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Darko Radojevića, Mihailo P. Lazarevića
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Abstract. In this paper, the finite-time stability for nonlinear neutral multi-term fractional order systems
with time-varying input and state delays is investigated. By use of the generalized Gronwall inequality
and extended form of the generalized Gronwall inequality, new sufficient conditions for finite-time stability
of such systems are obtained. Finally, numerical examples are given to illustrate the effectiveness and
applicability of the proposed theoretical results.

1. Introduction

In this contribution, we consider system stability in the non-Lyapunov sense-finite-time stability (FTS)
because the boundedness properties of system responses are very important from the engineering point
of view, [1]. In the past decades, there has been a growing research interest in the field of stability and
stabilization of time-delay systems which often leads to poor performance or even instability, [2-4]. Also, in
the past four decades, applications of fractional (non-integer) calculus have attracted increasing attention
of experts worldwide since they provide an excellent tool in modeling the complex dynamics, (for the
description of memory and hereditary properties of various materials and processes), [5,6] and a lot of
significant contributions have been made in non-integer (fractional) order control theory, [7,8]. In recent
decades, stability problems of the non-integer time-delay systems (NITDS) have extensively been studied by
using methods of the (generalized) Gronwall inequality, linear matrix inequalities, the Lyapunov method,
the Holder inequality, the comparison principles, [9-13].

Here, we are interested in FTS where FTS analysis of NITDS is initially investigated and presented in
[14,15] using (generalized) Gronwall inequality. In this context, several researchers have investigated FTS
of NITDS, and presented their results, see [9,10,16-20].

Particularly, some authors have devoted attention to stability and control issues of the neutral TDS
(NTDS) integer and fractional order [21-30]. Integer order NTDS in mechanical problems were presented
in [21,22]; the stability chart of an elastic beam was obtained in [21] and the problem of ship rolling with
control based on values of delayed acceleration was considered in [22]. Also, in [23] the delayed acceleration
feedback control has been applied for chatter suppression in turning machines. The human self-balancing
models have been modeled as integer order neutral TDS due to stabilizing time-delayed feedback control
which depends on position, velocity and acceleration [24-26]. Moreover, the generalized Scot-Blair model
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has been studied [27], which can be modeled as neutral NITDS where a viscoelastic material is used as
damping in vibration systems, on the assumption that the damping is proportional to a fractional rder
derivative of the displacement variable with the non-integer order of derivative 0 < α < 1.

Recently, a few results have been obtained for the neutral NITDS with different fractional orders, [31].
In [32] authors studied FTS of linear neutral NITDS by using the method of steps. Also, in [33] FTS analysis
of homogeneous NITDS with nonlinear perturbation based on generalized Bellman-Gronwall inequality
have been investigated. In [34] the authors obtained sufficient conditions for FTS of the neutral NITDS
two-term fractional order 0 < µ ≤ λ < 1 with Lipschitz nonlinearities using the method of steps and the
more generalized Gronwall inequality. Additionally, in [35] authors considered FTS of generalized neutral
NITDS with fractional orders 0 < β ≤ α < 1. Also, we have obtained a new criterion which is related to
robust FTS of uncertain neutral nonhomogeneous NITDS 0 < β ≤ α < 1 with time-varying input and state
delay, [36]. In the meantime, the FTS of a class multiterm nonlinear fractional system with multistate time
delay and 0 < α1 ≤ 1 < α2 ≤ 2 have been studied in [37,38].

Based on the above motivations and discussions, first time in this paper we shall address the FTS
problem of nonlinear neutral NITDS with time-varying input and state delay and multi-term fractional
order 0 < γ ≤ 1 < β < α ≤ 2 using the generalized Gronwall inequality and extended form of the
generalized Gronwall inequality. The main contributions and features of this paper can be stated as follows.

(1) There are a few works of FTS for multi-term fractional order nonlinear systems. It is more essential
to study the FTS of NITDS with damping behavior and time delay effects. Thus, a novel generalized
neutral NITDS with three different fractional orders 0 < γ ≤ 1 < β < α ≤ 2 with time-varying input
and state delays is studied, where for the first time we consider a case of multi-term neutral NITDS
which includes delay terms cDβ

t x(t − τxN1(t)), cDγ
t x(t − τxN2(t)) at the same time, 0 < γ ≤ 1 < β < α ≤ 2.

(2) Three novel criteria of FTS of neutral NITDS with multi-term fractional order 0 < γ ≤ 1 < β < α ≤ 2
with time-varying input and state delays are obtained by use of the generalized Gronwall inequality
and extended form of the generalized Gronwall inequality.

