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Influence of transport coefficients’
dependence on temperature for gas
flow in microbearing

Snežana S. Milićev and Nevena D. Stevanović

Abstract
The paper presents an analytical solution for the non-isothermal compressible gas flow in a slide microbearing with dif-
ferent temperatures of walls. The gas flow is defined by the Navier-Stokes-Fourier system of the continuum equations
and first order boundary conditions. Knudsen number corresponds to the slip and continuum flow (Kn ł 1021) and
Reynolds number is moderately high, so inertia needs to be included. The solution is obtained by perturbations with the
first approximation that relates to the continuum flow and the second one that involves second-order effects: the rare-
faction, inertia, convection, dissipation, and rate at which work is done in compressing the element of fluid. The pre-
sented model analyzes the influence of the dependence of transport coefficients on temperature. The obtained analytical
solution for the pressure, velocity, and temperature is approved by a comparison with the results of other authors. The
microbearings can often be a part of MEMS, so the presented method and the obtained analytical solution can serve for
solving similar non-isothermal shear-driven or pressure-driven problems. The paper gives an estimation about the error
in values for microbearing mass flow and load capacity if the dependence of transport coefficients on temperature are
neglected.
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Introduction

Micro-Electro-Mechanical-Systems (MEMS) very often
contain micro-channels with a pressure-driven or shear-
driven gas flow.1,2 In some of them, the gas flow can
serve as a lubricant that reduces the sliding friction
between solid walls. The walls can be parallel, like those
in micro-combs, or inclined, like those in microbear-
ings. The walls can also be on similar or, more fre-
quently, on different temperatures. These walls can be,
for example, the magnetic disk and the head slider in
hard disk drives. A high recording density can be
accomplished by heat-assisted magnetic recording,
where the magnetic disk is locally heated using a laser
beam. Also, a microbearing could be part of a microen-
gine with a wall in contact with the combustion

chamber. In these and similar cases, there is a signifi-
cant temperature difference between the walls that
affects the lubrication, so the lubrication analysis could
not assume isothermal flow and the thermal effects on
the microbearing performance should be evaluated.
Besides, the transport coefficients dependence on tem-
perature should be considered. Because of that, the
results in this field have wide application and significant
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practical importance; hence, many researchers deal with
gas flow in this domain.

Traditionally, the continuum gas flow in bearings is
modeled by the Reynolds lubrication equation. It is
derived from the Navier-Stokes and continuity equa-
tions under the no-slip boundary conditions (Kn=0).
In microbearings, the thickness of the lubricating film is
of the order of the mean free path of gas molecules and
the continuum theory fails. Knudsen number is not neg-
ligible anymore. Among a wide range of Knudsen num-
bers in micro-flows, the slip flow (1023\Kn\ 1021)
is encountered more often. Therefore, the solutions for
the slip gas flow in microbearings are desirable.

The slip gas flow in microbearings has been analyzed
mostly numerically, using two main directions. The first
one is by solving the Reynolds equation obtained from
a model of the linearized Boltzmann equation, fre-
quently from the Bhatnagar–Gross–Krook3,5–10 (BGK)
model. The second one uses the Direct Simulation
Monte Carlo (DSMC) method11–13.

Many authors have used different boundary condi-
tions to correct the Reynolds lubrication equation and
enhance its solution to the rarefied domain.
Burgdorfer3 was the first who included the Maxwell’s
first-order slip boundary condition4 to expand the
Reynolds equation scope to the slip domain. Several
authors corrected the order of the condition at the wall:
Mitsuya5 to the 1.5-order slip model for ultra-thin gas
lubrication, and Hsia and Domoto6 using their second-
order boundary condition in the Reynolds lubrication
equation. They compared the obtained results with the
results of experiments with different gases in
microbearings.

A more sophisticated slip correction of the Reynolds
equation was obtained by Fukui and Kaneko,7 who
enabled the solutions for arbitrary Knudsen numbers.
They introduced the flow rate coefficient Qp of the
Poiseuille flow to the lubrication equation.
Furthermore, Fukui and Kaneko8 gave a database of
tabulated values of the flow rate coefficient for differ-
ent Knudsen numbers and explicit power series expres-
sions Qp(Kn) with an error less than 1%. Sun et al.9

modified the Reynolds equation using the corrected
dynamic viscosity. Bahukudumbi and Beskok10 intro-
duced the generalized dynamic viscosity to obtain a
new modified Reynolds equation that enabled the solu-
tion for the entire range of Knudsen numbers. Gu
et al.11 derived an extended Reynolds equation based
on the regularized 13 moment equations and lubrica-
tion theory for gas slider bearings operating in the tran-
sition regime.

