
Citation: You, T.; Wu, H.; Xu, X.;

Petrovic, P.B.; Rodić, A. A Proposed

Priority Pushing and Grasping

Strategy Based on an Improved

Actor-Critic Algorithm. Electronics

2022, 11, 2065. https://doi.org/

10.3390/electronics11132065

Academic Editor: Cecilio Angulo

Received: 29 May 2022

Accepted: 26 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Proposed Priority Pushing and Grasping Strategy Based on
an Improved Actor-Critic Algorithm
Tianya You 1 , Hao Wu 1,* , Xiangrong Xu 1,*, Petar B. Petrovic 2 and Aleksandar Rodić 3

1 Faculty of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243000, China;
ytyjla@163.com

2 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia;
pbpetrovic@mas.bg.ac.rs

3 Institute Mihajlo Pupin, University of Belgrade, Volgina 15, 11060 Belgrade, Serbia; aleksandar.rodic@pupin.rs
* Correspondence: hao.wu@ahut.edu.cn (H.W.); xuxr@ahut.edu.cn (X.X.)

Abstract: The most basic and primary skills of a robot are pushing and grasping. In cluttered scenes,
push to make room for arms and fingers to grasp objects. We propose a modified Actor-Critic
(A-C) framework for deep reinforcement learning, Cross-entropy Softmax A-C (CSAC), and use
the Prioritized Experience Replay (PER) based on the theoretical foundation and main methods
of deep reinforcement learning, combining the advantages of algorithms based on value functions
and policy gradients. The grasping model is trained using self-supervised learning to achieve end-
to-end mapping from image to propulsion and grasping action. A vision module and an action
module have been created out of the entire algorithm framework. The prioritized experience replay
is improved to further improve the CSAC-PER algorithm for model sample diversity and robot
exploration performance during robot grasping training. The experience replay buffer is dynamically
sampled using the prior beta distribution and the dynamic sampling algorithm based on the beta
distribution (CSAC-β) is proposed based on the CSAC algorithm. Despite its low initial efficiency, the
experimental simulation results show that the CSAC-β algorithm eventually achieves good results
and has a higher grasping success rate (90%).

Keywords: deep reinforcement learning; FCN; beta distribution; robotic manipulation

1. Introduction

Pushing and grasping are basic operations of a robot and are the foundation and key
to the robot’s ability to perform various tasks, according to the study of robot manipulation
skills. The robot’s decision-making and adaptive capabilities have been put to the test as it
has to deal with unstructured grasping environments and unknown objects. Deep learning
is not only a process of learning relationships between multiple variables, but it is also a
process of learning the knowledge that controls the relationships and the knowledge that
understands them [1]. The grasping problem is transformed into a target detection problem
thanks to deep learning, allowing the mapping from image to grasping action. However,
there are still issues such as poor recognition and large localization errors when dealing with
complex environments with a wide variety of objects. Furthermore, deep learning-based
robotic grasping methods rely on large-scale annotated data, which can be labor-intensive
and time-consuming to collect, tag, and build. Through continuous interaction with the
environment, reinforcement learning methods learn optimal strategies. The method uses
a predetermined reward as a feedback signal instead of manual annotation, combining a
deep reinforcement learning algorithm with deep learning. Deep reinforcement learning
uses deep neural networks’ powerful feature extraction capabilities to make reinforcement
learning methods more perceptive and expressive, as well as to handle problems in high-
dimensional state and action spaces.

Electronics 2022, 11, 2065. https://doi.org/10.3390/electronics11132065 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132065
https://doi.org/10.3390/electronics11132065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0339-2305
https://orcid.org/0000-0003-4537-2898
https://doi.org/10.3390/electronics11132065
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132065?type=check_update&version=1

Electronics 2022, 11, 2065 2 of 17

Rather than using previously defined heuristics or hard-coded targets to push actions,
Zeng et al. propose using model-free deep reinforcement learning to discover and learn
from experience the synergy between pushing and grasping strategies for sequential
operations [2]. They employ the traditional DQN (Q-learning) algorithm, which is based on
value functions [3], but the value function-based approach struggles to deal with the large
action space, particularly in the case of continuous actions. Other issues include low sample
utilization, the poor synergy between pushing and grasping actions, and the instability
of the value obtained from training. Experience replay and target network freezing were
used to solve the problem in the original Actor-Critic framework of deep reinforcement
learning algorithms, which learns both Q-functions and policies [4,5]. On the other hand,
this approach is unstable and has issues running large-scale reinforcement learning tasks
with hyperparameters. Even though improvements to this network could constrain the Q
function to be a convex function of the action, making it easier to back-propagate losses, the
action convex-valued function is a poor fit, and the Q function is not convex in the input.

Calculating the Temporal Difference Target (TD-Target) is a complex problem that
involves optimizing the continuous action space to select the optimal action rather than just
the most worthwhile action. The cross-entropy method (CEM) algorithm is a parameter
perturbation-based search algorithm [6]. Give the parameter space v some reasonable
perturbations, then use cross-entropy to guide the updating so that the direction of the
perturbations converges to the direction of the target optimization and is moderately robust
to local optimality for low-dimensional problems. The cross-entropy algorithm from the
evolutionary strategy optimization algorithm is integrated into our algorithmic framework
to maintain a distribution of possible optimal solutions and further select the optimal action
in the continuous space.

