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The aim of this paper is to improve the application of the learning curve, a popular tool used for forecasting future
costs of renewable technologies in integrated assessment models (IAMs). First, we formally discuss under what
assumptions the traditional (OLS) estimates of the learning curve can delivermeaningful predictions in IAMs.We
argue that themost problematic of them are the absence of any effect of technology cost on its demand (reverse
causality) and the ability of IAMs to predict all determinants of cumulative capacity. Next, we show that these as-
sumptions can be relaxed bymodifying the traditional econometric method used to estimate the learning curve.
The new estimation approach presented in this paper is robust to the two problems identified but preserves the
reduced form character of the learning curve. Finally, we provide new estimates of learning curves for wind tur-
bines and PV technologies which are tailored for use in IAMs. Our results suggest that the learning rate should be
revised upward for solar PV. Our estimate of learning rate forwind technology is almost the sameas the tradition-
al OLS estimates.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Predicting the costs associated with climate mitigation strategies,
and the trade-offs between different political interventions to curb
CO2 emissions, depends heavily on assumptions about future technolo-
gy developments and costs (Kriegler et al., 2014; Tavoni et al., 2012).
The integrated assessment models (IAMs) which are used for ex-ante
policy evaluation embed assumptions about the evolution of the perfor-
mance and costs of mitigation technologies which are mostly taken as
exogenous. The effect of induced innovation has been introduced in
some models (Fisher-Vanden and Ho, 2010; Goulder and Mathai,
2000; Messner, 1997; van der Zwaan et al., 2002)1, often by resorting
to the use of learning-by-doing approaches. However, more effort is
needed to correctly endogenize technological progress and forecast
cost reductions in different low-carbon technologies. To this end,
modelers can build on insights from economic theory and on estimates
provided by empirical analysis of cost reductions.
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Learning-by-doing dynamics, which stem from the empirical obser-
vation that as experience in a given technology increases, costs tend to
fall, have been successfully embedded in most IAMs on account of the
straightforward modeling assumptions they require. The process of
learning is described in IAMs by means of the so-called “learning
curve”, namely a simple relation that links cumulative installed capacity
of capital embodying a given technology, such as wind turbines or solar
photovoltaic (PV) panels, to the installation costs of such technology.

The simplicity of the learning curve framework represents its
strength but also its weakness. While easily implemented in IAMs, the
learning curve framework is criticized by many as a simple reduced
form relation, and one that does not establish a causal link between
choice variables and cost reductions (Nemet, 2006; Nordhaus, 2009).
Most notably, from an econometric point of view estimates of the learn-
ing rate (the slope of the learning curve) may be biased due to reverse
causality and omitted variable bias. Reverse causality arises if cost re-
ductions have themselves an effect on installed capacity. Omitted vari-
able bias arises if an important determinant of costs is excluded from
the estimation of the learning curve. The IAM community replies to
such concerns by arguing that as long as the aim of the learning curve
in climate models is to forecast changes in installation costs rather
than to explain their determinants, the reduced form relation is all
that is needed (Wiesenthal et al., 2012).

This paper contributes to this strand of literature by proposing a for-
mal analytical model which sheds light on the learning curve debate.
We start by arguing that estimation of the true causal effect in a learning
curve framework, while of great interest in and of itself, is not
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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necessarily what is needed for IAMs. The learning curve equation in
IAMs and in empirical analysis used to calibrate IAMs should not be
interpreted as describing the causal impact of experience on technology
costs, rather as a reduced forms of a richer model, which could encom-
pass several forces, such as learning by doing, learning by searching (i.e.
accumulation of R&D knowledge) and dynamics of market structure.

Nevertheless, the meaningful application of the learning curve in
IAMs requires someassumptions.We list these assumptions and discuss
them in a formal framework. These are: the absence of reverse causality,
the correct specification of demand for installed capacity in IAMs, a lin-
ear relationship between capacity and costs, and two assumptions on
the stationarity of the series, as detailed below. We claim that some of
these assumptions appear to be unrealistic and as such they limit the
applicability of the learning curve in IAMs.

Our analytical model suggests a solution that allows for the use of
the learning curve estimates in IAMs if the assumptions on the absence
of reverse causality and misspecification are relaxed. This solution does
not sacrifice the simplicity of the learning curve model, rather it mod-
ifies the econometric approach used to estimate it. We propose a new
estimation approach dedicated to the learning curves used in IAMs,
which is robust to the reverse causality problem but preserves the re-
duced form character of the learning curve.

Conversely, we are not yet able to propose a simple solution to
relaxing the remaining assumptions on which the use of the learning
curve model in IAMs rests, namely linearity and stationarity. Such as-
sumptions cannot be relaxed without replacing the learning curve
with a more sophisticated model. This would increase accuracy of the
estimates but also increase complexity and thus complicate the use of
learning curves in IAMs. We believe, however, that by providing a pre-
cise description of these last two assumptions, we open an important
debate on the trade-offs associated with developing a more robust but
possibly significantly more complex model. Finally, we apply our pro-
posed estimation method to the case of learning in two key low carbon
technologies, wind power and solar PV. Our results suggest that the
learning rate utilized in the IAMs should be revised upward for solar
PV. Our estimate of learning rate for wind technology is almost the
same as the traditional OLS estimates.

The rest of this paper is organized as follows. Section 2 provides a
brief review of the relevant literature. Section 3 presents our analytical
framework, while Section 4 delves into the workings of the learning
curve model. Section 5 details the main assumptions on which the use
of the learning curve in IAMs rests, and Section 6 presents our new esti-
mation approach. Section 7 discusses our empirical results, and Section 8
concludes by highlighting important implications and future research
avenues.

2. The debate on the learning curve

Wright (1936) is the first to have translated the concept of learning
in the field of economics. In his study of the aircraft industry, he postu-
lated that experience, as proxied by past production, could help explain
reduction in production costs. A similar approach was taken by Searle
and Goody (1945) for the shipbuilding industry. The empirical relation
between cumulative experience and efficiency growth was formalized
theoretically by Arrow (1962) and Rosenberg (1982) with the “learn-
ing-by-doing” approach. This gave rise to the very first generation of
endogenous growth models explaining long-run economic growth.

On the empirical side, the learning curve became one of the key tools
for forecasting decrease in technology costs (Zachmann et al., 2014).
The initial approach was that of estimating a reduced form relationship
between costs and installed capacity of the form:

ln Cð Þ ¼ α0 þ αK ln Kð Þ þ ε

where C is the installation costs (or installation price), K is the cumula-
tive installed capacity, αK is the slope of the learning curve, α0 is a
Please cite this article as: Witajewski-Baltvilks, J., et al., Bending the
j.eneco.2015.09.007
constant and ε is the error term. The slope can be translated into a learn-
ing rate, which indicates percentage decrease in costs associated with a
doubling of capacity: Learning Rate=1− 2−α. Since learning rates can-
not be assumed equal across technologies, different studies have fo-
cused on different technologies. Zimmerman (1982) provided
learning rate for nuclear power generation, Joskow and Rose
(1985) repeated the exercise for coal-burning generation units.
More recently, researchers have focused on low carbon technolo-
gies such as wind and solar, which are considered key components
of green growth and climate change mitigation (see for instance
McDonald and Schrattenholzer, 2000 and Lindman and Söderholm,
2012).

The learning curve framework has also been widely used in IAMs
with the aim of assessing the costs of mitigation under different policy
scenarios. In IAMs, the prediction of the future installation costs of
non-carbon technologies is paramount both to determine the future en-
ergymix and to evaluate the costs of different climate changemitigation
policies. In these models, the learning curve has often been used as a
simple tool for making predictions on installation costs by using predic-
tions on cumulative capacity supplied by the model themselves.

While the learning curve has gained substantial popularity, some au-
thors question its empirical basis. The empirical correlation between
technology deployment and its cost is not evidence of a causal relation
between the two. There are twomain criticismswhich have been raised
in the literature: First, the learning curve disregards other factors that
could explain reductions in costs, such as investments in research and
development (so-called ‘learning-by-searching’), fall in material costs
or increasing returns to scale. Nemet (2006), for instance, studies
what factors are responsible for the cost reductions of PV panels. He
concludes that learning-by-doing effects explain about 10% of the total
cost reduction, while the rest is due to other factors. As a result of this
criticism, several authors (among others Klaassen et al., 2005 and
Söderholm and Sundqvist, 2007) amended the basic learning curve
framework to include the most important missing factor: the stock of
knowledge accumulated in the R&D process. The new curve, labeled
the “two-factor learning curve”, assumes that the log of installation
costs is aweighted sumof the log of cumulative capacity (which proxies
for experience) and the log cumulative public R&D investments (which
proxy for the knowledge stock).

The second major problem pointed out by the critics of the learning
curve is that of reverse causality. The positive correlation between
installation costs and cumulative capacity observed in the data
may simply reflect the causal effect of cost reductions on investment
in capacity. Nordhaus (2009) presents a simple model which shows
that if installation costs are driven by an exogenous trend, OLS esti-
mates are biased and do not capture the true causal effect of capacity
growth on reduction in costs. Söderholm and Sundqvist (2007)
suggest using an instrumental variable approach to estimate the
learning rate correctly. Söderholm and Klaassen (2007) also explore
the simultaneity problem with an instrumental variable approach;
however they instrument only the installation costs in the equation
determining cumulative capacity. Köhler et al. (2006) suggest that
the endogeneity problem could be resolved with panel data econo-
metric methods. We follow this suggestion in our study.