Many researchers used DSMC. Alexander et al.12

and Liu and Ng13 approved their DSMC results by a
comparison with numerical results obtained with the
BGK model of kinetic equation. They gave a wide spec-
trum of results for different bearing numbers and

different inclination angles. Myo et al.14 applied
DSMC for both pure gas and gas mixtures.

All these solutions have been obtained for the iso-
thermal flow condition; there are few results for the
non-isothermal flow conditions in microbearings. Based
on the Bhatnagar–Gross–Krook–Welander (BGKW)
model of the Boltzmann equation, Doi15 studied micro-
lubrication between nearly parallel walls with both equal
and different temperatures. Our model presented in this
paper is in good agreement with Doi15 results.

The perturbation model, used in this paper, was ver-
ified in our previous work16–19 for: isothermal microbe-
aring gas flow,16 non-isothermal gas flow with equal
temperatures of the walls,17,18 and non-isothermal
microbearing gas flow with different temperatures of
the walls obtained for constant viscosity and thermal
conductivity.19

In this paper, a non-isothermal microbearing slip gas
flow is analyzed by including the dependence of trans-
port coefficients on the temperature. The solution for
pressure, velocity, and temperature fields is obtained for
moderately high Reynolds numbers by perturbations.
Two approximations are defined. The first corresponds
to the continuum, and the second one to the rarefied gas
flow. Since the flow condition is with moderately high
Reynolds numbers, the second approximation includes
also: inertia, convection, dissipation, and rate at which
work is done in compressing the element of fluid. It is
shown that there is a deviation between the load capac-
ity, as well as the microbearing mass flow rate, in relation
with the values of the load capacity and the mass flow
rate obtained by neglecting the dependence of transport
coefficients on the temperature. The paper gives an esti-
mation of the error for the load capacity and the mass
flow when the dynamic viscosity and thermal conductiv-
ity dependence on the temperature are neglected.

Problem description and solution

A steady compressible rarefied two-dimensional non-
isothermal subsonic shear-driven gas flow in a microbe-
aring with different temperature of the walls for slip
and continuum regimes has been analyzed by the
macroscopic approach (Figure 1).

The slip gas flow calls for the boundary conditions
for the velocity and temperature at the walls that differ
from the boundary conditions for the continuum
regime where Kn!0. In accordance with the slip flow
theory,1,2 these boundary conditions manifest as: the
difference between the velocity of gas at the wall and
the velocity of the wall (velocity slip), and the difference
between the temperature of the gas at the wall and the
temperature of the wall (temperature jump). For such a
gas flow in microbearings, the continuity, the Navier-
Stokes equations for streamwise direction ~x and
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crosswise direction ~y, the energy equation and the equa-
tion of state, as well as the slip velocity and tempera-
ture jump Maxwell-Smoluchowski first-order boundary
conditions4 at the walls are:
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where sv and sT are the momentum and energy accom-
modation coefficients respectively, k is the ratio of spe-

cific heats, Pr =~cp ~m
�

~k is the Prandtl number, and ~cp

is the specific heat at the constant pressure. This system
of equations (1)–(7) has been transformed into the
non-dimensional form by the next scales: the exit

microbearing height ~he for crosswise coordinate ~y and

microbearing height ~h, the microbearing length ~l for
streamwise coordinate ~x, the wall velocity ~uw for the
velocity components ~u and ~v, the average temperature

of the lower ~Tw1 and the upper ~Tw2 wall
~Tr = ~Tw1 + ~Tw2

� 	�
2 for the temperature ~T . Pressure ~p

has been scaled by the pressure at the microbearing exit
cross section ~pe (inlet pressure ~pi is the same as exit

pressure ~pe, ~pi = ~pe) and density ~r by ~re = ~pe=~R~Tr,

where ~R is the gas constant. Dynamic viscosity ~m and

thermal conductivity ~k have been scaled by their refer-

ence values ~mr and ~kr, which both correspond to the

reference temperature ~Tr. The molecular mean-free

path ~l= ~m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p~R~T

�
2

q .
~p has been scaled by the refer-

ence molecular mean-free path ~l r = ~mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p~R~T r

�
2

q .
~pe.

All the dimensional variables are signed with a tilde
(;), while the dimensionless are without it:

x=~x
�
~l, y=~y

�
~he, h= ~h

�
~he, u= ~u=~uw, v=~v=~uw,

T = ~T
�

~T r, p= ~p=~pe, r= ~r=~re, m= ~m=~mr, k = ~k
�

~kr,

and l= ~l
�

~lr. The dimensionless microbearing height

h(x) has been defined as h(x)=hi-x(hi-1), where hi is the
dimensionless inlet microbearing height.

