Uy, 1) < &,

k—+o00

< limsup, b(u,, ., u

k——+o0

2
w) < &s* and

Mlmhlmhwlm

< limsup, b(u,

k—+o0

2
—launk) S s,

117k
From condition (7), we get
& (b(u,, ,u,)) + F(s"D(u,y, , u,))
= ¢ (b(umk: unk)) + F(qu(fumk—l 5f'unk—1))

b(umk—lsfunk—l) + b(unk—lafumk—l)
4s

bty 1, ) + by, 1,1,
= F (g (b(umkla unk—l)z b(umk—la umk)a b(unk—lz unk s G - 4S i - ))

Taking the upper limit in (10) as k — +o0o and using Lemma 2.3, Lemma 2.4 and (9), we get

S F(g(b(umkfly unkfl)a b(umkflafumkfl)) b(unkflafunkfl)a ))

(10)

liminf, ¢ (b(u,, ,u,)) + F(s'¢) < liminf, ¢ (b(w,,,u,)) + F (lim Sup s"b(uy, , Uy, )
n—+00 n—+00

n——+00

S F (hm Sup g (b(umkla unkfl)s b(umkfls umk)s b(unk—l ) unk s

n——+oo

rfefeon )

< F(es).

b(umkfla unk) + b(unkfly umk
4s

Hence, the acquired inequality

liminf, ¢ (b(u,, ,u, ) + F(es') < F(es),

m
n—+00 k

is a contradiction since ¢ > 0. So lim b(u,,u,) = 0, and the sequence {u,} is a Cauchy sequence in the

n,m— o0

complete h-metric-like space (V, b). Thus, there exists u € V, such that

lim b(u,,u) = b(u,u) = lim b(u,,u,) =0. (1)
nm——+00

n——+00

Let n, € N such that u,,, # fu for all n > n, and u # fu. Now using condition (7) and property F,
we have

¢ (b, ) + F(s"b (1, fu)) = ¢ (b(u,, 1)) + F(s"D(fu,, fur))

<F (g (b(un, u), by, f1,), b, fir), b(u,.fu) + b(u, fu,,)))

4s
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=F (g (b(un, u), b(u,, u,,,), b(u, fu), bl Ji) + bk, u"“))) ,

4s

which implies

b(u, u,
¢(b(un7fu)) +sqb(un+19fu) <g (b(um u)ab(unaunJrl):b(u:fu)a % . (12)
Taking the upper limit in (12), and using Lemma 2.1 and result (9), it follows that
1
liminf ¢ (b(u,, fut)) + 5" b(u, fu) = s* - =b(u, fu) < g(0,0,b(u,fu),0) < b(u,fu). (13)
n——+00 S

Since ¢ > 1, the inequality (13) implies b(u, fu) = 0 and therefore fu = u. Thus, u is a fixed point
and

0 = b(u, fu) = b(u, u). (14)

Let u and v be two fixed points of f, where fu = u and fv = v. Since u # v, it implies fu # fv. By
(7) we have

¢ (u,v) + F(s'b(u,v)) = ¢ (u,v) + F(s’b(fu, fv))

<F (g (b(bl, V), b(u, fu), b(v, ), b(u, fv) ;:b(v,fu)))
=F (g (b(u, V), b(u, u), b(v,v), W))

=F (g (b(u, v), b(u, u),b(v,v), b(;;v)))

—F (g (b(u, ».0,0, 2 V)))
2s

< F (g (b(u,v),b(u,v), b(u, v), b(u, v)))
< F (b(u,v)). (15)

Since this is a contradiction, it implies b(u, v) = 0. Therefore, u = v and the fixed point is unique.

Theorem 3.3. Let (V,b) be b — m./.s with parameter s > 1 and f : V' — V be a continuous self-
mapping. Assume that there exist the functions F : (0, +00) — R, g € I', and the constant t > 0 such
that

(a) F is strictly increasing;

() 7+ Pt = F (& (b0 .00 0. 0 ),
fx # fy, for some g > 1.

Then f has a unique fixed point in V.

b(x,[y) :‘ b(y,fx))) for all x,y € V with
s

Proof. The proof follows from Theorem 3.2. by setting ¢ (r) = t.
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Corollary 3.2. Let (V,b) be a b — m.l.s with parameter s > 1 and f : V' — V be a continuous
self-mapping. Assume that there exist the functions F : (0, +00) — R, ¢ : (0, 400) — (0, 4+00) such
that:

(a) F is strictly increasing;

(b) 1imi+nf¢(r) > (O forallz > 0;

r—t

(©) ¢(b(x, ) + F(s'b(fx,fy))
<F (max (b(x, 1), b(x, fx), b(y, f),

b(x,fy) + b(y,fx) )) (16)
4s

for all x,y € V with fx # fy, and for some ¢ > 1. Then f has unique fixed point in V.
Proof. The proof follows from Theorem 3.2 by taking g € T'y as g(¢,, t,, ts, ;) = max{t,, t,, t;, t,}.