The community of IAMs modelers responded to the learning curve
criticism with two arguments (Wiesenthal et al., 2012). First,
they argue that the one factor learning curve is a useful simplifica-
tion of reality, one that captures relatively well the process under
scrutiny and is extremely useful in advising policy making and de-
sign. They argue that other modeling aspects of IAMs embed simi-
lar levels of uncertainty and that the reduced form relationship
between cost reductions and increased experience (capacity) is not
among the ones that suffer from themost severe problems in this respect.
In our opinion, this argument is weak, as it confounds model uncertainty
with its bias. Moreover, the criticism regarding reverse causality is well-
grounded in economic theory, which predicts that as a result of cost
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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decrease demand for a given good (or, in this case, technology, and hence
installed capacity) will increase.

The second argument presented by IAMs modelers is, in our opinion,
more profound. The modelers note that the aim of IAMs is not a descrip-
tion of economic forces, but rather the formation of predictions about fu-
ture technology costs, energy mix and costs of climate mitigation. The
learning curve in IAMs is not meant to provide insights into the role of
learning by doing in reducing installation costs — rather, in the words of
Wiesenthal et al. (2012), “the learning curve groups several underlying
drivers of cost reduction into one factor that matches empirical data”.

Following this second argument, in this paper we argue that the fact
that learning ratesmay notmeasure the true causal effect of cumulative
experience on installation costs does not constitute a sufficient argu-
ment for abandoning the learning curve equation in IAMs altogether.
We shed some light on the debate surrounding the use of learning
curve estimates to calibrate IAMs by proposing a formal analytical
modelwhich showswhether, andunderwhat conditions, OLS estimates
of the learning rates can be safely used in IAMs. We find that, under
some conditions, an omitted variable problem does not prevent a mean-
ingful application of the learning curve in IAMs. In contrast, the possibility
of reverse causality does constitute a serious limitation. In addition, we
find that the use of the learning curve in IAMs rests on three additional as-
sumptions: the assumption of a linear relationship between capacity and
costs, the stationarity of the series, and the correct specification of the de-
mand for installed capacity in the model.

By providing a precise description of each of these core assumptions,
we open a debate on the trade-offs associated with developing a more
robust but significantly more complex model. We argue that the main
source of concern is not the simplicity of the learning curve model, but
rather the econometric approach used to estimate learning rates. OLS
gives rise to biased estimates, and hence does not provide reliable cali-
bration for IAMs because the very restrictive assumptions on which it
relies are not likely to be satisfied. As mentioned in the introduction,
our analytical framework suggests that the reverse causality and
misspecification error problems can be resolved in a relatively simple
way by replacing OLS with a more appropriate estimation technique
for learning rates. We use such an approach, which is robust to the re-
verse causality problem but preserves the reduced form character of
the learning curve, to provide new estimates of learning curves for
wind turbines and PV panels.

3. The analytical framework

To understand the economic forces that shape the learning curve we
need tomodel the demand and supply curves of themarket for a renew-
able technology. In this section we present a simple, yet reasonably
general dynamic model which guides us in this respect. We first show
how demand for capacity, as suggested by economic theory, depends
on technology installation costs (Section 3.1). We then characterize
the interdependence of installation costs and cumulative capacity
(Section 3.2). For the sake of simplicity we present here only a two-
period model, while we detail the infinite horizon model, which gives
rise to almost identical predictions, in Appendix A1.

3.1. The demand for capacity

In this subsection,we use a simple economicmodel to derive the de-
mand for a renewable technology. The model will serve in Sections 4–6
as a prosthesis that can mimic the behavior of IAMs.

Let C1 denote the technology installation cost (in terms of dollars per
MW) in the period 1, K1 the cumulative installed capacity of the renew-
able technology (in terms of MW) in period 1, I1 the new capacity
installed in period 1, Y(.) the energy production function, P1 the price
of energy (in terms of dollars perMWh).We use K2, C2 and P2 to denote
capacity, installation costs and energy price in period 2.We also use β to
denote the representative firm's (or central planner's) discount rate.
Please cite this article as: Witajewski-Baltvilks, J., et al., Bending the
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The objective function of a firm (central planner) producing energy
from the renewable technology is:

V C;Kð Þ ¼ maxI P1Y K1ð Þ−C1I þ β P2Y K2ð Þ þ C2K2ð Þf g ð1Þ

subject to K2 = (1− δ)K1 + I and Y(K) = Kα. The first order condition
of a firm's optimization problem is:

β P2αKα−1
2 þ C2

� �
¼ C1

If energy price is expected to grow at rate gP, while technology costs are
expected to fall at rate gC, then

β α 1þ gPð Þ P1K
α−1
2 þ 1þ gCð ÞC1

� �
¼ C1

Rearranging and taking logs:

k ¼ −
1

1−α
cþ 1

1−α
pþ ~f β; gc; gPð Þ þ constant

where k, c and p stand for the demeaned values of ln(K2), ln(C1) and

ln(P1) respectively and ~f is a generic function.
Since the constant term includes gC and gP, which may depend on

policies, we shall write

k ¼ −
1

1−α
cþ 1

1−α
pþ f policyð Þ þ constant ð2Þ

As mentioned, an identical prediction could be derived from the in-
finite horizon model (see Appendix A1).

In reality, observed cumulative capacity is going to differ from the
one predicted by the model due, for instance, to model misspecification
error. For this reason, we need to include the error term in the equation.
In vector form, Eq. (2) can be represented by

k ¼ ωcþ γz þ ϵ ð3Þ

where vector z contains all factorswhichdetermine installed capacity in
IAM other than installation costs. All variables in z are demeaned.

IAMs' description of demand is usually more complicated than the
simple structure of Eq. (1↑). In the model such as REMIND or WITCH,
the cumulative capacity is determined in the central planner's inter-
temporal optimization process. It can be derived from the first order
conditions as a log linear function of installation costs and shadow
price of electricity. In models such as IMAGE or POLES, the cumulative
capacity is linked to the installation costs, costs of electricity generated
with other technologies, and the array of macroeconomic variables,
such as level of economic activity, size of population and energy inten-
sity of the economy. One should therefore keep in mind that variables
entering vector zwill differ between IAMs. In Section 4, which is mostly
demonstrative, wewill assume that vector z includes only price of ener-
gy and policy as predicted in Eq. (2)↑. However the general results in
Sections 5 and 6 will be derived for any set of variables in vector z.

3.2. The linear technology model

Let r be the vector of factors that determine the installation cost of
the renewable technology, which includes, among others, public and
private R&D investments, experience – usually proxied by cumulative
installed capacity – and material prices. We will call the elements in
r = {r1, r2, r3,…} the direct drivers of installation cost. These direct
drivers themselves depend on other factors, whichwe refer to as the in-
direct drivers, for instance price of energy, policies, supply of re-
searchers and engineers or demand for materials by other sectors. The
set of indirect drivers can include those factors which are used in
IAMs to determine installed capacity, i.e. elements of vector z. Converse-
ly, the factors which are not included in IAMs, but have an impact on the
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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elements in r, e.g. supply of engineers or business cycle, are gathered in
vector t. All variables in t are demeaned. The example of this structure is
pictured in Fig. 1.

Our model is linear, thus each direct driver of installation cost, ri is a
linear function of elements in z and t, i.e. ri = ∑jδij zj + ∑mνimtm,
where j and m are indexes for factors included in z and t. Thus,

c ¼ ∑iri z; tð Þ ¼ ∑i ∑ jδi jz j þ∑mνimtm
� �

:

The reduced form of this equation is

c ¼ ∑ jδ jz j þ∑mνmtm

where δj = ∑iδij and νm = ∑mνim.
In vector notation,

c ¼ δz þ νt: ð4Þ

3.3. The data generating process

Throughout thepaperweassume that Eqs. (3↑) and (4↑) constitute the
true representation of reality. The datawe observe are assumed to be gen-
erated by this system. In econometric terminology, we take Eqs. (3↑) and
(4↑) as a full description of the Data Generating Process (DGP).

In reality, the DGP is partly hidden for IAMsmodelers. Hence, we as-
sume that they understand and accurately calibrate Eq. (3↑). Converse-
ly, they are likely unable to fully uncover and model the drivers of the
technological progress which reduce the costs of the renewable tech-
nology. Instead, they have to rely on the symbiosis of Eq. (3↑) and the
learning curve,which they can estimate from the data available to them.

In the following two sections we examine what predictions this
symbiosis produces if the data are generated by the DGP. In Section 4
we show that, under some conditions, the symbiosis could indeed deliv-
er correct predictions. In Section 5, we explore in detail what assump-
tions about the DGP are necessary to ensure that the symbiosis gives
rise to such meaningful predictions.

The focus of our exercise, which is meant to mimic the endeavor of
IAMs modelers, is on predicting changes in installation costs resulting
from an increase in one of the factors captured in vector z — typically
we will consider an increase in the energy price. Using our knowledge
about the DGP, we can derive what the best prediction of installation
costs, c, is if we are given information on the realized values in vector z:

E c zjð Þ ¼ δz þ νE t zjð Þ ¼ δþ νE t zjð Þz’ zz’ð Þ−1
� �

z: ð5Þ
Fig. 1. The structure of the general linear technology model.