The introduction of softmax in the discrete action space has been shown to control
the gap between the value function and the optimal value [7]. This is crucial when using
softmax in continuous action space because errors can be kept within reasonable intervals.
The softmax operation is used to smooth the deep reinforcement learning algorithm,
reducing the iterative error accumulation problem caused by error transmission along with
the policy network and ensuring the algorithm’s performance in terms of convergence and
stability. The estimation errors caused by their respective estimates are partially balanced,
the overestimation bias is reduced, and the evaluation network and objective function
calculation strategy gradient algorithm is optimized.

At this stage, experience replay is an indispensable technique for improving sampling
efficiency and breaking the correlation of data when training while exploring. The number
of replays of historical data is increased by the experience replay mechanism, reducing
resource waste and allowing reinforcement learning algorithms to converge faster and
better [8–10]. However, existing algorithms in the experience replay lack data filtering,
making data training inefficient and algorithm convergence slow. Adding a new experience
replay to an existing experience replay, where the data is sorted according to the level
of Temporal Difference error, and uniform sampling is replaced with priority sampling,
improves the experience replay. Dynamic experience sampling based on beta distribution
is proposed based on preferential experience sampling as the number of training steps
increases to increase the diversity of the samples sampled and to allow the robot to further
explore the environment; though training efficiency is sacrificed to some extent, and
satisfactory results are eventually achieved.

To improve the learning efficiency and success rate of robots when operating on target
objects in complex environments, this paper was written. Our algorithm is based on the
A–C algorithm and adds the following features:

1. To calculate the TD-Target, use the CME optimization algorithm to select the best
action in continuous space.

2. Softmax operations are used to improve the temporal differencing method in the
policy gradient algorithm.

Electronics 2022, 11, 2065 3 of 17

3. Improving the experience replay structure by sampling with a priority sampling
strategy, which is then used to propose a dynamic sampling approach.

2. Related Work
2.1. Deep Learning for Robotic Grasping

Grasping objects is a basic yet challenging task in robotics. Thanks to the development
of deep learning, methods represented by convolutional neural networks can learn and
mine feature representations from large amounts of annotated data that are superior to
those designed manually; the robot is trained on the grasping dataset, performs pose
estimation and grasp estimation on the grasping object, and learns the object grasping
frame position to realize the grasping of the object. Lenz et al. proposed a search-window
approach to grasp detection, innovatively applying deep learning algorithms to robotic
grasping [11]. They created a two-stage cascaded neural network that received RGB-
D images as input. Multiple candidate grasping frames were generated on the object’s
surface in the first stage, and those with a higher probability of successful grasping were
initially evaluated and screened. Redmon et al. transformed the grasping problem into
a regression problem and proposed a real-time robot grasping detection method based
on convolutional neural networks [12]. Without the use of a sliding window or candidate
network, single-stage regression is performed directly on the graspable bounding box.
The sliding window method of identifying candidate rectangle locations necessitates a
time-consuming traversal search to obtain the optimal solution. This method, on the
other hand, does not necessitate traversal of all possible grasping locations and has a
high accuracy rate while greatly increasing detection speed. Jeffrey Mahler et al. at the
University of California, Berkeley, built a grasping dataset called Dex-Net2.0 and trained
a grasping quality assessment convolutional neural network model (GQ-CNN), which
uses a point cloud with edge detection as input to evaluate the effectiveness of grasping
at each location [13]. It should be noted that the method primarily evaluates grasping
without learning how the controller grasps the object, which is more difficult to train
using large-scale datasets and does not account for camera noise, mechanical deformation,
and other real-world problems. Chu et al. proposed a multi-object, multi-grasp grasp
detection framework that can process RGB-D images of one as well as multiple unknown
objects [14]. The entire framework is improved based on Faster RCNN [15], which changes
the category of objects to grasp the rotation angle of rectangles and fails to recognize
the object category, making accurate grasping of the desired objects difficult. Mingshuo
Han et al. addressed the problem of grasping and locating densely stacked objects in a
warehouse logistics scenario by using suction cups for the grasping task and proposed
a two-stage suction point detection algorithm [16]. However, the accuracy of grasping
point detection is low for objects with large differences in geometric features and that are
prone to deformation. Fei-Fei Li’s team at Stanford University collaborated to propose
a novel network called DenseFusion, which uses a color map and a depth map together
as input to directly estimate the 6-degree-of-freedom pose of an object for grasping pose
determination [17]. This method alters the traditional method of fusing RGB-D features,
and this pixel-level fusion method is capable of doing so, which is critical for dealing with
heavy occlusion cases.