(3) There are delay terms in the obtained novel FTS criteria of neutral NITDS with multi-term different
fractional orders. Therefore, the proposed criteria in this paper are more general.

(4) Two numerical examples are presented to illustrate the correctness of the obtained results.

The rest of the paper is arranged as follows. Some basic concepts with properties of fractional calculus
and problem descriptions are presented in Section 2. In Section 3, sufficient conditions ensuring the FTS of
neutral NITDS are obtained and new criteria for FTS of NITDS with multi-term fractional order 0 < γ ≤
1 < β < α ≤ 2 are given. In Section 4, two examples are provided to illustrate the validity of the obtained
results. In Section 5, some conclusions are drawn.

2. Preliminaries and problem description

2.1. Preliminaries

In this subsection, some basic notations and definitions including the definition of Caputo fractional
derivative are given. In this paper, the norm ∥(· )∥will denote any vector norm, i.e. ∥(· )∥1, ∥(· )∥2, or ∥(· )∥∞ or
the corresponding matrix norm induced by the equivalent vector norm, i.e. 1−,−2, or∞−norm, respectively.
Throughtout this paper, C

a Dα
t f (t) or aDα

t f (t) denote Caputo‘s derivative of fractional order α with the lower
limit a for function f (· ), RL

a D−αt f (t) or aIαt f (t) denote an integral of order αwith the lower limit a for function
f (· ).

Definition 2.1. The gamma function Γ(· ) known as Euler’s gamma function is defined as

Γ(α) =

∞∫
0

e−ttα−1 dt, Γ(α + 1) = αΓ(α), α ∈ C (1)
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where C is the set of complex numbers. The Caputo fractional derivative is defined for a function f (· ) : [a, b] → C
that belongs to the space of absolutely continuous functions:

f (t) ∈ ACn[a, b] =
{

f (t) : dn−1 f (t)/dtn−1
}
, n ∈ N

Definition 2.2. The Caputo fractional derivative of order α, α ∈ C, Re(α) ≥ 0, for any function f (t) ∈ ACn[a, b] is
defined as [39]:

C
a D−αt f (t) =


1

Γ(n−α)

t∫
a

(t − s)n−α−1 f (n)(s) ds, α , N0, n = [Re(α)] + 1, n ∈ N,

f (n)(t) =
dn f (t)

dtn , α = n ∈ N0.

(2)

Definition 2.3. Let f (t) be a continuous function on [a, b] The Riemann–Liouville (RL) fractional integral of order
α is [39]:

RL
a D−αt f (t) ≡ aIαt f (t) =

1
Γ(α)

t∫
a

(t − s)α−1 f (s) ds, t ∈ [a, b], α ∈ C, t > 0,Re(α) > 0. (3)

Definition 2.4. The Mittag-Leffler function with one parameter is given as [39]:

Eα(z) =
∞∑

k=0

zk/Γ(kα + 1) where α > 0, z ∈ C (4)

and the two-parameter Mittag-Leffler function is presented as

Eα,β(z) =
∞∑

k=0

zk/Γ(kα + β) where α > 0, β > 0, z ∈ C. (5)

Remark 2.1. When β = 1 we have Eα,1(z) = Eα(z), especially E1(z) = ez.

The following lemmas are introduced and help prove our main stability criterion.

Lemma 2.1. [35] Assume x(t) ∈ C1([0,+∞),R), ẋ(t) ≥ 0 andα > 0. Then,
t∫

0
((t−s)α−1/Γ(α)) x(s) ds is monotonically

increasing with respect to t.

Lemma 2.2. [39]

0Iαt
(

cDα
0 x(t)

)
= x(t) −

n−1∑
k=0

tk

k!
x(k)(0), n − 1 < α < n, t > 0. (6)

Here, when 1 < α < 2, it follows

0Iαt
(

cDα
0 x(t)

)
= x(t) − x(0) − tx′(0), t > 0. (7)

Lemma 2.3. Let α > β > 0, n − 1 < β < n and x(t) ∈ ACn[a, b]. Then

0Iαt
(

cDβ
0x(t)

)
= 0Iα−βt x(t) −

n−1∑
k=0

tk+α−β

Γ(α − β + k + 1)
x(k)(0). (8)
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Proof: From the definition 2.2, we have

cDβ
0x(t) = 0In−β

t
cDn

0x(t). (9)