To estimate the order of each term in the system of
dimensionless governing equations and boundary con-
ditions, we have defined a small parameter e as the ratio
between the exit microbearing height and the microbe-
aring length:

e= ~he
�
~l, (e� 1): ð8Þ

Moreover, we have proposed the next four assumptions
to define the order of the dimensionless crosswise velo-
city component v, reference Knudsen, Reynolds, and
Mach numbers, correlating them with the small para-
meter e. All the other dimensionless variables are sup-
posed to be of order O(1).

1. The slope of the upper microbearing wall is
assumed to be small, which implies that the
crosswise velocity component ~v is much smaller
than the streamwise component ~u. Then, v is of
the order O(e), so we can write:

Figure 1. Slider microbearing geometry.
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v= eV , where V =O 1ð Þ: ð9Þ

2. The presumption of the slip gas flow means that
Knudsen number is small, so it is possible to
assume:

Knr =hen, where n.0 and h=O 1ð Þ, ð10Þ

where Knr is the reference Knudsen number defined as
Knr = ~lr

�
~he.

3. Since the flow is subsonic, the Mach number is
also small, so we can assume:

kMa2r =bem, where m. 0 and b=O 1ð Þ, ð11Þ

where Mar is the reference Mach number defined as
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. ffiffiffiffiffiffiffiffiffiffiffi
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p
.

4. It is assumed also that the ratio between the
square of the Mach number and Reynolds num-
ber is also of the order of the small parameter:

kMa2
r
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where Rer is the reference Reynolds number defined as
Rer = ~uw~he~pe

�
~mrR

~Tr.
The parameters V, h, b, g, n, and m in the previous

assumptions ensure the flexibility to the model.
Namely, involving those parameters enable applying
the model to different flow conditions (different values
of Knr, Mar, and Rer) for one defined geometry of
microbearing, that is, e. Besides, V, h, b, g have to be
O(1), to enable that v ; e, Knr ; en, kMa2r;em, and
kMa2

r

�
Rer;e.

In Table 1, we summarize the definitions and
assumptions about the order of crosswise velocity v,
the reference Knudsen, Mach, Reynolds numbers, and
parameters V, h, b, and g.

Regardless of the different possibilities for modeling
both the viscosity and thermal conductivity dependence
on temperature,20 the hard sphere molecular model has
been used here to express the dynamic viscosity m and
heat conductivity k in terms of temperature using the
power law21:

~m=~mr = ~T
a�~Ta

r i:e: m= Ta , and

~k
�

~kr = ~T
a�~Ta

r i:e: k = Ta,
ð13Þ

where a is the viscosity-temperature index which ranges
from a=0.5, for the elastic sphere molecule model, to
a=1, for the Maxwellian molecules.21 The relation
between the local Kn= ~l

�
~he and the reference

Knudsen number Knr then follows:

Kn= lKnr =
T a+ 0:5ð Þ

p
Knr, ð14Þ

Now, the system of governing equations and bound-
ary conditions (1)2(7) in the dimensionless form
follow:
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Table 1. Definitions and assumptions of order of v, Knr, Mar, and Rer.

v Knr Mar Rer

Definitions v =~v=~uw Knr =
~lr
~he

Mar =
~uwffiffiffiffiffiffiffi
kR~Tr

p Rer =
~uw

~he~pe

~mrR~Tr

Assumptions v = eV,
V = O(1)

Knr = hen, h= O(1) kMa2
r =bem

b = O(1)
kMa2

r

�
Rer =ge,

g = O(1)
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where u=(Tw1–Tw2)/2.
There is another dimensionless quantity which

appears in the analysis of gas flows in microbearings. It
is the bearing number L defined as:

L=
6~mr~uw~l

~pe
~h2
e

: ð24Þ

Our coefficient g, which occurs naturally in the dimen-
sionless momentum equation (16) and energy equation
(18), represents the bearing number L, as from equa-
tions (12) and (24) it follows that g =L/6. Besides, the
bearing number L can be expressed in terms of the ref-
erence Mach number, Reynolds number, and the small

parameter e as L=
6kMa2

r

Rere
. Therefore, the bearing num-

ber is the ratio of viscous and pressure forces divided
by the ratio of the exit height and length of the
microbearing.

From the definitions of the reference Mach,
Reynolds, and Knudsen numbers (Table 1), the exact
correlation between them follows:

Knr =
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Due to the correlations (11) and (12), the exact expres-
sion for the relation between Reynolds number and the
small parameter e follows:

Rer =
b

g
em�1: ð26Þ

Furthermore, from the equation (25) with equations
(10), (11), and (26) follow both the relation between the
parameters b, g, and h, and the relation between the
parameters m and n:

b=
g2p

2h2
and 2 n+m=2: ð27Þ

Since we have considered slip and subsonic gas flow,
the parameters m and n have to be positive (10), (11).
These conditions, together with the relation (27) lead to
the allowed limits for the parameters m and n: 0\m
\ 2 and 0\ n\ 1. Within these ranges, two character-
istic problems follow from the equation (26):