Please cite this article as: Witajewski-Baltvilks, J., et al., Bending the
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If vectors z and t contain only one factor each (whichwill be the case
in some simplified examples we consider below), then this could be
simply restated as:

E c zjð Þ ¼ δþ ν
Cov t; zð Þ
Var zð Þ

� �
z: ð6Þ

4. How does the learning curve work?

In this sectionwe show two things. First, under specific conditions, the
estimation of the learning curve using traditional OLS techniques and the
use of the estimated parameters in IAMs may produce valid predictions.
We draw on a simple numerical example (Scenario I) to portray the role
of the learning curve and its estimation in the formation of IAMs' predic-
tions. Second, we also show that, under clearly specified assumptions, the
traditional one-factor learning curve can produce valid predictions even if
in reality cost reductions are not the result of learning-by-doing, but rath-
er of other forces which are not modeled within the IAMs. We illustrate
the intuition behind this result in ‘Scenario II’.

To facilitate illustration and focus on the intuition, in this section we
assume that there are only two forces that can potentially influence
technology cost reductions: learning-by-doing and learning-by-
searching. Thus the two elements in r are experience k, which can be
measured by cumulative installed capacity and the knowledge stock h,
measured with the cumulative R&D investment. We assume that, in ac-
cordance with Eq. (2↑), experience and the knowledge stock depend
only on the price of energy; thus vector z contains only one variable,
the log of price, and z = p. We also assume that all factors in vector t
are constant, implying that νt= 0 (since variables in t are demeaned).
As a result we can express cumulative capacity and knowledge stock as
k = δkp and h = δhp. Finally we assume no misspecification error (ϵ =
0). As a result of these restrictions, we can describe the DGP with the
system of two equations:

k ¼ ωcþ γp ð7Þ

c ¼ αkkþ αhh ¼ δp ð8Þ

where δ= αkδk + αhδh. Note that, since t is constant, Cov(t,p) = 0 and
therefore the true evolution of c as a function of p must follow:

E c pjð Þ ¼ δp ð9Þ

4.1. The OLS estimate of the learning rate

The traditional approach to estimate the learning rate takes the form
of the regression

cτ ¼ αkτ þ ητ ð10Þ

where ητ denotes the error term in the econometric model. The OLS
estimator of the learning rate is then

α̂ ¼
dCov k; cð ÞdVar kð Þ

where dCovðk; cÞ = ∑τkτcτ and dVarðkÞ = ∑τ(kτ)2.
Since we assumed that our DGP is restricted to Eqs. (7↑) and (8↑),

the reduced form relation between c and k observed in data is

c ¼ δ
γ þ δω

k:

Hence, simple calculations show that, if the data are generated by
our DGP, the estimate of the learning curve slope generated by the
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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Table 1
The data generating process and IAM's predictions in Scenario I.

c — log of installation costs
k — log of cumulative capacity
p — log of energy price

The data generating process

Δc = −0.1Δk (learning by doing)
Δk = 2Δp − 0 ∗ Δc (demand for capacity)

p k c

Period 1 +10% +20% −2%
Observed slope of the learning curve: 0.1
Period 2 +20% +40% −4%

Integrated assessment model

Equations
c = −0.1 k + constant (learning by doing)
k = 2p + constant (demand for capacity)

Predictions

p k c

Period 2 +20% +40% −4%
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OLS method must be equal to

α̂ ¼ δ
γ þ δω

:

4.2. Implementation in the IAM

Suppose now that a IAM tries to explorewhat the implications are of
a one percent increase in energy price, p, on renewable technology
costs. The solution of our simple IAM specified in Eq. (1↑) must satisfy
Eq. (7↑). Furthermore, if the model includes the learning rate estimated
by OLS, the solution must also satisfy

c ¼ δ
γ þ δω

k: ð11Þ

Ifwe combine these twoconditions,wefind that the solutionwill satisfy

c ¼ δp:

The model predicts that a one percent increase in energy prices (in-
duced for example by increase in the price of CO2 emission permits)
generates a δ% reduction in the installation cost of renewable technolo-
gy. This is exactly in linewith the true dynamics in this economy, as de-
scribedwith Eq. (9↑). Note that our assumptions so far do not imply the
existence of learning-by-doing. Rather, with the two examples below,
we show that the learning curve can deliver results in line with reality
regardless of whether cost reductions are driven by learning-by-doing
(α k ≠ 0 and α h = 0), learning-by-searching (α k = 0 and α k ≠ 0) or
both (αk ≠ 0 andαk ≠ 0). In thefirst example, the estimation of the learn-
ing curve allows to identify the true learning-by-doing effect. In the sec-
ond example, the estimation of the learning curve slope does not
provide information about the true learning rate. However, this does
not prevent the learning curve from delivering meaningful predictions
which could be used to evaluate policies.

4.2.1. Scenario I
Consider a world in which learning-by-doing is the sole driver of tech-

nology cost reduction. An increase in installed capacity leads to
accumulation of experience, which in turn reduces costs. Specifically, in
this example we assume that Δc = −0.1Δk.2 Cumulative Capacity de-
pends on the price of energy, but we assume that it is not affected by
changes in the installation costs (i.e. we assume3 that Δk =
2Δp – 0 ∗ Δc). The assumptions for Scenario I are summarized in Table 1.

Suppose that period 1 (which could be a multi-year period) wit-
nesses a 10% increase in energy price. Such increase in energy price
gives rise to a 20% increase in installed capacity, which results, from
learning effects, in a 2% reduction in installation costs. Further suppose
that in period 2 the government introduces a tax that increases the
price of energy by 20%. This produces a 40% growth of installed capacity,
followed by a 4% drop in costs.

Given this, if at the beginning of period 2 scientists were requested
to evaluate the impact of a tax (i.e. the impact of an increase in price)
on installation costs, they would use observations from period 1 and
conclude that a 1% capacity growth is associated with 0.1% reduction
in technology costs. Thus, they correctly identify the size of the learning
rate. The researchers may also use the model which includes the objec-
tive function specified in Eq. (1↑). If they calibrate themodel accurately,
the model solution must satisfy:

k ¼ 2p:
2 In various scenarios we consider we assume some specific values of the parameters.
However, as we demonstrate in the mathematical analysis, the general results do not de-
pend on the values of these parameters (unless this is very clearly stated).

3 In light of our discussion in Section 3.1, this is a strong assumption. However, we do it
as it greatly facilitates the exposition of the role of learning curve estimation in forming
predictions in IAM.
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This equation is going to be accompanied by the learning curve:

c ¼ 0:1k:

To satisfy both equations, the solution to the model must therefore
imply that

c ¼ −0:2p:

Clearly, the researcherswill correctly predict that a tax that increases
energy price by 20% must produce a 4% cost reduction, in accordance
with the dynamics in the scenario.

4.2.2. Scenario II
In scenario II (Table 2) we shall consider another world. There is no

learning-by-doing and so installation costs are unaffected by growing
cumulative capacity. However, the costs can be reduced by accumula-
tion of R&D knowledge (thus, if h denotes the log of the cumulative
R&D investment, we assume here that Δc = −0.1 ∗ Δh − 0 ∗ Δk).
The knowledge stock is affected by energy prices, namely an increase
in energy price stimulates research and the growth of knowledge
(Δh = Δp). As in scenario I, cumulative capacity depends positively
on energy price (Δk = 2Δp).

Suppose that in the first period price increases by 10%. The increase
in price has two effects: first, it incentivizes capacity building,which as a
result grows by 20% and, second, it incentivizes R&D investment. Higher
R&D leads to faster technological progress and produces a 1% decrease
in installation costs. In period 2, the price of energy, following the tax in-
crease, grows by 20%. The story follows exactly the dynamics in period
1, except that all growths are scaled up: total capacity growth is 40%,
R&D knowledge grow by 20% and costs are reduced by 2%

As in the previous scenario, at the beginning of the first period
scientists are asked to evaluate the effect of a price increase (namely,
a tax) on technology costs. Based on the observations in the first pe-
riod, they find that the slope of the learning curve is 0.05 (20% in-
crease in capacity coincided with the 1% cost reduction). If the
demand structure in IAM is specified and calibrated correctly, it
will predict k = 2p. This equation and the estimated learning curve
(c = 0.05k) jointly imply that Δc = −0.1Δp. Thus, scientists would
predict a 2% cost reduction after a 20% increase in the price of elec-
tricity — in line with reality.
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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Table 2
The data generating process and IAM's predictions in Scenario II.

c — log of installation costs
k — log of cumulative capacity
h — log of cumulated R&D investment
p — log of energy price

The data generating process

Δc = −Δh − 0 ∗ Δk (learning by searching only)
Δk = 2Δp − 2Δc (demand for capacity)
Δh = Δp (demand for research)

p k h c

Period 1 +10% +40% +10% −10%
Observed slope of the learning curve: 0.25
Period 2 +20% +40% +20% −2%

Integrated assessment model

Equations:
c = −0.25 k + constant (learning by doing)
k = 2p − 2c + constant (demand for capacity)

Predictions

p k h c

Period 2 +20% +80% n/a −20%
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Although in scenario 2 the estimated slope of the learning curve
cannot be interpreted as informing on the causal effect of experience
on cost, the learning curve remains a useful tool for predicting tech-
nology costs in IAMs. Changes in cumulative capacity carry a signal
about the underlying economic forces, such as changes in prices or
policies. Whenever IAMs suggest that in one period installed capac-
ity is high, we can infer that prices in this period are also high (or pol-
icy is more stringent). In this circumstance we shall expect high R&D
investment and low technology cost. Consequently we want the
learning curve to have a negative slope even if the true learning
rate is zero.