Applying fractional operator 0Iαt and taking into account the commutative property of RL integral, we
obtain

0Iαt
cDβ

0x(t) = 0Iαt 0In−β
t

cDn
0x(t) = 0Iα−βt

(
0In

t
cDn

0x(t)
)
. (10)

Actually from Lemma 2.2 we note that

0In
t

cDn
0x(t) = x(t) −

n−1∑
k=0

tkx(k)(0)
Γ(k + 1)

. (11)

Then, we have

0Iαt
cDβ

0x(t) = 0Iα−βt

x(t) −
n−1∑
k=0

tkx(k)(0)
Γ(k + 1)

 =
= 0Iα−βt x(t) − 0Iα−βt

n−1∑
k=0

tkx(k)(0)
Γ(k + 1)

 =
= 0Iα−βt x(t) −

n−1∑
k=0

tk+α−β

Γ(α − β + k + 1)
x(k)(0).

(12)

The proof is complete.

Property 2.2. Assume that 0 < γ < 1 < α < 2. Then

0Iαt
(

cDγ
0 x(t)

)
= 0Iα−γt x(t) −

x(0)· tα−γ

Γ(α − γ + 1)
, t ≥ 0. (13)

Property 2.3. Assume that 0 < β < α < 2. Then

0Iαt
(

cDβ
0x(t)

)
= 0Iα−βt x(t) −

x(0)· tα−β

Γ(α − β + 1)
−

x(1)· tα−β+1

Γ(α − β + 2)
, t ≥ 0. (14)

Lemma 2.4. [40] (generalized Gronwall inequality) Suppose x(t), a(t) are nonnegative and local integrable on
0 ≤ t < T, T ≤ +∞ and 1(t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t < T,
1(t) ≤M = const, α > 0 with

x(t) ≤ a(t) + 1(t)

t∫
0

(t − s)α−1x(s) ds (15)

on this interval. Then

x(t) ≤ a(t) +

t∫
0

 ∞∑
n=1

(1(t)Γ(α))n

Γ(nα)
(t − s)nα−1a(s)

 ds, 0 ≤ t < T. (16)

Corollary 2.4. Under the hypothesis of Lemma 2.4, let a(t) be a nondecreasing function on [0,T]. Then it holds:

x(t) ≤ a(t)Eα(1(t)Γ(α)tα) (17)

where Eα(z) is the one-parameter Mittag-Leffler function (4).
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Lemma 2.5. (extended form of the generalized Gronwall inequality), [41] Suppose non-integer orders α > 0, β > 0,
a(t) is a nonnegative function locally integrable on [0,T], 11(t) and 12(t) are nonnegative, nondecreasing, continuous
functions defined on [0,T); 11(t) ≤ N1, 12(t) ≤ N2, (N1, N2 = const). Suppose x(t) is nonnegative and locally
integrable on [0,T) with

x(t) ≤ a(t) + 11(t)

t∫
0

(t − s)α−1x(s) ds + 12(t)

t∫
0

(t − s)β−1x(s) ds, t ∈ [0,T). (18)

Then,

x(t) ≤ a(t) +

t∫
0

∞∑
n=1

[1(t)]n
·

n∑
k=0

Ck
n[Γ(α)]n−k[Γ(β)]k

Γ((n − k)α + kβ)
(t − s)(n−k)α+kβ−1a(s) ds, t ∈ [0,T) (19)

where 1(t) = 11(t) + 12(t) and Ck
n = n(n − 1)(n − 2) · · · (n − k + 1)/k!.

Corollary 2.5. Under the hypothesis of Lemma 2.5, let a(t) be a nondecreasing function on [0,T). Then

x(t) ≤ a(t)Eκ
[
1(t)

(
Γ(α)tα + Γ(β)tβ

)]
, κ = min(α, β) (20)

2.2. Problem description
Consider the following neutral multi-term fractional order system with time-varying input and state

delay with nonlinear perturbation and disturbance, presented by the following equation:

cDα
t x(t) = A0x(t) + A1x(t − τx(t)) + AN1

cDβ
t x(t − τxN1 (t)) + AN2

cDγ
t x(t − τxN2 (t))+

+ B0u(t) + B1u(t − τu(t)) + f (t, x(t)) + Cw(t.)
(21)

with associated continuous functions of initial state and input (control):

x(t) =Ψx(t), t ∈ [−τxm, 0], x′(t) = φx(t), t ∈ [−τxm, 0], u(t) =Ψu(t), t ∈ [−τuM, 0] (22)

where τx(t) is the time varying state delay, τxN(·)(t) is the neutral time varying delay, τu(t) is the time varying
input delay and they are continuous functions satisfying (13):

0 ≤ τx(t) ≤ τxM, 0 ≤ τxM(t) ≤ τxM, ∀t ∈ J = [t0, t0 + T], t0 ∈ R, T > 0,
0 ≤ τu(t) ≤ τuM.