1. Low Reynolds numbers gas flow,22 where
Rer\ 1, 1\m\ 2 and 0\ n\ 1/2, and

2. Moderately high Reynolds numbers, where
Rer ø 1, 0\m ł 1 and 1/2 ł n\ 1.

The solution procedure is to expand the pressure,
velocity, and temperature into a regular perturbation
series16–19:

f=f0 +Knrf1 +Kn2
rf2 +O Kn3

r

� 	
and put them into the system of governing equations
and boundary conditions (15)2(23) to get the systems
of equations of the order O(1), O(Kn), O(Kn2).. Here
f0 corresponds to the solution for the flow with no-slip
boundary conditions, and f1, f2, and the others com-
prise the corrections for the slip and temperature jump
on the wall and other higher order effects.

In this paper, the more comprehensive solution, that
is, the solution for moderately high Reynolds numbers
is presented. The parameters m and n are chosen to be
equal (m=n=2/3) to involve the rarefaction together
with all the other second-order effects (inertia in the
momentum equation, and the convection, dissipation,
and rate at which work is done in compressing the ele-
ment of fluid in the energy equation) in the second
approximation. The dimensionless numbers in that case
are: Rer =

b
g
e�1=3, kMa2

r
=be2=3, Knr =he2=3.

In this paper, the solution for pressure, velocity, and
temperature is obtained by two approximations for mod-
erately high Reynolds numbers. When the terms of the
order O(1) and O(Knr) are extracted, the following two
sets of equations and boundary conditions are obtained:
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where A, L, and a are constants defined as A=bPr
(k2 1)/ k, L=2k(2 2sT)/(sT(k+1)Pr), and a=(2
2sv)/sv.

The solution procedure for both systems of equa-
tions is the same. First, the approximation of the tem-
perature is derived from the corresponding energy
equation (30, 37) along with the temperature boundary
conditions (33, 34, 40, 41). Then, the approximation of
the velocity is derived from the corresponding momen-
tum equation (29, 36) and the velocity boundary condi-
tions (31, 32, 38, 39). The pressure approximation
follows from the continuity equation (28, 35). Finally,
the analytical solutions for the first and second approx-
imations for temperature and velocity in the

microbearings with different temperatures of the walls
and moderately high Reynolds numbers are
respectively:

T0 = a+ 1ð Þ C1y+C2ð Þ½ �
1

a+ 1ð Þ, ð42Þ

u0 = bT
a+ 2ð Þ

0 +C3T0 +C4, ð43Þ

V0 = cT
2a+ 3ð Þ

0 + dT
a+ 2ð Þ

0 + eT
a+ 1ð Þ

0 + gT0 + i, ð44Þ

T1 = k1 T
2a+ 4ð Þ

0 + l T
a+ 3ð Þ

0 +m T
a+ 2ð Þ

0 + n T 2
0

+ o T0 +w T�a
0 + q T0 lnT0 , ð45Þ

u1 = f1T
3a+ 5ð Þ

0 + f2T
2a+ 4ð Þ

0 + f3T
2a+ 3ð Þ

0 + f4T
a+ 3ð Þ

0

+ f5T
a+ 2ð Þ

0 + f6T
a+ 1ð Þ

0 + f7T2
0 + f8T0

+ f9T�a
0 + f10T

a+ 2ð Þ
0 ln T0 + f11T0 lnT0 + f12,

ð46Þ

where Ci, fj, (i=1,2.6; j=1,2.12) Cc1, Cc3, Cc4, b, c,
d, e, g, i, k1, l, m, n, o, w, and q are given in the
Appendix.

Both approximations for pressure along the
microbearing are the solutions of the two second-order
differential equations:

h3p0p00
� 	0

+Cc h p0ð Þ0= 0, ð47Þ
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where # denotes the derivative with respect to x, while
f99, C77, C88 are given in the Appendix. There are four
boundary conditions for pressure approximations at
the microbearing’s inlet and outlet that are satisfied:
p0jx= 0 = p0jx= 1 = 1 and p1jx= 0 = p1jx= 1 = 0.

The velocity, temperature, and pressure analytical
solutions derived for different temperature walls
microbearings gas flow and the moderately high
Reynolds numbers are:

u= u0 +Knru1

= b T
a+ 2ð Þ

0 +C3T0 +C4 +Knr

f1 T
3a+ 5ð Þ

0 + f2 T
2a+ 4ð Þ

0 + f3 T
2a+ 3ð Þ

0

�
+ f4 T

a+ 3ð Þ
0

+ f5 T
a+ 2ð Þ

0 + f6 T
a+ 1ð Þ

0 + f7 T2
0 + f8 T0 + f9 T�a

0

+ f10 T
a+ 2ð Þ

0 lnT0 + f11 T0 lnT0 + f12

�
,

ð49Þ

T = T0 +KnrT1

= T0 +Knr k1 T
2a+ 4ð Þ

0 + l T
a+ 3ð Þ

0 +m T
a+ 2ð Þ

0

�
+ n T2

0 + o T0 +w T�a
0 + q T0 lnT0

	
,

ð50Þ

p= p0 +Knrp1 ,
ð51Þ

where T0 is defined by the equation (42), k1, l, m, n, o,
w, q, and fi (i=1,2.12) are given in the Appendix, and
p0 and p1 are the solutions of the differential equations
(47) and (48).