These simple examples show that the econometric estimates of
the learning curve slope which are fed into IAMs do not have to,
and in fact should not, capture only the direct causal effect of experi-
ence on cost. Rather, they must capture the effect of all factors, which
have the same determinants as cumulative capacity. The above anal-
ysis shows that, under some circumstances which we will discuss in
detail in the subsequent sections, simple OLS estimator meets this
requirement.

If we depart from the stylized examples above, and relax some of the
assumptions on which they are based, the learning curve estimates can
give rise to significantly biased predictions in IAMs. In the next section,
we describe in detail the (strong) assumptions on which the learning
rates estimated as customary in the literature rest, and their implica-
tions for use in IAMs.
4 Note that since t has only one factor, v can be normalized to unity.
5. When does the learning curve work?

In this sectionwe provide a formal and intuitive discussion of the as-
sumptions that are necessary to ensure that the use of OLS estimates of
the learning rate in IAMs delivermeaningful predictions, as is the case in
the two stylized examples above. The assumptions are listed here and
discussed in detail below.

Assumption 1. The absence of reverse causality.

Any variation that influences technology cost, c, but included in vec-
tor z, which is used by IAM to predict cumulative capacity, has no effect
on cumulative capacity. This means that either all elements in vector t
are constant (for every k, Var(t k)= 0) or, alternatively, that installation
costs have no effect on cumulative capacity (ω = 0).
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j.eneco.2015.09.007
Assumption 2. Stationarity of the relation between factors controlled
and uncontrolled in IAMs.

The relation between those drivers which are accounted for in IAMs
and those which are not is constant over time. Put differently, for any
pair j and k, Cov(zj,tk) is stationary.

Assumption 3. The misspecification errors are constant.

Misspecification errors do not vary over time, i.e. Var(ϵ) = 0

Assumption 4. The stationarity of the relation between factors explicit-
ly modeled in IAMs.

One of these three conditions must be satisfied:

(i) All factor that are explicitly modeled in a IAM (that is, all factors
included the z vector) are collinear, i.e. z= πzwhere π is a vector
of constants and z is a scalar.

(ii) For every pair of factors (i, j) included in the z vector, δiγi
¼ δ j

γ j
. Thus

in vector notation, δ = ηγ, where η can be any scalar.
(iii) All factors included in the z vector have exactly the same effect

on k and on c, i.e. δ = ιd and γ = ιg where ι is a vector of ones
and g and d are constant scalars.

Assumption 5. Precise predictions of IAMs.

IAM's predictions on the future values in vector z are correct and
precise.

Assumption 6. k the linearity of the DGP.

All the parameters in the DGP are stationary, i.e. δ, ν,ω and γ do not
vary over time.

5.1. Absence of reverse causality

Note that in Section 4 we assumed that factors in vector twere con-
stant. This clearly does not describe reality. In addition to the price of en-
ergy, policy stringency and the interest rate, there are number of other
factors that determine technology costs and that fluctuate over time in
a random fashion. Innovations are rarely deterministic; their number
and their value are both random. Similarly, the price of materials fluctu-
ates over time in a random fashion. This implies that the inclusion of the
three factors included in vector z is not sufficient to determine the level
of costs without any prediction error.

The presence of this error can result in serious complications in
estimating the learning curve. If in the DGP ω ≠ 0, any shock in t
(e.g. the unexpected arrival of a successful innovation) followed by
a shock to cost, would promote growth of installed capacity. This
would produce a correlation between the two variables in the data,
which is not meant to be captured in the learning curve. In IAMs,
the learning curve must capture only the effect of experience and
factors that have the same determinants as experience on technolo-
gy cost.

To illustrate this point with the formal model, suppose that there is
only one factor in t, which we label t. We also assume that vector z
contains only one variable. We allow for t to vary over time, that is
Var(t) ≥ 0. In this section we still assume that Cov(z,t) = 0 (we discuss
this assumption in Section 5.2). The DGP can be summarized then as4

k ¼ ωcþ γz ð12Þ

c ¼ δzþ t: ð13Þ
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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In this case, the OLS estimate of the learning curve's slope is going to
deliver

α̂ ¼
dCov k; cð ÞdVar kð Þ

¼ δ
γ þ δω

1þ Γð Þ

where Γ ¼ γω
δ

VarðtÞ
VarðkÞ Thus the estimated learning curve is:

c ¼ δ
γ þ δω

1þ Γð Þk:

Combining this equationwith the IAM's first order condition Eq. (12
↑) we find that

c ¼ 1þ Γð Þ
1−

δω
γ

Γ
δz

Comparing this equationwith the true relation between c and z stat-
ed in Eq. (13↑), we conclude that the IAM can deliver predictions that
are in line with reality for any values of parameters if and only if Γ =
0, i.e. if and only if Var(t) = 0 or ω = 0. If Var(t) N 0, then for the
usual signs of the parameters (ω b 0, δ N 0, γ N 0) Γ N 0 and the effect
of z on c is exaggerated.We illustrate this logic with the example below.

5.1.1. Scenario III
Consider a world similar to the one in Scenario II. There is no

learning-by-doing, so installation costs are not affected by changes in
capacity. However, cost does depend on the stock of knowledge
Δc=−Δh+0 ∗Δk. Assume also that, in contrast to Scenario II, the evo-
lution of that knowledge is totally random. The capacity depends on in-
stallation costs and on energy price Δk = −2Δc + 2Δp.

In period 1, energy price increases by 10%. Thus capacity increases by
20%. In the same period, a (random) discovery leads to a 10% drop in in-
stallation costs. This leads to a further 20% increase in capacity, so over-
all capacity grows by40% in period 1. In period 2 a 20% tax increase leads
to a 40% increase of capacity. As in period 2 there is no change in knowl-
edge, installation costs remain unchanged.

At the end of period 1, scientists conclude that a 40% increase in ca-
pacity is associatedwith a 10% drop in installation costs. They estimate a
“learning rate” equal to 0.25. Suppose they also know – from other
sources – that the elasticity of capacity with respect to energy price is
2. As a result they correctly predict a 40% increase in capacity after
20% tax, but wrongly forecast a 10% reduction in installation costs,
which according to their calculations should follow from the learning
effect.

The comparison of Scenarios I and II with Scenario III suggests that
scientists are able to obtain a meaningful estimate of the “learning
rate” as long as they base their analysis solely on those instances in
which capacity has been affected exclusively by the exogenous shocks.
In fact, this conclusion is going to be a starting point for the derivation
of the robust estimator presented in the following section.

5.2. Stationarity of the relation between controlled and uncontrolled factors

Assumption 2 states that the covariance between factors in z and
factors in t must be constant over time. Note that this assumption
becomes redundant if Assumption 1 holds under constancy of t. On
the contrary, Assumption 2 gains importance if Assumption 1 is satisfied
because ω = 0. In this case the estimated learning curve becomes:

c ¼ δþ γ2
dCov z; tð ÞdVar kð Þ

 !
k
γ
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If we combine thiswith the IAM's demand for capacity as specified in
Eq. (12↑) (with ω = 0), we find that the prediction of the IAM must
satisfy:

~c ¼ δþ
dCov z; tð ÞdVar zð Þ

 !
~z

where ~c and ~z are the future predictions of c and z.
We can compare thiswith the true functional relationship between c

and z, which can be derived from the DGP as

E c ~zjð Þ ¼ δþ Cov ~z; tð Þ
Var ~zð Þ

� �
~z: ð14Þ

Thus, the model would correctly predict reality only if dCovðz; tÞ ¼
Covð~z; t Þ, that is if the covariance does not change over time.

The assumption, may appear innocent, but it could be particularly
restrictive for evaluating policy scenarios. Recall that the assumption re-
quires Cov(t,z) to be stationary, i.e. unchanging over time. Imagine now
that t is a simple time trend and z is the policy variable. In this case the
assumption requires policies not to change over time. Clearly this is
highly restrictive as the scenarios, which have to be evaluated by
IAMs, usually do involve changes in policies.

5.3. Absence of misspecification error

In this subsectionwe demonstrate that the use of OLS to estimate
the learning rates produces biased results if misspecification error
varies over time, i.e. if Var(ϵ) ≠ 0. Misspecification error arises if
observed cumulative installed capacity is determined by different
factors from those used to predict cumulative installed capacity in
IAMs. In our framework, it implies that, while IAMs assume k =
ωc + δz, in reality (in the DGP) the true cumulative capacity is gen-
erated by the function k = ωc + δz+ϵ, where ϵ could be a random
variable.

To understand the intuition of why variation in ϵ could cause a prob-
lem, recall that in IAMs capacity serves as a signal informing on the level
prices or policies, which through various channels, shape the cost of
technology. To calibrate correctly these interdependence, we have to
rely on the assumption that also the capacity observed in the data is a
clear signal of underlying economic forces. The presence of ϵ introduces
noise into this signal. If the amount of this noise is substantial, or, equiv-
alently, if observed capacity does not respond to changes in prices or
policies as well as the level of capacity generated in IAMs, empirical
estimation will suggest that capacity is a poor predictor of costs,
although in fact it is not.