(23)

For the sake of simplicity τxN(t) = τxN1 (t) = τxN2 (t), of system (21) is assumed in this contribution, where
τxM, τxN and τuM are constants; τxm is defined to be max(τxM, τxN) and t0 is the initial time of observation
of the system. CDα

t , CDβ
t , CDγ

t denote Caputo fractional derivatives of order α, β, γ, 0 < γ ≤ 1 < β < α ≤ 2;
x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control input; A0, A1, AN1 , B0, B1 and C are constant matrices
with appropriate dimensions; w(t) ∈ Rn is the disturbance vector, which has the upper bound as follows:
∥w(t)∥ < ηw, ηw = const > 0 ∀t ∈ J. Ψx(t) ∈ C([−τxm, 0],Rn) is the initial function of x(t) with the norm
∥Ψx∥C = sup

−τ≤θ≤0 ∥Ψx(θ)∥, and φx(t) ∈ C([−τxm, 0],Rn) is the initial function of x′(t) = dx(t)/dt with the
norm ∥φx∥C = sup

−τ≤θ≤0 ∥φx(θ)∥.
Here, it is assumed that the nonlinear perturbation f : [0,T] × Rn

× Rn
→ Rn is Lipschitz continuous on

[0,T] and there exists a continuous function l(t) such that

∥ f (t, x(t))∥ ≤ l(t)∥x(t)∥ (24)

for any ∀t ∈ [0,T] and f (t, 0) = (0, 0)T. Before proceeding further, the definitions of FTS will be given for
nonhomogeneous system (21) with associated initial functions (22).
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Definition 2.5. [9,42]: The fractional neutral time-delay system given by nonhomogeneous state equation (21)
satisfying initial conditions (22) is finite-time stable w.r.t.

{
δ, ε, ηu, η0, t0, J, ∥(· )∥

}
, δ < ε if and only if:

ρ < δ, ∥Ψu∥C < η0,

∥u(t)∥C < ηu, ∀t ∈ J,

}
⇒ ∥x(t)∥ < ε, ∀t ∈ J, (25)

where ρ = max
{
∥Ψ∥C, ∥φ∥C

}
and δ, ε, η0, ηu are positive constants.

Definition 2.6. [9,42]: The fractional neutral time-delay system given by nonhomogeneous state equation (21),
(u(t − τu(t)) ≡ 0) satisfying initial conditions (22) is finite-time stable w.r.t.

{
δ, ε, ηu, t0, J, ∥(· )∥

}
, δ < ε if and only if:

ρ < δ, ∥u(t)∥ < ηu, ∀t ∈ J⇒ ∥x(t)∥ < ε, ∀t ∈ J, (26)

where ρ = max
{
∥Ψ∥C, ∥φ∥C

}
and δ, ε, ηu, η0 are positive constants.

Definition 2.7. [9,40]: The fractional neutral time-delay system given by homogeneous state equation (21), (u(t −
τu(t)) ≡ 0, u(t) ≡ 0) satisfying initial conditions (22) is finite-time stable w.r.t. {δ, ε, t0, J, ∥(· )∥}, δ < ε if and only if:

ρ < δ, ∀t ∈ J⇒ ∥x(t)∥ < ε, ∀t ∈ J, (27)

where ρ = max
{
∥Ψ∥C, ∥φ∥C

}
and δ, ε are positive constants.

3. Main Results

In this section, using generalized Gronwall inequality including an extended form, new criteria for FTS
of NITDS are derived.

Theorem 3.1. The nonhomogeneous nonlinear neutral multi-term fractional order time varying delay system (21)
satisfying initial conditions (22) is finite-time stable w.r.t.