Based on the presented solution, it is now possible to
determine different physical properties. From the solu-
tion for the continuum (42, 43, 47) and slip (49)2(51),
the non-dimensional mass flow rates through microbe-
arings for the continuum and slip flow can be calculated
respectively:

_m0 =

ð1
0

p0

T0

u0dy, ð52Þ

_m=

ð1
0

p

T
udy: ð53Þ

Furthermore, the non-dimensional load carrying capac-
ity for the continuum and slip gas flow are respectively:

w0 =

ð1
0

p0 � 1ð Þdx, ð54Þ

w=

ð1
0

p� 1ð Þdx: ð55Þ

Results, discussion, and verification

In gas slide microbearings, the lubricant is a gas
between a moving and a steady wall. Hence, the gas
flow is shear-driven. The forces act upon the walls of
the microbearing, tending to push them together.
Because of that, the gas layer must develop normal
stresses, above all the pressure, which carries the load.
Thus the first goal of lubrication theory is to predict
the pressure distribution and, based on it, the load-
carrying capacity. After that, it relates the velocity to
the pressure gradient. By the presented method, we
involve inertia as the second-order effect in the momen-
tum equation. We have obtained the temperature field
(which, for different walls’ temperatures, is defined pri-
marily by conduction) by adding convection and dissi-
pation rate at which work is done in compressing the
element of fluid in the energy equation. The included
dependence of the dynamic viscosity and thermal con-
ductivity on temperature makes the velocity and tem-
perature fields coupled.

That way, the results for the pressure, velocity, and
temperature fields (49)2(51) for different walls’ tem-
perature microbearing gas flow is going to be presented
and analyzed. The dimensional analysis of the problem
shows that five dimensionless quantities (parameters)
are necessary and sufficient to define it completely. For
the presentation of the results we have selected: the ref-
erence Knudsen and Mach numbers, half of the dimen-
sionless temperature difference between the lower and
upper walls u, the bearing number L, and the ratio
between the inlet and exit microbearing heights hi. That
way, it is possible to present and analyze the influence
of those parameters on the pressure, velocity, and tem-
perature fields. All the results correspond to the diffuse
reflection, so sv=1, sT=1, and to a monatomic gas,
thus k=5/3 and Pr=2/3 (Prandtl number for mona-
tomic gases varies little with temperature, but is nearly
equal to 2/3).2,21

Unlike in our previous work,19 where the transport
coefficients were taken as constant (the temperature
influence on them was neglected), here we consider the
dependence of the dynamic viscosity and thermal con-
ductivity on the temperature (13). Because of that, the
results could be presented for different values of the
viscosity-temperature index a, which takes values 0
(dependence of the temperature on transport properties
is neglected) and from 0.5 for the elastic sphere mole-
cule model to 1 for the Maxwellian molecules.

Figures 2 and 3 present the influence of the trans-
port coefficients’ dependence on the temperature for
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bearing numbers L=1 and L=100, respectively.
Both figures show the presented solution for pressure
distribution for continuum (dotted line) and slip gas
flow at Knr=0.1 (full line) for several viscosity-
temperature indexes a and u=0.5, hi=2. The

continuum corresponds to the higher pressure values
along the microbearing for all values of a. If we neglect
the dependence of the viscosity-temperature index on
the temperature (a=0), the pressure distribution is
underestimated in both continuum and slip regime
(lines without symbols). Furthermore, the higher value
of index a corresponds to the higher pressure along the
microbearing regardless of the value of the bearing
number L and moves the position of the pressure maxi-
mum slightly to the bearing exit (Figure 3(b)).

Figures 4 and 5 show the influence of the reference
Mach number on the pressure distribution along the
microbearing. Figure 4 corresponds to L=1, and
Figure 5 to L=100. It is evident that for the same rar-
efaction (Knr=0.1), the higher Mar leads to the higher
pressure, that is, load carrying capacity of the microbe-
aring. The analysis shows that with Mar decreasing,
discrepancies between the results obtained by the pre-
sented model that include all second-order effects, and
the results that include only rarefaction as the second-
order effect,22 decreases. It means that for small
reference Mach numbers (Mar ł 0.1) we can use the
solution by Milićev and Stevanović22 that comprises
only rarefaction as the second-order effect.