Corollary 3.3. Let (V,b) be a b — m.l.s with parameter s > 1 and f: V' — V be a continuous
self-mapping. Assume that there exist functions F: (0, 400) — R, ¢: (0, +00) — (0, 400) such that:

(a) F is strictly increasing;
(b) limi+nf¢(r) > (0 forall z > 0;

r—t

(©) ¢(b(x,y)) + F(s'b(fx, fy))
<F (max (alb(x,y) + ab(x, fx) + asb(y, fy) + aq

b(x,fy) + b(y,fx) )) (17)
4s

for all x,y € V with fx # fy, and for some ¢ > 1. Then f has unique fixed point in V.

Proof. The proof follows from Theorem 3.2. by taking g € T’y as g(¢,, t,, ts, ;) = a\t, + a.t, + ast; +
at,withO <a; +a, +a; +a, < 1.

Recently, many authors have studied new types of contractions known as interpolative contrac-
tions and hybrid contractions. The reader can refer to [3,11,17-21]. The rest of the paper deals with

this type of contractions extended in the setting of h-metric-like spaces, which can be obtained from
our results as a certain special cases.

Theorem 3.4. Let (V,b) be a b — m.l.s with parameter s > 1 and f: VV — V be a continuous
self-mapping. Assume that there exist the functions F: (0, 4+00) — R, ¢: (0,+00) — (0,400) such
that

(a) F is strictly increasing;

(b) 1imi+nf¢>(r) > (O forallz > 0;

(©) ¢ (b(x,y) + F(s'b(fx. f)) |

b(x, fy) + b(y,f»o)”]; (18)
45

<F [al(b(x, W)+ a(b(x, f))" + as(b(y. f1) + a4(

for all x,y € V with fx # fy, and for some ¢ > 1. Then f has unique fixed point in V.
Proof. The proof follows from Theorem 3.2 by taking g € ', as
1
g(t, bt ts,t) = [alt’l’ + at) + a; 1) + aﬂﬁ]”,p > 0,

where 0 < a, +a, +a; +a, < 1.
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Theorem 3.5. Let (V,b) be a b — m.l.s with parameter s > 1 and f: V' — V be a continuous
self-mapping. Assume that there exist the functions F: (0,4+00) — R, ¢: (0,+00) — (0,400) such
that

(a) F is strictly increasing;
(b) limi+nf¢(r) > 0 forall z > 0;

(©) ¢(b(x,p)) + F(s'b(fx, f))

(19)

b(x. /) + b(y,fx))”]]‘l’
4s

=< F([max [(b(X, ', (bx, ), b, ), (
for all x,y € V with fx # fy, and for some g > 1.
Then f has unique fixed point in V.
Proof. The proof follows from Theorem 3.2 by taking g € ', as
gty 1o, b5, 1) = [max {#, 55, &, tﬁ}]}’,p > 0.
Theorem 3.6. Let (V,b) be a b — m.l.s with parameter s > 1 and f: V' — V be a continuous

self-mapping. Assume that there exist the functions F: (0,400) — R, ¢: (0,+00) — (0,400) such
that:

(a) F is strictly increasing;
(b) limi+nf¢>(r) > 0 forall z > 0;

(© (b(x,») + F(s"b(fx, )

(20)

=F ((b(x,y))’” (b(x, fx) 2 (b (. fy)* (

b(x,fy) + by, fx)) T
4s

for all x,y € V with fx # fy, and for some g > 1.
Then f has unique fixed point in V.
Proof. The proof follows from Theorem 3.2 by taking g € ', as

ajy

gt by by, ) = - 157 £ 1y T

where a,,a,,a; € (0,1)and @, +a, +a; < 1.

Theorem 3.7. Let (V,b) be a b — m.[.s with parameter s > 1 and f : V' — V be a continuous
self-mapping. Assume that there exist the functions F : (0, +00) — R, ¢ : (0, 4+0c0) — (0, 400) and
A € (0, 1) such that

(a) F is strictly increasing;
(b) lim ipfq&(r) > 0 forall r > 0;

(©) ¢ (b(x,y)) + F(s"b(fx,[y))
1

b(x,fy) + b(y.fx) )””E
4s

<F [k max {(b(x,y))", (b(x,fx)), (b, /1), ( (21)
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for all x,y € V with fx # fy, and for some g > 1.
Then f has unique fixed point in V.
Proof. The proof follows from Theorem 3.2 by taking g € T’y as

1
g([bZZa t}a [4) = [)\,maX {t‘l]’, tga #3’3 ZZ}]p’p > 05)" € (03 1)

Corollary 3.4. Let (V,b) be a b — m.l.s with parameter s > 1 and f : V¥ — V be a continuous
self-mapping. Assume that there exist the functions F : (0, +00) — R, ¢ : (0, 400) — (0, +00) such
that

(a) F is strictly increasing;
(b) lim i+nf¢(r) > (O forall z > 0;

(© ¢(b(x, ) + F(s"b(fx.[y)) < F ((b(x, /)" (b(y. /) ) (22)
for all x,y € V\F(fix(f)) with fx # fy, for some g > 1.
Then f has unique fixed point in V.