{
δ, ε, ηu, η0, t0, J, ∥(· )∥

}
, δ < ε if the following condition

holds:[
1 + |t| +

an1 |t|α−β

Γ(α − β + 1)
+

an1 |t|α−β+1

Γ(α − β + 2)
+

an2 |t|α−γ

Γ(α − γ + 1)
+

]
·Eκ[1(t)(Γ(α − β)tα−β + Γ(α − γ)tα−γ)]Eα(µ∑tα)+

+
η0u|tα|
Γ(α + 1)

+
η01ταuM

Γ(α + 1)
+
η1u|t − τuM|

α

Γ(α + 1)
+

η0w|t|α

Γ(α + 1)
<
ε
δ
, ∀t ∈ J0,

(28)

where: ∥A0∥ = a0, ∥A1∥ = a1, ∥AN1∥ = an1 , ∥AN2∥ = an2 , ∥B0∥ = b0, ∥B1∥ = b1, ∥C∥ = c,

sup
t∈[0,T]

(a0 + l(t)) = µ0, a1 = µ1, µΣ = µ0 + µ1,

η0u = b0ηu/δ, η0w = cηw/δ, η01 = b1η0/δ, η1u = b1ηu/δ.
(29)

Proof: Following the property of the non-integer order 0 < γ ≤ 1 < β < α ≤ 2 and applying the fractional
integral 0Iαt on the system (21), we have

0Iαt
(

cDα
t x(t) − AN1

cDβ
t x(t − τxN1 (t)) − AN2

cDγ
t x(t − τxN2 (t))

)
=

= 0Iαt
(
A0x(t) + A1x(t − τx(t)) + B0u(t) + B1u(t − τu(t)) + f (t, x(t)) + Cw(t)

) (30)

Using Lemma 2.2 and Lemma 2.3, we can obtain solution for (30) in the form of the equivalent Volterra
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integral equation, where t0 = 0 as:

x(t) = ψx(0) + tφx(0) − AN2 ·ψx(−τxm)
tα−γ

Γ(α − γ + 1)
+

1
Γ(α − γ)

t∫
0

(t − s)α−γ−1 AN2 x(s − τxN(s)) ds−

− AN1

ψx(−τxm)· tα−β

Γ(α − β + 1)
− AN1

φx(−τxm)· tα−β+1

Γ(α − β + 2)
+

1
Γ(α − β)

t∫
0

(t − s)α−β−1 AN1 x(s − τxN(s)) ds+

+
1
Γ(α)

t∫
0

(t − s)α−1 [
A0x(s) + A1x(t − τx(s)) + B0u(s) + B1u(s − τu(s)) + f (t, x(s)) + Cw(s)

]
ds

(31)

Now, using the norm ∥(· )∥ on equation (30), we can obtain an estimate of the solution

∥x(t)∥ ≤ ∥ψx(0)∥ + |t| ∥φx(0)∥ + ∥AN2∥ ∥ψx(−τxm)∥
|t|α−γ

Γ(α − γ + 1)
+

+
1

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1
∥AN2∥ ∥x(s − τxN(s))∥ds + ∥AN1∥ ∥ψx(−τxm)∥

|t|α−β

Γ(α − β + 1)
+

+ ∥AN1∥ ∥φx(−τxm)∥
|t|α−β+1

Γ(α − β + 2)
+

1
Γ(α − β)

t∫
0

|(t − s)|α−β−1
∥AN1∥ ∥x(s − τxN(s))∥ds+

+

t∫
0

|(t − s)|α−1 [
A0x(s) + A1x(t − τx(s)) + B0u(s) + B1u(s − τu(s)) + f (s, x(s)) + Cw(s)

]
ds.

(32)

Also, we can obtain:

∥∥∥A0x(s) + A1x(t − τx(s)) + B0u(s) + B1u(s − τu(s)) + f (s, x(s)) + Cw(s)
∥∥∥ ≤

≤ a0 ∥x(t)∥ + a1 ∥x(t − τx(t))∥ + b0 ∥u(t)∥ + b1 ∥u(t − τu(t))∥ + c ∥w(t)∥ + ∥ f (t, x(t))∥ ≤
≤ (a0 + l(t)) ∥x(t)∥ + a1 ∥x(t − τx(t))∥ + b0 ∥u(t)∥ + b1 ∥u(t − τu(t))∥ + c ∥w(t)∥ =
= µ0 ∥x(t)∥ + µ1 ∥x(t − τx(t))∥ + b0 ∥u(t)∥ + b1 ∥u(t − τu(t))∥ + c ∥w(t)∥.