Figure 6 presents the velocity and temperature in the
inlet and outlet cross sections of the microbearing for
hi=2, u=0.5, L=1, and two viscosity-temperature
indexes, a=0 (constant transport coefficients) and the
maximal value a=1. Figure 6(a) shows the results of
the presented model for the continuum and Figure 6(b)

Figure 2. Pressure distribution for continuum (47) and slip
flow (51) (Knr = 0.1, Mar = 0.3) along the microbearing for:
u = 0.5, L= 1, hi = 2 and different viscosity-temperature
indexes a.

Figure 3. (a) Pressure distribution for continuum (47) and slip flow (51) (Knr = 0.1, Mar = 0.3) along the microbearing for: u= 0.5,
L = 100, hi = 2 and different viscosity-temperature indexes a; (b) the detail from (a) enlarged.
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for the slip flow (Knr=0.1, Mar=0.3). The conti-
nuum is without temperature jump and slip on the
walls, and without any second-order effects (rarefac-
tion, inertia, convection, dissipation, and the rate at
which work is done in compressing the element of
fluid). The velocity for the continuum increases from
the inlet to the outlet cross section in both the conti-
nuum and slip regimes, while the first approximation
for the temperature (continuum), presented in
Figure 6(a), remains unchanged along the

microbearing. For the continuum and constant thermal
conductivity k, the presented model gives the linear
temperature profile (equation (42) for a=0). Figure
6(b) shows that the velocity slip and temperature jump
increase, as well as the velocity over the cross section
toward the microbearing exit.

Figure 7 presents the velocity in the inlet and outlet
cross sections of the microbearing for L=100 and
hi=2, u=0.5. The conclusions are qualitatively the
same in both the continuum and slip domains as for
the velocity field presented in Figure 6. The higher val-
ues of the velocity correspond to higher values of the
bearing number L (Figure 7). The presented velocity
and temperature profiles in Figures 6 and 7 show that
constant transport coefficients (lines without symbols)
underestimate both the velocity and temperature in the
entire microbearing gas field.

The influence of the reference Mach number values
on the velocity and temperature fields for bearing num-
bers L=1 and L=100 are presented in Figures 8 and
9, respectively. The results correspond to Knr=0.1,
hi=2, u=0.5, a=0.8, and three different reference
Mach number values: Mar=0.1, Mar=0.3, and
Mar=0.5. For the same rarefaction (Knr=0.1), the
influence of the second-order effects is higher for higher
Mar. For determining the velocity and temperature, the
same as for pressure for small reference Mach numbers
(Mar ł 0.1), we can use the solution which comprises
only rarefaction as the second-order effect.22

The cumulative effect of the velocity field, that is,
mass flow rate, is even more interesting. Based on the
presented results for pressure, velocity and

Figure 4. Pressure distribution for slip flow (51) (Knr = 0.1)
along the microbearing for: u= 0.5, L= 1, hi = 2 for different Mar.

Figure 5. (a) Pressure distribution for slip flow (51) (Knr = 0.1) along the microbearing for: u= 0.5, L= 100, hi = 2 and a = 0.8, for
different Mar; (b) the detail from (a) enlarged.
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temperature, the calculations of the mass flow rate for
the continuum (52) and for the slip domain (53) show
that neglecting the dependence of the viscosity-
temperature index on the temperature produces an
error. If the mass flow rate is calculated with a=0, its
underestimation cannot be negligible. For L from 1 to
100, it is up to 9% in the case of slip flow, while it is up
to 12% for the continuum. Figures 10(a) and 11(a)

show the influence of the values of the index a on the
mass flow rates for microbearings with different bear-
ing numbers.

The pressure increases with the increase of the
viscosity-temperature index. Even though that pressure
increment is up to 1% in the case of bearing number
L=1 (Figure 2) when viscosity-temperature index
increases from a=0 to a=1, the cumulative effect is

Figure 6. The velocity and temperature in the inlet and outlet cross section of the microbearing for hi = 2, u= 0.5, L= 1 and two
viscosity-temperature indexes, a = 0 and a = 1; (a) continuum and (b) slip flow (Knr = 0.1, Mar = 0.3).

Figure 7. The velocity in the inlet and the outlet cross sections of the microbearing for hi = 2, u= 0.5, L= 100, and two viscosity-
temperature indexes, a = 0 and a = 1; (a) continuum and (b) slip flow (Knr = 0.1, Mar = 0.3).
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much higher. The load carrying capacity (54, 55),
increases up to 6% in the case of the slip gas flow and
up to 15% for the continuum, Figures 10(b) and 11(b).
For microbearing with bearing number L=100 the
influence of the viscosity-temperature index on the load
carrying capacity is almost negligible.