For the sake of simplicity, we maintain Assumptions 1 (with
Var(t)=0), 4 and 5. In this case, the OLS estimate of the learning curve's
slope is going to deliver

α̂ ¼
dCov k; cð ÞdVar kð Þ

¼ δ
γ þ δω

1þΩð Þ

whereΩ ¼ − VarðϵÞ
VarðkÞ. In analogy to Subsection 5.1, the combination of the

estimated Learning Curve with the IAM's first order condition implies:

c ¼ 1þΩð Þ
1−

δω
γ

Ω
δz:

Thus, again, the use of estimated learning rates in IAMs can deliver
predictions that are in line with reality for any parameters values only
if Ω = 0, i.e. if Var(ϵ) = 0. If Var(ϵ) N 0, then for the usual signs of the
parameters (ω b 0, δ N 0, γ N 0) the effect of changes in z on changes
in c predicted in IAMs is going to be smaller than in reality.
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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5.4. The stationarity of the relation between controlled factors

In Section 4, we have assumed that vector z contains only one
variable (namely the price of energy). If we allow the vector z to
contain more than one factor, then, in general, the univariate learn-
ing curve does not allow us to separately identify the effect of each
factor in z on costs . Below we clarify this point using a theoretical
framework.

Imagine that vector z contains two variables, z1 and z2. Assume
that Assumptions 3 and 5 hold. In addition, assume that ω = 0 and
νt is constant. These last two assumptions simplify the structure
significantly, but still allow us to portray the problem associated
with multiple z's. The DGP, restricted in this way, can be summa-
rized as

k ¼ γ1z1 þ γ2 z2 ð15Þ

c ¼ δ1z1 þ δ2 z2 ð16Þ

The estimates of the slope between technology costs and cumu-
lative capacity, using data that are generated by this DGP, give rise
to

α̂ ¼
dCov k; cð ÞdVar kð Þ

¼ δ1γ1
dVar z1ð Þ þ δ2γ2

dVar z2ð Þ þ δ1γ2 þ δ2γ1ð ÞdCov z1; z2ð Þ
γ2
1
dVar z1ð Þ þ γ2

2
dVar z2ð Þ þ γ1γ22dCov z1; z2ð Þ

:

Combining the estimated learning curvewith Eq. (15↑) (which is as-
sumed to be known to the researchers) implies:

c ¼ α̂k ¼

¼ δ1γ1
dVar z1ð Þ þ δ2γ2

dVar z2ð Þ þ δ1γ2 þ δ2γ1ð ÞdCov z1; z2ð Þ
γ2
1
dVar z1ð Þ þ γ2

2
dVar z2ð Þ þ γ1γ22dVar z1; z2ð Þ

γ1z1 þ γ2z2 þ constantð Þ:

This reduces to the true Eq. (16↑) only in three instances: when the
factors in z are collinear: z1 = πz2, when z1has exactly the same impact
on k and c as z2 i.e. if δ1 = δ2 and γ1 = γ2 or when δ1

γ1
¼ δ2

γ2
(Please see

Appendix A2 for details).
Turning away from the bivariate example, suppose that Z is the ma-

trix that contains all the demeaned observations of variables in z that
are available at the time of estimation of the learning curve. Let ~Z be
the matrix with the expectations about future values of z's. If we
allow for more than two factors in vector z and allow ω ≠ 0 (although
maintaining Assumptions 1, 3 and 5), it can be shown that estimating
the learning curve with the data generated by Eqs. (3↑) and (4↑), and
combining it with the correctly specified Eq. (3↑), must satisfy

E c ~Z;Z
���� �

¼ ωδþ γð ÞZ 0Zδ 0
ωδþ γð ÞZ 0Zγ 0 ~Zγ 0 þ constant

where apostrophe denotes the transpose of the matrix or vector. If fac-
tors in z are collinear, i .e. if z= π'z1 where π is a weighting vector with
π1= 1, then Z= z1π (where z1 is a vector of demeaned observations on
z1) and

E c ~Z;Z
���� �

¼
ωδþ γð Þπ 0h i

z1
0z1

h i πδ 0h i
ωδþ γð Þπ 0h i

z1
0z1

h i πγ 0h i ez1 πγ 0h i
þ constant

where objects in the square brackets are scalars. This reduces to

E c ~Z;Z
���� �

¼ ~Zδ 0 þ constant

which corresponds exactly to the functional relation associatedwith the
DGP. A similar result is obtained if δ = ηγ and if δ = ιd and γ = ιg
where η, d and g are scalars.
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Note that if learning-by-doing is the sole determinant of technology
costs, and if the true value of the learning rate is 1 − 2−α, then indeed
δ = ηγ with η ¼ α

1−αω , and the assumption is satisfied. However, if
one wishes to preserve the reduced form of the learning curve and to
allow technology cost to be shaped by other processes than learning-
by-doing, then the assumption is fairly restrictive, especially if one
wants to avoid restricting the parameters δ and γ. This means that it
may be particularly problematic if one wishes to perform a policy exer-
cise within a IAM. If one wishes to explore the effect of a rapid increase
in policy stringency, it is difficult to assume that the relation between
policy and other determinants of cumulative capacity in IAMs (e.g. ener-
gy price) will stay the same as before the policy shock. It seems that the
onlyway to relax this assumption is to replace the learning curvemodel
with amultivariate regression similar in form to Eq. (4↑). The estimated
reduced form model could be included directly in the IAM. The disad-
vantage of such an approach is the loss of generality of the model:
since every IAM contains a different set of variables in vector z, the
regression and its estimates would not be universal.

5.5. Correct and precise predictions of z

Assumption 5 requires that information available to the IAM model
is sufficient to correctly predict the future values in vector z, i.e. if ~z de-
notes IAMs predictions of vector z, then ~z= z. This assumption ensures
that all variables in vector z are exogenous in the sense that they are in-
dependent of variation in t: since t cannot be observed by the IAM, IAM
can correctly predict z only if z does not depend on t.

The lack of precision of the estimates will not only result in lower
precision in predicting future technology costs, but will also imply that
the effect of variation in ~z on the costs will be systematically biased.
To see this, suppose that in the true DGP and in IAM, the cumulative ca-
pacity is determined by only one factor, z (which could be, for instance,
the price of energy). However IAMs are unable to precisely predict the
values of this variable. Instead, they could predict only a part of its var-
iation. In particular, assume that z= ~z+ η, where ~z is can be predicted
by IAM, while η cannot. For the sake of simplicity of the example,
assume also that ~z and η are orthogonal.

The best prediction of c given the information on ~z is given by:

E c ~zjð Þ ¼ δþ Cov ~z; tð Þ
Var ~zð Þ

� �
~z: ð17Þ

If OLS estimates are based on the true historical values of z, and if
Assumptions 1–4 are satisfied, then the effect of~zon c in IAM is given by

c ¼ δþ Cov z; tð Þ
Var zð Þ

� �
~z

which, given that z = ~z + η is equivalent to

c ¼ δþ Cov ~z; tð Þ þ Cov η; tð Þ
Var ~zð Þ þ Var ηð Þ

� �
~z:

This clearly differs from Eq. (17↑) above.
To understand how restrictive this assumption could be, consider a

situation when variation in installation costs affects the decision on
the level of feed-in-tariffs, which in turn affects energy price (i.e. the
value of z in this example). In this situation t has a causal effect on z.
Since, by definition, variation in t is not controlled for in IAM, the
model's prediction ~z cannot take into account the variation in t. Instead,
the variation in twill enter the term η. This implies that Cov(η,t) ≠ 0 and
the prediction of IAMs is biased.
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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6. A two stage estimator of the learning rate

In this section,we present a novel approach for estimating the learn-
ing curve parameter for use in IAMs. As discussed in Section 5.1, focus-
ing on the part of cumulative capacity generated by exogenous factors
(as modeled in the IAMS) can help to overcome the biggest issue we
have identified, namely reverse causality. Suppose that in the regression
(10↑), instead of using observed data on cumulative installed capacity,
we use its projections based on explanatory variable, z, that is

k� ¼ β̂z

where β̂ is an OLS estimator of the coefficient β in the regression k =
βz + ξ.

Using the framework presented above, we can compute βˆ as follows:

β̂ ¼ Cov k; zð Þ
Var zð Þ ¼ ωδþ γ þω

Cov z; tð Þ
Var zð Þ :

If instead of using actual values k, we use its projections k⁎, the esti-
mator of the learning curve becomes:

α
∨ ¼ Cov c; k�ð Þ

Var k�ð Þ ¼
δþ Cov z; tð Þ

Var zð Þ
γ þ δω þ Cov z; tð Þ

ðVar zð Þ ω

combining our new learning curve c = αˇk with the IAMs prediction
k = ωc + γz implies:

~c ¼ δþ Cov z; tð Þ
Var zð Þ

� �
~z

which is exactly the same as Eq. (6↑).
More generally, as long as we maintain Assumptions 2, 4 (i) and 5,

we can construct the fitted values as

k̂ ¼ β̂z
where β̂=(Z′Z)-1Z′k,Z is amatrix of demeaned observations of z, andk
is a vector of demeaned observations of installed capacity.