(33)

Let y(t) = sup
θ∈[−τxm,t]

∥x(θ)∥, [18]. For ∀t• ∈ [0, t] the following conditions satisfy

∥∥∥∥x
(
t• − τx∗(t•)

)∥∥∥∥ ≤ y(t•), ∥x (t•)∥ ≤ sup
t•∈[t−τxm,t]

{ ∥∥∥ x(t•)
∥∥∥} ≤ y(t•) (34)

Applying this inequality, expression (32) can be rewritten as follows:

∥x(t)∥ ≤ ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|(t − s)|α−β−1 y(s) ds +
an2

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1 y(s) ds+

+
1
Γ(α)

t∫
0

|(t − s)|α−1 [
(µ0 + µ1)y(s) + b0 ∥u(s)∥ + b1 ∥u(s − τu(s))∥ + c ∥w(s)∥

]
ds.

(35)
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In view of the ∥u(s)∥ < ηu conditions for ∥w(s)∥ < ηw, one may rewrite the above inequality as

∥x(t)∥ ≤ ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|(t − s)|α−β−1 y(s) ds +
an2

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1 y(s) ds+

+
µΣ
Γ(α)

t∫
0

|(t − s)|α−1 y(s) ds +
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
+

+
b1

Γ(α)

t∫
τuM

∣∣∣(t − s)α−1
∣∣∣ ∥u(s − τuM)∥ds,

(36)

or

∥x(t)∥ ≤ ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|(t − s)|α−β−1 y(s) ds +
an2

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1 y(s) ds+

+
µΣ
Γ(α)

t∫
0

|(t − s)|α−1 y(s) ds +
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
+

b1ηu |t − τuM|
α

Γ(α + 1)
.

(37)

For ∀θ ∈ [0, t] we have

∥x(θ)∥ ≤ ∥ψx∥C

[
1 +

an2 |θ|
α−γ

Γ(α − γ + 1)
+

an1 |θ|
α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|θ| +

an1 |θ|
α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

θ∫
0

|s|α−β−1 y(θ − s) ds +
an2

Γ(α − γ)

θ∫
0

|s|α−γ−1 y(θ − s) ds+

+
µΣ
Γ(α)

θ∫
0

|s|α−1 y(θ − s) ds +
b0 ηu |θ|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

c ηw |θ|α

Γ(α + 1)
+

b1ηu |θ − τuM|
α

Γ(α + 1)
.

(38)

Taking into account that the nonnegative function y(t) is increasing, then functions
t∫

0
|s|α−γ−1y(t − s) ds.

t∫
0
|s|α−β−1y(t − s) ds,

t∫
0
|s|α−1y(t − s) ds, are increasing with respect to t ≥ 0,

Lemma 3.1. Therefore, α > 0, α − β > 0, α − γ > 0, θα ≤ tα, θα−β ≤ tα−β, θα−γ ≤ tα−γ, it follows

θ∫
0

|s|ω y(θ − s) ds ≤

t∫
0

|s|ω y(t − s) ds, ω = (α − 1, α − β − 1, α − γ − 1) (39)
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i.e.

∥x(θ)∥ ≤ ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|s|α−β−1 y(t − s) ds +
an2

Γ(α − γ)

t∫
0

|s|α−γ−1 y(t − s) ds+

+
µΣ
Γ(α)

t∫
0

|s|α−1 y(t − s) ds +
b0ηu |t|α

Γ(α + 1)
+

b1η0 ταuM

Γ(α + 1)
+

cηw |t|α

Γ(α + 1)
+

b1ηu |t − τuM|
α

Γ(α + 1)
.

(40)

Also, we get

y(t) = sup
θ∈[−τxm,t]

∥x(θ)∥ ≤ max

 sup
θ∈[−τxm,0]

∥x(θ)∥, sup
θ∈[0,t]

∥x(θ)∥

 ≤
≤ max

{
∥ψx∥C, ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|(t − s)|α−β−1 y(s) ds +
an2

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1 y(s) ds+

+
µΣ
Γ(α)

t∫
0

|(t − s)|α−1 y(s) ds +
b0ηu |t|α

Γ(α + 1)
+

b1η0 ταuM

Γ(α + 1)
+

cηw |t|α

Γ(α + 1)
+

b1ηu |t − τuM|
α

Γ(α + 1)

 =
= ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
+

+
an1

Γ(α − β)

t∫
0

|(t − s)|α−β−1 y(s) ds +
an2

Γ(α − γ)

t∫
0

|(t − s)|α−γ−1 y(s) ds+

+
µΣ
Γ(α)

t∫
0

|(t − s)|α−1 y(s) ds +
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
+

b1 ηu |t − τuM|
α

Γ(α + 1)
.