In addition, as a confirmation of the model, we pres-
ent a comparison with the results of Doi.15 Figure 12
shows the velocity profiles in the mid cross-section
(x=0.5) with equal (u=0) and different walls’ tem-
peratures (u=0.33, i.e. ~Tw1 = 2~Tw2). The temperature
profiles in three microbearing’s cross-sections are

Figure 8. The velocity for slip flow in the inlet and the outlet cross sections of the microbearing for Knr = 0.1, hi = 2, u= 0.5, a = 0.8,
for different Mar and for: (a) L = 1 (b) L = 100.

Figure 9. The temperature for slip flow in the inlet and the outlet cross sections of the microbearing for Knr = 0.1, hi = 2, u= 0.5,
a = 0.8, for different Mar and for: (a) L = 1 (b) L = 100.
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compared with the results of the same author in
Figure 13. The good agreement in the velocity and tem-
perature fields confirms the presented analytical results
as reliable. Besides, as it has been shown so far, our
results are repeatable and easy for application for a
variety of parameters that define lubrication flow in
microbearings.

Conclusions

The presented perturbation method makes it possible to
obtain a non-isothermal analytical solution for a shear-

driven gas flow in microbearings for different walls’
temperatures and moderately high Reynolds numbers.
However, the method is applicable wider, for the gas
flow in microchannels with steady or moving walls,
micropipes, etc.

Two approximations of the pressure, velocity, and
temperature have been defined in terms of perturbation
series. The first one corresponds to the continuum flow
conditions, while the second one represents the contri-
bution of the second-order effects: rarefaction, inertia,
convection, dissipation, and rate at which work is done
in compressing the element of fluid. The explicit

Figure 10. Dependence of (a) the mass flow and (b) load carrying capacity on bearing number for different viscosity-temperature
indexes and hi = 2, u= 0.5; the flow is continuum and slip (Knr = 0.1, Mar = 0.3).

Figure 11. Dependence of (a) the mass flow and (b) the load carrying capacity on the viscosity-temperature index for different
bearing numbers and hi = 2, u= 0.5; the flow is continuum and slip (Knr = 0.1, Mar = 0.3).
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solution of the pressure, velocity, and temperature
fields enable analyses of the influence of different vari-
ables on the results. The rarefaction causes a lower

pressure in the microbearing, while the other second-
order effects have the opposite impact, increasing the
pressure in the microbearing. The rarefaction leads to
the velocity slip and temperature jump on both walls,
which increases from the inlet to the outlet of the
microbearing. The second-order effects have the influ-
ence on the entire velocity and temperature profiles,
too.

In this paper, the attention has been especially
focused on the influence of the viscosity-temperature
index a on the solution for pressure, velocity, and tem-
perature. The hard sphere molecular model is used to
shape the dynamic viscosity and heat conductivity
dependence on the temperature. The index a takes val-
ues from a=0.5 for the elastic sphere molecule model,
to a=1 for the Maxwellian molecules. Assuming that
the transport coefficients are independent of tempera-
ture (a=0), that is, they are constant, underestimation
arises in all three fields: velocity, temperature, and pres-
sure, and accordingly, in the load carrying capacity and
mass flow rate. It is shown that the error cannot be
neglected, since the mass flow rate can be smaller up to
12%, while the capacity can be smaller up to 15%,
depending on the values of the viscosity-temperature
index and the bearing number.

The validation of the presented results by those
obtained by Doi15 make our results reliable. Besides, as
there are analytical, they can be used in research of the
influence of a variety of parameters that define lubrica-
tion flow in microbearings.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was partially supported by the Ministry of
Education, Science, and Technological Development,
Republic of Serbia [contract number 451-03-9/2021-14/
200105].

ORCID iD
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Appendix

The constants and functions from the section 2 that
defined the velocity, temperature, and pressure analyti-
cal solutions for non-isothermal microbearings gas flow
and the moderately high Reynolds numbers are listed:
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� 1