In this case, estimating the learning curvewith the usual OLS estima-
tor, but replacing observed with the fitted values of installed capacity,
yields:

α
∨ ¼ δω þ γð ÞZ0 þωνT 0ÞZ Z0Z

� �−1Z0ðZ δ0ω þ γ0� �þωTν0
� �h i−1

�

δω þ γð ÞZ0 þωνT 0� �
Z Z0Zð Þ�1Z0 Zδ0 þ Tν0� �

:

Let us use ~c, ~k and ~z to denote future levels of c, k and z predicted

in IAMs. It can be shown that employing the learning curve ~c= αˇ~k
together with the IAMs first order condition ~k = ω~c + γ~z must satisfy

~c ¼ δþ νT 0Z Z0Z
� �−1

� �
~z:

The expected value of the prediction is therefore

E ~c ~z;Zjð Þ ¼ δþ νE T 0Z Zj� �
Z0Z
� �−1

� �
~z

which is exactly the same as Eq. (5↑) if EðZ0TjZÞ ¼ Eð eZ0~Tj~Z Þ, which is
ensured by Assumption 2.
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6.1. Difference with respect to IV estimator

The two-stage estimatorwe propose in this section can resemble the
Instrumental Variable (IV) estimator, a common tool in applied econo-
metric studies. Similar to our approach, the IV estimation involves run-
ning a two-stage procedure with the aim of isolating the exogenous
component of the endogenous regressors and then estimating the caus-
al effect of such regressor on the variable of interest. Applied to the
learning curve example, a first stage IV approachmodels cumulative ca-
pacity as a function of carefully chosen regressors, called instruments.
The fitted values obtained in this first stage regression are then used
as a regressor in the equation of cost.

Despite the similar form, there are important differences between
our approach and the IV approach. The two estimators were designed
for different purposes. While the IV estimator is meant to identify the
causal effect of cumulative capacity on installation cost, our two-stage
estimator has been tailored to estimate the reduced form relation be-
tween the two and to ensure that the estimated relation will deliver
meaningful predictions when incorporated in IAMs. As a result of this,
the two estimators require different sets of assumptions, and they
may require different sets of regressors in the first stage. In this section
we argue that the IV estimator is less appropriate for the estimation of
learning curves for use in IAMs than the two stage estimatorwe propose
here.

The first major difference is the criterion for choosing regressors in
the first-stage regression. The IV approach involves a careful selection
of instruments in the first-stage regression. The only source of correla-
tion between an instrument and installation cost must be through its
causal effect on cumulative capacity. This means that the instrument
cannot affect installation cost directly or through any other omitted
channel— e.g. by affectingmaterial prices,which can thenhave an effect
on installation cost. This also implies that installation cost cannot have
an impact on the instrument. If these conditions are not satisfied, the in-
strument is not valid and the assumptions of the IV approach are
violated.

In our proposed approach, there is no room for selecting the regres-
sors in the first stage. Vector zmust contain all variables that, in the spe-
cific IAM considered, are used to determine cumulative capacity. One
can imagine a perfect instrument, for example availability of wind or
number of sunny days in a year, which satisfies the criterion for a
valid instrument. However if this instrument is not included in the
IAM under consideration, it cannot be included in the vector z and,
thus, according to our method, should not be used as a dependent var-
iable in the first-stage regression.

It is important to stress that the IV approach to estimate learning
curve parameters for use in IAMs is not an alternative to the approach
we proposed. The IV estimator enables us to identify the causal impact
(if any) of cumulative capacity on installation cost. However, the learn-
ing curve employed in IAMs are not supposed to capture the causal ef-
fect of capacity on costs, rather, as argued above, they need to capture
the reduced form relation between the two.

To further understand this difference, consider the following exam-
ple. Suppose that the cumulative capacity is determined by two factors:
wind strength,w, and price of energy, p. Assume that k= p+ w. Next,
suppose that dynamics of installation costs are driven by learning-by-
doing and the direct effect of energy price — for example energy price
affects the cost of wind turbine production. In particular, suppose that
c = −k + p. Note that wind strength is a perfect IV instrument since
it satisfies the exogeneity criteria. Conversely, p cannot be an IV instru-
ment since it affects installation costs not only through its effect on k,
but also directly. Consider an IAM, which determines cumulative capac-
ity using energy price only — wind strength is not a variable in the
model. Thus kIAM = pIAM. The IAM uses the learning curve, cIAM =
αkIAM to determine installation costs. If researchers estimated α by
using an IV method with wind strength as the instrument, they would
find α = 1, i.e. the true causal effect of cumulative capacity. Now
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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Table 3
First stage regression results for PVpanels technology. Standarderrors clustered at the lev-
el of countries below the coefficients.

Model 1 Model 2 REP Model 3 REP

Energy price 9.87*** 6.19***
1.34 1.54

Policy index 0.53*** 0.32***
0.06 0.07

R-squared 0.28 0.26 0.39
F-stat. 359.1 349.5 274.0
Observations 457 457 457

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.

Table 4
Second stage regression results for PV panels technology. Time-frame: 1990–2012.
Standard errors below the coefficients.

Model OLS Model 1 Model 2 REP Model 3 REP

Observed Cum Cap. −0.161***
0.013

Fitted Cum. Cap. −0.268*** −0.342*** −0.254***
0.075 0.105 0.058

R-squared 0.88 0.48 0.90 0.76
Observations 22 22 22 22

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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imagine that in one of the scenarios considered in the specific IAM, the
price of energy increases by 1%. Researchers conclude that k increases by
1% and installation costs drop by 1%. This prediction is wrong: in fact a
1% increase in price will have no effect on installation costs, since the
two effects – the effect through cumulative capacity and the direct effect
–will balance each other out. This example shows therefore that the IV
estimate of the learning ratewill bias the results in IAMs. A similar prob-
lem has been discussed in scenario 2. In that scenario, costs are affected
only by accumulation of knowledge; there is no causal effect of changes
in experience on cost (Δc = −Δh − 0 ∗ Δk). Yet, as explained in
Section 3, setting the coefficient of the learning curve equal to zero
would result in a misprediction from IAMs.

6.2. Limitations of approach

Althoughwe argue that the estimator proposed in this section is bet-
ter than the simple OLS or IV estimator, it is important to be aware that
it does not solve all limitations of the learning curve, and it still requires
some strong assumptions. In particular, the validity of the learning
curve predictions in IAMs will still rest on Assumptions 2, 4, 5 and 6.

For instance, as mentioned in Subsection 5.2, Assumption 2 may be
particularly restrictive for evaluating policy scenarios. Recall that the as-
sumption requires Cov(t,z) to be stationary, i.e. not changing over time.
If t is a simple time trend and z is the policy variable, then the assump-
tion means that policies are assumed not to change over time. Clearly
this is highly restrictive as the scenarios which are usually evaluated
by IAMs do involve policy changes. Assumption 4 (described in
Subsection 5.4) is equally problematic. Unless we put restrictions on
the parameter values, the assumption can be satisfied only if variables
in z are collinear. If one wishes to explore the effect of a rapid increase
in policy stringency, it is difficult to assume that the relation between
policy and other determinants of cumulative capacity in IAMs (e.g. ener-
gy price) will be the same as before the policy shock.

The assumption that IAMs are able to deliver the correct predictions
on vector z is fragile too. For instance, consider the case of installation
costs affecting feed-in tariffs, which in turn have an impact on the com-
ponents of vector z (e.g. electricity price). In this case a variation in t,
which, by definition, cannot be controlled for in IAMs, will be transmit-
ted to variation in z, which cannot be predicted by IAMs, hence violating
the assumption.

The solution to these problems would be to replace the learning
curves in IAMswith a different, more complex andmore demanding ap-
proach. Note that these problems cannot simply be resolved by a mod-
ification of the estimation procedure (for instance, as we show above,
the standard IV approach cannot be used in the learning curve context).
This is in contrast to Assumptions 1 and 3, which we were able to relax
withoutmodification of the form of the learning curve and the structure
of IAMs.

One solution to these problems is to replace the learning curve with
another model which includes multiple factors (two-, three-factor
learning curves). The advantage of this approach is that the amount of
variation in vector t will be minimized, which solves most of the prob-
lems listed above. The significant disadvantage is that IAMs has to be ad-
justed to predict not only cumulative capacity but also other factors (e.g.
knowledge stock andmaterial prices).While implementing such chang-
es rests in the hand of modelers, we hope that by framing the problem
in the formal model, we will facilitate the future debate on tradeoffs as-
sociated with such choices.

7. (More) consistent estimates of the learning rate

In this section we demonstrate how our estimation procedure could
be used in practice. We estimate the learning rates of two key low car-
bon technologies which are featured in IAMs: wind turbines and solar
PVs. As we noted earlier, the set of regressors in the first-stage must
contain only those variables that, in the specific IAM considered, are
Please cite this article as: Witajewski-Baltvilks, J., et al., Bending the
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used to determine cumulative capacity, i.e. variables which are
contained in vector z. Since the components of vector z differ between
models, the estimation procedure described in the previous section
should bemodel-specific, i.e. each IAM should estimate its own learning
parameters. However, running a separate analysis for each IAM is not
feasible within the scope of this study. Instead, we selected a set of var-
iables in vector z which can reasonably approximate the dynamics of
demand for capacity in various IAMs, namely price of energy and policy
mix. The variation of energy price reflects key macroeconomic forces:
population growth, level of economic activity and energy intensity,
which impact demand for capacity in several IAMs (such as IMAGE,
POLES, REMIND or WITCH). Low competitiveness of alternative energy
sources (e.g. fossil fuels) will also be reflected in high energy price. An
inclusion of policy stringency in vector z results from the fact that nearly
all IAMs allow cumulative capacity to be affected by some policies.