(41)

Now, we introduce e(t) which is a nondecreasing function on J0 = [0,T]

e(t) = ∥ψx∥C

[
1 +

an2 |t|α−γ

Γ(α − γ + 1)
+

an1 |t|α−β

Γ(α − β + 1)

]
+ ∥φx∥C

[
|t| +

an1 |t|α−β+1

Γ(α − β + 2)

]
(42)

From Lemma 2.5 we obtain:

y(t) ≤ e(t) Eκ
[
1(t)(Γ(α − β)tα−β + Γ(α − γ)tα−γ)

]
+

+
µΣ
Γ(α)

t∫
0

|(t − s)|α−1 y(s) ds +
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
+

b1 ηu |t − τuM|
α

Γ(α + 1)

(43)

where 1(t) = 11(t)+ 12(t), 11 =
an1

Γ(α − β)
, 12 =

an2

Γ(α − γ)
and κ = min(α− γ, α− β). Now, applying Lemma 2.4, we
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have:

∥x(t)∥ ≤ y(t) ≤ e(t)Eκ
[
1(t)(Γ(α − β)tα−β + Γ(α − γ)tα−γ)

]
Eα(µΣ tα)+

+
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

b1 ηu |t − τuM|
α

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
≤

≤ ϱ

[
1 + |t| +

an1 |t|α−β

Γ(α − β + 1)
+

an1 |t|α−β+1

Γ(α − β + 2)
+

an2 |t|α−γ

Γ(α − γ + 1)
+

]
·

Eκ
[
1(t)(Γ(α − β)tα−β + Γ(α − γ)tα−γ)

]
Eα(µΣ tα)+

+
b0 ηu |t|α

Γ(α + 1)
+

b1 η0 ταuM

Γ(α + 1)
+

b1 ηu |t − τuM|
α

Γ(α + 1)
+

c ηw |t|α

Γ(α + 1)
.

(44)

Finally, using the basic condition of Theorem 3.1, we can obtain the required FTS condition:

∥x(t)∥ < ε, ∀t ∈ J. (45)

From Theorem 3.1, we obtain the following result.

Theorem 3.2. The homogeneous system given by (21), when u(t) ≡ 0, u(t−τu) ≡ 0∀t ∈ J0 without perturbations and
disturbance f (t, x(t)) ≡ 0, w(t) ≡ 0 satisfying function of the initial state (22) is finite-time stable w.r.t. {δ, ε, J0, ∥(· )∥},
δ < ε, if the following condition is satisfied:[

1 + |t| +
an1 |t|α−β

Γ(α − β + 1)
+

an1 |t|α−β+1

Γ(α − β + 2)
+

an2 |t|α−γ

Γ(α − γ + 1)

]
·

Eκ
[
1(t)(Γ(α − β)tα−β + Γ(α − γ)tα−γ)

]
Eα(µΣ tα) <

ε
δ
, ∀t ∈ J0.

(46)

Proof: The proof immediately follows from the proof of previous Theorem 3.1.

Theorem 3.3. The nonhomogeneous nonlinear neutral two-term fractional order time varying delay system without
term AN1

cDβ
t x(t − τxn1 (t)), (i.e AN1 = 0) given by (47) with satisfying function of the initial state (22) is finite-time

stable w.r.t.
{
δ, ε, ηu, η0, t0, J, ∥(· )∥

}
, δ < ε, if the following condition is satisfied, (48):

cDβ
t x(t) = A0x(t) + A1x(t − τx(t)) + AN2

cDγ
t x(t − τt−τxN2

(t))+

+ B0 u(t) + B1 u(t − τu(t)) + f (t, x(t)) + Cw(t)
(47)

[
1 + |t| +

an2 |t|α−γ

Γ(α − γ + 1)

]
Eκ

[(
an2

Γ(α − γ)
+
µΣ
Γ(α)

)
(Γ(α − γ)tα−γ + Γ(α)tα)

]
+

+
η0u |t|α

Γ(α + 1)
+
η01 ταuM

Γ(α + 1)
+
η0w |t|α

Γ(α + 1)
+
η1u|t − τuM|

α

Γ(α + 1)
<
ε
δ
, ∀t ∈ J0,

(48)

where κ = min(α − γ, α).

Proof: Similar to the proof of Theorem 3.1 with applying only the extended form of generalized Gronwall
inequality we get the proposed result (48) of Theorem 3.3.