" #
,

s=� k1 T
2a+ 3ð Þ

w1 � l T
a+ 2ð Þ

w1 � m T
a+ 1ð Þ

w1 � n Tw1 +
L T
�0, 5
w1 C1

p0

� q lnTw1 +
q

a+ 1
,

f1 =
b p0

3a+ 4ð Þ 3a+ 5ð Þgh C1

a+ 2ð Þb c+
bb0

C1

� a+ 2ð Þb2h0

a+ 1ð ÞC1h

� �
� a a+ 2ð Þb k1

3a+ 5
,

f2 =
b p0

2a+ 3ð Þ 2a+ 4ð Þgh C1

c C3 + a+ 2ð Þb d +
b C3ð Þ0

C1

+
a+ 2ð ÞC2b2h0

C1h

�

� a+ 3ð Þb C3h0

a+ 1ð ÞC1h

�
� a

2a+ 4
C3k1 + a+ 2ð Þb lð Þ,

f3 =
bp0

2 a+ 1ð Þ 2a+ 3ð Þgh C1

a+ 2ð Þb e+
b C4ð Þ0

C1

� a+ 2ð Þb C4h0

a+ 1ð ÞC1h

� �
� a a+ 2ð Þ b m

2a+ 3
,

f4 =
b p0

a+ 2ð Þ a+ 3ð Þhg C1

d C3 + a+ 2ð Þ b g +
C3C03

C1

+
a+ 3ð ÞC2C3b h0

C1h

�
� C2

3h0

a+ 1ð ÞC1h

�

� a

a+ 3
C3l+ a+ 2ð Þ b nð Þ,

f5 =
p01

g a+ 1ð Þ a+ 2ð ÞC2
1

+
a 2a+ 3ð Þ b q

a+ 1ð Þ a+ 2ð Þ � a b o+
C3m

a+ 2
+

b q

a+ 1

� �

+
b p0

a+ 1ð Þ a+ 2ð Þ gh C1

C3e+ a+ 2ð Þ b i+
C3C4ð Þ0

C1

+
a+ 2ð ÞC2C4b h0

C1h
� C3C4h0

a+ 1ð ÞC1h

� �
,
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f6 =
b p0C4C04

a a+ 1ð Þhg C2
1

, f7 =�
a C3n

2
+

b C3p0

2h g C1

g +
C2C3h0

C1h

� �
,

f8 = a C3q� b C3p0

hg C1

i+
C2C4h0

C1h

� �
+C7, f9 =C3C6, f10 =� a b q,

f11 =� a C3q+
b C3p0

hg C1

i+
C2C4h0

C1h

� �
, f12 =C8,

C7 =Cc3p01h2 +C77,C8 =
�Tw1Tw2h p01

g a+ 2ð Þ Tw1 � Tw2ð ÞC1

+C88,

C77 = T
3a+ 5ð Þ

w2 � T
3a+ 5ð Þ

w1

� �
f1

h
+ T

2a+ 4ð Þ
w2 � T

2a+ 4ð Þ
w1

� �
f2 + T

2a+ 3ð Þ
w2 � T

2a+ 3ð Þ
w1

� �
f3

+ T
a+ 3ð Þ

w2 � T
a+ 3ð Þ

w1

� �
f4 + T

a+ 1ð Þ
w2 � T

a+ 1ð Þ
w1

� �
f6 + T 2

w2 � T2
w1

� 	
f7 + T�a

w2 � T�a
w1

� 	
f9

+ T
a+ 2ð Þ

w2 lnTw2 � T
a+ 2ð Þ

w1 lnTw1

� �
f10 + Tw2 lnTw2 � Tw1 lnTw1ð Þ f11

+
a C1

p0

C3 T 0:5
w1 + T 0:5

w2

� 	
+ b a+ 2ð Þ T

a+ 1:5ð Þ
w1 + T

a+ 1:5ð Þ
w2

� �� � i.
Tw1 � Tw2ð Þ

� Cc3 f99 + 2a+ 3ð Þ f10ð Þ= bc a+ 1ð Þ a+ 2ð Þð Þ+ f11,

C88 = T
3a+ 4ð Þ

w1 � T
3a+ 4ð Þ

w2

� �
f1

h
+ T

2a+ 3ð Þ
w1 � T

2a+ 3ð Þ
w2

� �
f2 + T

2a+ 2ð Þ
w1 � T

2a+ 2ð Þ
w2

� �
f3

+ Ta
w1 � Ta

w2

� 	
f6 + T

� a+ 1ð Þ
w1 � T

� a+ 1ð Þ
w2

� �
f9 + T

a+ 1ð Þ
w1 lnTw1 � T

a+ 1ð Þ
w2 lnTw2

� �
f10

+ f11 ln
Tw1

Tw2

� a C1

p0

a+ 2ð Þ b T
a+ 0:5ð Þ

w1 + T
a+ 0:5ð Þ

w2

� �
+C3 T�0:5

w1 + T�0:5
w2

� 	� �
+ f99 + 2a+ 3ð Þ f10ð ÞCc1= a+ 2ð Þ �Tw1Tw2= Tw1 � Tw2ð Þ+ Tw1Tw2 f7 � f4Cc3=bcð Þ,

f99 = a a+ 1ð Þ a+ 2ð Þ b o+
C3m

a+ 2
+

b q

a+ 1

� �
� b p0

hg C1

C3e+ a+ 2ð Þ b i+
C3C4ð Þ0

C1

�

+
a+ 2ð ÞC2C4b h0

C1h
� C3C4h0

a+ 1ð ÞC1h

�
:
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