Proof. The proof follows from Theorem 3.2 by taking g € Ty as g(¢,, 15, 15, ,) = t; - £, where
ae(0,1).

Remark 3.4.
e Varieties of further results can be obtained by extending the set I'y to I's, I'g, I';, etc.

e Many significant fixed point theorems that were established for types of interpolative and hybrid
contractive conditions essentially belong to the class of generalized (¢, s, ¢, F)-g-contractions.

4 Application

The study of the existence, nonexistence and uniqueness of the solution of differential and integral
equations, plays a fundamental role in the research on nonlinear analysis and engineering mathematics.
One of the main tools developed in this area consists of the application of a fixed point method.

Let us study the existence of solution for the nonlinear integral equation

W) = / G\(t, pYH, (p, v(0))dp + s / Gu(t, p) Ho(o, v(p))dp: 1k € 0, 1], (23)

where A; are positive constants and functions G, : [0,1] x [0,1] = R*, H,; : [0,1] x R - Rfori=1,2
are given.

Let V' = C(]0,1]) be the set of real continuous functions defined on [0, 1] endowed with the
b-metric-like

b(v,u) = sup |v(p) + u(p)|" forall v,ue V,me N. (24)

pel0.1]

It is obvious that (V/, b) is a complete h-metric-like space with parameter s = 2!,
Consider the mapping f : V' — V by
t k
Sv(@) = & / G\(t, p)H (p, v(p))dp + )»z/ G, (¢, p)Hy(p, v(p))dp;

0 0

forallve C[0,1]and ¢,k € [0, 1].
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Theorem 4.1. Consider the integral Eq. (1) via the following assertions:
i. The mapping f : VV — V is continuous;
ii. H;:[0,1] x R — R are continuous and there exist constants A, satisfying

Hi(p,v(p)) + Hi(p,u(p)) < Ai|v(p) + u(p)]
fori=1,2and t,p,k €0, 1];

iii. The constants A;, 4; and functions G;, for i = 1, 2 satisfy condition

t k
0< )\1141/ G\ (1, p)dp + )vaz/ Gy(1,p) <
0 0

n SLI+1

for t,k € (0,1) and g > 1. Then the integral Eq. (23) has a unique solution v(¢) € V.
Proof. For all € [0, 1], and v,u € V' we have

s'o, (fv(0), fu(n) = s"[fv(0) + fu(D)]"

=Sq

kl/ Gl(t,p)Hl(p,V(p))derkz/ G, (1, p)Hy(p, v(p))dp

+)»1/ G, (t,p)H,(p,u(p))dp +>»2/ G, (t, p)H,(p,u(p))dp '

0

= Sq

M / G\(t, p) (i (0, v(p)) + Hi (o, u(p))) dp

m

+ )»2/ G,(t, p) (H>(p,v(p)) + Hy(p,u(p))) dp

m

< s, / G\(t, p) A, (Iv(p) + u(o)) dp + / Gat, p) As (Iv(p) + u(o)]) dp

m

= s'|As / Gi(1, ) A; (1v(p) + u(p)")" dp + )»2/ Ga(t, p)As (1v(p) + u(p)™)* dp

m

! k
=k / Gi(t, p) A1 (b(v )" dp + / Ga(t, p) A (b(v, 1)) dp
0 0

m

— |, (b(v, 1) / A,G(t, p)dp + 2 (b(v, 1) / Gt p)dp

0 0

m

: k
=5 (b(v, u))% (Al)\'l/ G (1, P)dp+A2)L2/ Gz(l,p)dp)
0

0

m

1
b(v,u)

S

(B(v,u))™

: (25)

Hence, by taking logarithms in inequality (25) we get
Ins + In(s'b(fv, fu)) < In(b(v, u)).
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T4+ F $'b(fv, fu)) < F (g (b(v, u), b, fv), b(u, fu),

Further, fixing F(¢) = In(¢), T = Ins and taking g € I, as g(¢, t,, t3, t;) = t, we obtain
b(v, fu) + b(u, fv)
2s ’
Therefore, f is a (s, g, F)-g-contraction on V" and all conditions of Theorem 3.3 are satisfied. Thus,

v(?) 1s the unique fixed point of £, i.e., the solution of the integral Eq. (23).

5 Conclusion

The Definitions 2.1 and 3.2 not only a large class of contractions in terms of ¢, s,¢, g and F in

the metric, b-metric, metric-like, partial metric, but also have a unifying power for both linear and
nonlinear contractions in the framework of b-metric-like spaces.
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