Our estimates are a first attempt to implement our procedure and
we have to acknowledge several limitations. Most importantly, the va-
lidity of our estimates depends crucially on how well our observables
(energy prices and the index of policy stringency), reflect the true vari-
ation of vector z in IAMs. For example, if in a IAM cumulative capacity is
linked to feed-in-tariffs, and feed-in-tariffs are not well correlated with
our policy stringency index,wewill find that variation in cumulative ca-
pacity predicted in the first stage of our empirical model is different
than the variation in cumulative capacity predicted in IAMs. As a result
the explanatory variable in the second stage will suffer from the mea-
surement error, which would bias our results. The only way to solve
this problem is to ensure that vector of observables z used in the empir-
ical estimation is as close as possible to the vector z specified in the IAM.
A crucial avenue for refining the estimates in future studies is therefore
running the estimation for each model separately.

Second, due to limited data availability, the dependent variable in
the second-stage regression is the installation cost reported for the US.
This questions the external validity of the model: if the estimates are
to be used for other regions, one has to assume that the differences
between the installation costs between regions are independent of the
differences in energy prices and policies.
learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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Table 5
First stage regression results forwind turbines technology. Standard errors clustered at the
level of countries below the coefficients.

Model 1 Model 2 REP Model 3 REP

Energy price 9.89*** 3.50***
0.93 0.93

Policy index 0.69*** 0.56***
0.06 0.07

R-squared 0.12 0.40 0.41
F stat. 402.3 1083.4 626.3
Observations 588 588 588

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.

Table 6
Second stage regression results for wind turbines technology. Time-frame: 1990–2012.
Standard errors below the coefficients.

Model OLS Model 1 Model 2 REP Model 3 REP

Observed Cum Cap. − .051
0.031

Fitted Cum. Cap. 0.001 − .076* −0.053
0.052 .039 0.033

R-squared 0.12 0.00 0.22 0.14
Observations 22 22 22 22

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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Finally, as discussed in Section 6.2, the unbiasedness of our estimates
rests on the Assumptions 2, 4, 5 and 6. Specifically we have to assume
that the variation in prices and policies are independent of variation in
t. This assumption will not be satisfied if energy price and policy index
depend on the level of feed-in-tariffs, which are likely affected by the
level of installations costs (and hence depend on t). Since, as explained
in the paper, we cannot rely on the IV estimator, our best option is to
minimize the risk that the prices we include in the regression are en-
dogenous. To this end, in the first stage regression we used lagged
values of energy prices and policies. We also use an energy price
index, rather than an electricity price index. The feed-in-tariff constitute
only a small fraction of energy price and therefore the size of its effect on
energy price is small. Similarly, our baseline policy index is rather gen-
eral and depends on the feed-in-tariffs in a relatively small extent.

We focus on solar PV panels and wind turbines. Our dataset covers
the period 1990–2012 for the 34 OECD countries. Energy prices and
data on cumulative installed capacity are from the International Energy
Agency Statistics. Data on installation costs for the wind turbines and
solar PV technologies come from the Berkeley Lab and Mints (2014)5,
respectively, and refer to the prices of wind turbines and PV panels in
the US. In addition, we include a policy index describing the stringency
of renewable energy policies. This is constructed by identifying different
policy indexes implementing in any given countries and giving each im-
plemented instrument a value of one. The policy index (REP) is then the
sum of the single instruments at any give time. This indicator ranges
from 0 to a theoretical maximum of 10 (for details on the index, please
see Bosetti and Verdolini, 2013). In the appendix, we present results ob-
tained with two alternative indicators: the Environmental Policy Strin-
gency index and a variable indicating the level of wind (or solar) feed-
in-tariffs (FIT), both from OECD (Botta and Koźluk, 2014). One may
argue that indeed the Feed-in-Tariffs are themost relevant policy in de-
termining cumulative capacity. However, one should keep in mind that
in this study the primary criterion for choosing the policy index in vec-
tor z is how well it reflects the variation of policies in the IAMs. The
modeling of policies in IAMs is very simple, usually focused on the
level of carbon tax and rarely capturing the Feed-In-Tariffs. For this rea-
son, there is no objective ranking of the policy indexes, whichwe use in
the paper — instead, the ranking is IAMs specific.

We first regress (the log of) cumulative installed capacity on the
lagged values of (the log of) energy prices and on the policy index
(which constitute our vector z). Since for this stage panel data for all
countries and variables are available, we use the Fixed Effect estimator.
From the regression we get the fitted values of installed capacity for all
34 countries. We aggregate them to obtain the total fitted cumulative
capacity for each year. This fitted cumulative capacity is then used as
an explanatory variable in the second stage regression where (global)
installation costs are the dependent variable. The OLS estimate from
5 Accessed from http://emp.lbl.gov/publications/2012-wind-technologies-market-
report and http://emp.lbl.gov/publications/tracking-sun-vii-historical-summary-installed-
price-photovoltaics-united-states-1998-20.
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this second stage estimator is effectively a two-stage least-squares esti-
mate, which has been described in Section 6.

Results for solar PV are reported in Table 3 (first stage) and Table 4
(second stage). The first-stage regression indicates that energy prices
and policy stringency are significant determinants of cumulative capac-
ity. The second-stage regressions suggest that the learning rate is higher
than that estimated with the OLS estimator: while the OLS estimates
predict a 12% learning rate (which corresponds to the coefficient of
−0.161), the learning rate predicted by our model with full specifica-
tion (Model 3 REP) predicts a 19% learning rate (which corresponds to
the coefficient of −0.254). The results are very similar if we replace
our policy indicator with the two alternatives (see the Appendix A3,
Tables 7 and 8). We find that the difference between the OLS estimate
and our two stage least squares estimate is not statistically significant.
However, as we demonstrate below, the difference of estimates for
the solar technology learning rates can have a significant consequence
for IAM's predictions.

The analysis in the previous section suggests that the OLS and the
two-stage estimates are different because the latter is not subject to re-
verse causality and misspecification biases. Section 5.1 shows that re-
verse causality leads to an overestimation of the learning rate for
IAMs. Themisspecification bias should in turn give rise to an underesti-
mation of the learning rate. Our results indicate that in the case of solar
PV technology, the misspecification bias dominates. This suggests that,
in addition to policy and price of energy, there are other important de-
terminants of demand for photovoltaic panels or that the response to
the demand for policy and price changes is delayed.
Fig. 2. PV installation costs predicted by the WITCH model under new (red line) and old
(blue line) estimates of the learning rates. The new estimates are taken from column 4
in Table 4. The old estimates are taken from column 1 in Table 4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

learning curve, Energy Econ. (2015), http://dx.doi.org/10.1016/
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Focusing on wind turbines, results of the first and second stage esti-
mation are presented in Tables 5 and 6, respectively . As in the case of
solar, the first-stage regressions for wind technology suggest that policy
stringency and energy prices are significant determinants of cumulative
capacity. The regressionwith full specification indicates that 1% increase
in energy price produces a 3.5% growth in cumulative capacity. The ef-
fect of policy stringency is statistically significant, but economically
less pronounced — an additional policy leads to half percent increase
in capacity.

The results of the second-stage regression suggest that the simple
OLS estimator is slightly biased downward. The two-stage estimate of
the learning curve predicts a 3.7% learning rate (which corresponds to
the coefficient of −0.053) if vector z includes the price of energy and
thepolicy index6. For comparison, the simpleOLS estimates of the learn-
ing rate using data for the period 1990–2012 implies that learning rate
for wind power is 3.6%. Again, we find that the difference between the
OLS estimate and our two stage least squares estimate is not statistically
significant.

Note that the results for wind are less stable than those for solar. For
instance, changing the policy index drastically impacts the results
(Appendix A3, Tables 9 and 10). One likely explanation is the change
in Var(ϵ), Var(t) and Cov(t,z), which affect the size of the difference.
For example, if the variation in the policy stringency in recent years
was not well captured by our policy stringency index, then
Var(ϵ)increased and the negative bias due to imperfect determination
of cumulative capacity started to dominate, or even offset the positive
bias due to reverse causality.

In addition, the regressions using the most recent data report a very
low R-square, which questions the ability of the learning curve to pre-
dict future installation costs. In our view, the high sensitivity and low
explanatory power is an argument to search for new tools, which
could forecast future installation costs in case of wind technology.