Remark. The system (47) can be reduced to [37], ((9) for case n = 1, τN1 = 0, AN2 = B1 = 0, C = 0) and
[38], (1) assuming that τN1 = 0, AN2 = B1 = 0, C = 0, f = 0. It is easily check that obtained criteria (29), (48)
are more general.
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4. Numerical examples

In this section, to demonstrate the effectiveness of the previously obtained FTS results, a nonhomoge-
neous nonlinear NITDS with disturbance (49) is considered. Here all notation ∥(· )∥means the∞− norm of
a matrix or a vector.

Example 4.1. Consider the nonlinear neutral NITDS (21) with time-varying input and state delay and multi-term
non-integer order 0 < γ ≤ 1 < β < α ≤ 2

cDα
t x(t) = A0x(t) + A1x(t − τx(t)) + AN1

cDβ
t x(t − τxN1 (t)) + AN2

cDγ
t x(t − τt−τxN2

(t))+

+ B0 u(t) + B1 u(t − τu(t)) + f (t, x(t)) + Cw(t)
(49)

where

A0 =

[
−0.2 0
−0.1 0.3

]
, A1 =

[
−0.2 0.1

0 −0.1

]
, AN1 =

[
0.3 0
−0.05 0.2

]
, AN2 =

[
0.3 −0.2
0.4 0.1

]
,

where

B0 =

[
0

0.5

]
, B1 =

[
0.5
0

]
, C =

[
0.5
0

]
, f (t, x(t)) =

[
0.01 sin x1(t)
0.01 sin x2(t)

]
, w(t) sin(t)

(50)

and t0 = 0, α = 1.5, β = 1.1, γ = 0.5, τx = τu = 0.1, τxN1 = τxN2 = τxN = 0.1, τxm = 0.1, with associated
functions: ψx = [0.05 0.05]T; t ∈ [−0.1, 0]; φ(t) = [0.07 0.07]T, ψu = 0.05. The task is to analyze the FTS with
respect to {δ = 0.08, ε = 50, ηu = 1}. From the initial functions and given state equation, we have: ∥ψx∥C =

max
t∈[−0.1,0]

∥ψx(t)∥∞ = 0.05, ∥φx∥C = 0.07, ρ = max{∥ψ∥C, ∥φ∥C} = 0.07 < δ = 0.08, ∥A0∥ = 0.4, ∥A1∥ = 0.3,

∥AN1∥ = 0.3, ∥AN2∥ = 0.5, ∥B0∥ = 0.5, ∥C∥ = 0.5, l(t) = 0.01, ηw = 1.01, ηu = 1, η0 = 0.06. Applying the condition
of Theorem 3.1, we can obtain the estimated time of the FTS Te ≈ 0.8 s.

Example 4.2. Consider the following homogeneous neutral NITDS with time-varying state delays multi-term non-
integer order 0 < γ ≤ 1 < β < α ≤ 2

cDα
t x(t) = A0x(t) + A1x(t − τx(t)) + AN1

cDβ
t x(t − τxN1 (t)) + AN2

cDγ
t x(t − τt−τxN2

(t)) (51)

where

A0 =

[
0.2 0
0 0.2

]
, A1 =

[
0.1 −0.3
0.2 0.1

]
, AN1 =

[
−0.3 0
0.3 0.2

]
, AN2 =

[
0 0.1
−0.2 0.2

]
(52)

and α = 1.75, β = 1.5, γ = 0.75, τx = 0.15, τxm = 0.15 τxN1 = τxN2 = τxN = 0.15, with associated functions:
ψx = [0.03 0.03]T, t ∈ [−0.15, 0], φx(t) = [0.05 0.05]T. Also, from the initial functions and given state equation, we
calculate: ∥ψC∥C = 0.03, ∥φC∥C = 0.05, ρ = max{∥ψC∥C, ∥φC∥C} = 0.05 < δ = 0.06. It is obviosly that ∥A0∥ = 0.2,
∥A1∥ = 0.4, ∥AN1∥ = 0.5, ∥AN2∥ = 0.4. If we take δ = 0.06 and ε = 100 then condition (48) of Theorem 3.2 holds for
Te ≈ 0.328 s so we can get the estimated time of the FTS.

5. Conclusions

In this paper, FTS analysis for a class of (non)homogeneous nonlinear neutral multi-term fractional
order systems 0 < γ ≤ 1 < β < α ≤ 2 with time-varying input and state delays has been investigated. By
use of the extended form of generalized Gronwall inequality, new criteria for the FTS have been developed.
Sufficient conditions for FTS for this class of neutral NITDS have been proposed. Finally, two numerical
examples have been provided to illustrate the effectiveness and the benefit of the proposed novel stability
criterion of FTS.
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