As a last step in this section, we compare the predictions of the tech-
nology installation costs obtained from the WITCH integrated assess-
ment model under the new and old estimates of the learning rate. We
first run themodel, using the learning rates obtained from the tradition-
al OLS regression (column 1 in Table 4) for the PV technology. We then
rerun the model, using the estimates delivered by our 2SLS estimator
(column4 in Table 4). The results are presented in Fig. 2. The predictions
under OLS estimates imply that the installation costs in 2100will be 25%
of the current cost. If we use the new estimates, the predicted installa-
tion costs are 12% of the current cost.
8. Conclusions

This paper lists and formally describes some instances in which the
learning curve delivers biased results if OLS estimates of the learning
rates are used to calibrate IAMs. For each instance, we are able to char-
acterize the direction of the bias. The first instance takes place when
an exogenous change in costs of a technology (e.g. due to change inma-
terial prices) promotes a change in installed capacity. If we estimate the
learning curve by using simple OLS, we wrongly attribute this correla-
tion to the effect of installed capacity change on change in installation
costs, and, as a result, the estimate is biased upward. The second in-
stance is the presence of misspecification error, which will generally
bias the learning rate downward. The third instance occurs when IAMs
include more than one determinant of installed capacity. For example,
6 The OLS estimate is significantly below the estimates of the learning rates for wind
technologies available in the literature. This is due to the longer time-frame under consid-
eration in our analysis. In fact, Tables 11 and 12 show that ifwe drop the observations after
2004 (hence eliminating the period when installation prices are heavily affected by the
upward trend in prices of materials), the estimated OLS learning rate for wind is 15.7%.
These last results are in line with the estimates available in the literature (see e.g. the re-
sults for the one factor learning curves in Jamasb (2007), Kahouli-Brahmi (2009) and
Lindman and Söderholm (2012)).
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suppose that the history of high interest rates has played a major role
in determining the technology costs through promoting capacity build-
ing and R&D investment, while IAMs would predict that the primary
promoter of learning-by-doing is energy price. Then the symbiosis of es-
timated learning curve and IAM yields biased results if the effect of the
price is different from the effect of the interest rate. The fourth instance
could arise from non-linearities. For example, if the earning rate is de-
creasing with cumulative capacity, then the future effect of cumulative
capacity on installation costs should be lower than in the past.

We show that the learning curve can be robust to the first and the sec-
ond problems if the traditional OLS estimator of the learning rate is re-
placed with a more appropriate two-stage approach. The key property
of this approach is that it ensures that the estimates of the learning
curvedonot capture the effect of technology costs on cumulative capacity.

Finally, we update the estimate of the learning curves for wind tur-
bines and photovoltaic panels, using this novel methodology. Our esti-
mates suggest that the learning curve for the PV panels has a steeper
slope than the one implied by the traditional estimator. Our estimate
of learning rate forwind technology is almost the same as the traditional
OLS estimates, however this result is very sensitive to the choice of pol-
icy index and sample size.

We also argue that the assumptions on the linear relationship be-
tween capacity and costs and on the stationarity of the series cannot
be relaxed without replacing the learning curve with a more sophisti-
cated model. This would increase accuracy of the estimates at the cost
of increased complexity, complicating the implementation of learning
curves in IAMs. Further exploring trade-offs between these two oppos-
ing forces will be the focus of future research efforts.

Appendix A

A.1. Infinite horizon model

Let k denote the cumulative capacity of wind turbines, I — flow of
new capacity in one period, c— a turbine installation cost, y—wind en-
ergy production and, p — its price. The objective function of a firm pro-
ducing energy from wind (or a central planner) is:

V C;Kð Þ ¼ maxI PY Kð Þ−CI þ βV C 0;K 0� �n o
ð18Þ

subject to K′ = (1− δ)K + I and Y(K) = Kα or simply

V C;Kð Þ ¼ maxI PKα−C K 0− 1−δð ÞK
� �

þ βV C 0;K 0� �n o
: ð19Þ

The first order condition to firm's optimization problem is

βVK’ C 0;K 0� �
¼ C:

Using the envelope theorem we can determine the derivative of the
objective function with respect to installed capacity:

VK ¼ αPKα−1 þ 1−δð ÞC þ β 1−δð ÞVK C 0;K 0� �
:

We assume that the firms expect the price of energy and installation
costs to grow (or decline) at the constant rates gP and gC. If capital is on
its balanced growth path, then

VK C 0;K 0� �
¼ ðβα 1þ gPð Þ 1þ gKð Þα−1

1−ðβα 1þ gPð Þ 1þ gKð Þα−1 1−δð Þ
PKα−1

þ β 1−δð Þð1þ gCð Þ
1−ðβ 1−δð Þ 1þ gCð ÞC:
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Table 8
Second stage regression results for PV panels technology. Time-frame: 1990–2012. Stan-
dard errors below the coefficients.

Model
OLS

Model 2
EPS

Model 3
EPS

Model 2
FIT

Model 3
FIT

Observed Cum
Cap.

−0.161***

0.013
Fitted Cum. Cap. −0.217*** −0.211*** −0.248*** −0.242***

.037 .041 0.056 0.055
R-squared 0.88 0.79 0.75 0.45 0.54
Observations 22 22 22 22 22

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.

Table 9
First stage regression results forwind turbines technology. Standarderrors clustered at the
level of countries below the coefficients.

Model 2 EPS Model 3 EPS Model 2 FIT Model 3 FIT

Energy price 2.14*** 9.852***
.75 0.558

Policy Index 1.89*** 1.63*** 1.285*** 0.943***
.078 0.12 0.190 0.149

R-squared 0.24 0.25 0.09 0.45
F stat. 587.6 302.7 45.7 193.7
Number of Clusters 26 26 26 26
Observations 456 456 499 499

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.

Table 10
Second stage regression results for wind turbines technology. Time-frame: 1990–2012.
Standard errors below the coefficients.

Model
OLS

Model 2
EPS

Model 3
EPS

Model 2
FIT

Model 3
FIT

Observed Cum Cap. − .051
0.031

Fitted Cum. Cap. − .024 − .023 −0.408 −0.0229
.030 .030 0.494 0.051

R-squared 0.12 0.03 0.03 0.40 0.01
Observations 22 22 22 22 22

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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Combining this with the first order conditions we get:

βαgPgα−1
k

1−βαgPgα−1
k 1−δð Þ PK

α−1 þ β 1−δð Þ 1þ gCð Þ
1−β 1−δð Þ 1þ gCð ÞÞC

where gK is the growth of capital. Simplifying and taking logs:

k ¼ −
1

1−α
cþ 1

1−α
pþ constant

where

constant ¼ −
1

1−α
ln

1−2β 1−δð Þ 1þ gCð Þ
1−ð2β 1−δð Þ 1þ gCð Þ

1−βαgPgα−1
k 1−δð Þ

βαgPgα−1
k

 !

implying that gK ¼ − 1
1−α gC þ 1

1−α gP :

A.2. Conditions for Section 5.3

The first possibility is that z1 = πz2, then

c ¼ δ1 þ δ2πð Þ γ1þ γ2πð Þ
γ1þ γ2πð Þ2

γ1þ πγ2ð Þz1þ constant

which simplifies to

c ¼ δ1 þ δ2πð Þz1 ¼ δ1z1 þ δ2z2:

The second instance is when z1has exactly the same impact on k and
c as z2 i.e. if δ1 = δ2 and γ1 = γ2. Then

c ¼ δ1γ1
dVar z1ð Þ þ δ1γ1

dVar z2ð Þ þ 2δ1γ1Cov z1; z2ð Þ
γ2
1
dVar z1ð Þ þ γ2

2
dVar z2ð Þ þ 2γ1γ2

dCov z1; z2ð Þ
γ1z1 þ γ1z2 þ constantð Þ

¼ δ1 z1 þ z2ð Þ þ constant ¼ δ1z1 þ δ2z2 þ constant:

The third instance is when zi's impact on k is the same as its impact
on c i.e. δ1 = γ1 and δ2 = γ2. Then

c ¼ γ2
1
dVar z1ð Þ þ γ2

2
dVar z2ð Þ þ 2γ1γ2

dCov z1; z2ð Þ
γ2
1
dVar z1ð Þ þ γ2

2
dVar z2ð Þ þ 2γ1γ2

dCov z1; z2ð Þ
δ1z1 þ δ2z2 þ constantð Þ

¼ δ1z1 þ δ2z2:

A.3. Regression Robustness check

A.3.1. Alternative measure of policy
Table 7
First stage regression results for PV panels technology. Standard errors clustered at the lev-
el of countries below the coefficients.

Model 2 EPS Model 3 EPS Model 2 FIT Model 3 FIT

Energy price 3.72*** 8.921***
.79 0.565

Policy Index 1.82*** 1.37*** 0.458*** 0.238***
.08 .12 0.0425 0.0359

R-squared 0.16 0.24 0.232 0.534
F-stat. 496.3 273.3 116.4 220.2
Observations 396 396 411 411

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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A.3.2. Alternative time frame
Table 11
Second stage regression results for wind turbines technology. Time-frame: 1990–2004.
Standard errors below the coefficients.

Model OLS Model 1 Model 2 REP Model 3 REP

Observed Cum Cap. − .210***
.049

Fitted Cum. Cap. − .165 − .183** − .187*
.280 .064 .088

R-squared 0.03 0.63 0.61 0.60
Observations 14 14 14 14

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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Table 12
Second stage regression results for wind turbines technology. Time-frame: 1990–2004.
Standard errors below the coefficients.

Model
OLS

Model 2
EPS

Model 3
EPS

Model 2
FIT

Model 3
FIT

Observed Cum Cap. − .210***
.049

Fitted Cum. Cap. −0.230* −0.248 −0.514 −0.441
0.127 0.160 0.311 0.423

R-squared 0.03 0.43 0.45 0.52 0.28
Observations 14 14 14 14 14

NOTES: *, ** and *** indicate a significance level of 10 percent, 5 percent and 1 percent,
respectively.
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