2.2. Reinforcement Learning for Robotic Grasping

Deep reinforcement learning combines deep learning’s feature extraction capability
with reinforcement learning’s decision-making capability, allowing traditional reinforce-
ment learning methods to solve problems in high-dimensional state and action spaces.
Reinforcement learning methods use predetermined rewards as feedback signals, without
needing constant interaction with the environment by human annotation, to learn the
optimal strategy. Lerrel Pinto and Abhinav Gupta of Cameron University proposed an
adversarial grasp learning method that trains a convolutional neural network to directly
predict the optimal grasp action of a robot for a given image region by controlling two

Electronics 2022, 11, 2065 4 of 17

robots to learn from each other [18]. The network showed good generalization for un-
seen objects, achieving a success rate of 66% when tested. Sergey Levine et al. built a
learning-based robot hand-eye coordination system with continuous-servo control of the
robot to continuously predict the optimal path and update the robot’s motion commands
for successful grasping, eventually achieving a grasping accuracy of about 80% [19]. Dmitry
Kalashnikov et al. combined a massively distributed optimization method with deep rein-
forcement learning to propose a scalable self-supervised grasping learning method QT-Opt,
which achieved a 96% success rate for grasping unknown objects after 580,000 steps of
robot training [20]. To reduce training time for deep reinforcement learning algorithms that
require a large number of training steps, multiple robots are used to train on the grasping
task simultaneously. Quillen investigated the effect of offline strategies on the learning
efficiency of deep reinforcement learning algorithms in learning robot grasping strategies
and found that a combined approach based on Monte Carlo return estimation and offline
correction had higher learning efficiency through simulation experiments [21]. However,
the network is unstable and highly sensitive to hyperparameters. Breyel et al. investigated
the effects of reward functions and pre-training strategies, among others, on deep reinforce-
ment learning in terms of learning speed and grasping success rates for grasping tasks [22].
However, the algorithm’s migration and generalization performance from the simulation
environment to the real environment are poor. Clavera et al. addressed the problem of
successive reward functions trapping deep reinforcement learning to strategies in local
optima by incorporating task prior knowledge into the state space and the reward function
to speed up training convergence, and they also proposed a reward-guided algorithm to
reduce training time [23].

Haarnoja et al. proposed a maximum entropy strategy for soft Q-learning training
applied to realistic robot manipulation to address the problem that realistic physical robots
are limited by the time to interact with their environment during training [24]. Soft Q
learning can greatly improve the efficiency of training from scratch by combining existing
skills to build new strategies, and it can limit the optimality of the resulting strategies
based on the differences between the composed strategies, resulting in improved stability
and convergence. Singh et al. enable robots to learn from a small number of examples of
successful outcomes, eliminating the need for manually developed reward specifications
and eliminating the need to manually design rewards as an efficient and practical way to
learn skills [25]. However, the requirement to obtain labels from users imposes additional
assumptions, increasing the number of queries required per training. Liang et al. proposed
a knowledge-induced deep Q-learning model that actively uses the environment to drive
objects and thus achieve grasping [26]. There are limitations in the robotic operation of
this work for complex tasks that require the collaboration of different kinematic primitives.
Shirin et al. built a grasping Q-network using a dual deep Q-learning framework to train the
robot to master grasping techniques and a multi-view camera set up to observe the object,
which greatly improved the grasping success rate [27]. More closely related to our work is
the work of Zeng et al. [2], who introduced a Q-learning framework to simultaneously learn
complementary push and grasp strategies. A Q-function reinforcement learning framework
was estimated using a fully convolutional network (FCN) as a function approximator.
Similar to Zeng et al.’s work on grasping point detection in images, Kechun Xu proposed
a target conditional hierarchical reinforcement learning formulation with high sample
efficiency to learn a push grasping strategy for grasping specific objects in clutter, achieving
good results in terms of task completion rate and target grasping success rate [28]. AndYang
et al. developed a deep learning approach driven by a critical strategy format to search for
targets and rearrange the clutter around them for effective grasping [29]. However, it still
has issues such as inaccurate grasping point positioning and low efficiency of pushing and
grasping collaboration.

Electronics 2022, 11, 2065 5 of 17

3. Methods
3.1. Reinforcement Learning

Reinforcement learning is an important branch of machine learning that differs from
supervised and unsupervised learning in that it can be used to solve sequential decision-
making problems. The concept is to emulate the human learning process through trial and
error. Similarly, in reinforcement learning, an agent interacts with its environment in a trial-
and-error process, using feedback signals from each action performed to assess how good
or bad the action was and to update its decision-making strategy to make better decisions.

The problem study of reinforcement learning needs to be based on the Markov Deci-
sion Process (MDP) [30]. It first needs to satisfy the Markov Property, the future state at+1
obeys a probability distribution that depends only on the current state st and the current
action at, independent of the sequence of state actions at past moments:

P[st+1 | st, at] = P[st+1 | s0, · · · , st; a0, · · · , at] (1)

For the MDP dynamic process, the initial state of the agent S0 ∈ S, and selects
action a0 ∈ A to execute. The environment enters the next state s1 according to the
state transfer function P, while the return r0 is fed back to the agent, which then enters
the process of the next decision. We can describe a state action interaction trajectory in
terms of τ, τ = (s0, a0, s1, a1, . . .). The specific process is shown in Figure 1. In addition,
a discount factor γ needs to be introduced. It is used to assess the cumulative future
reward expectation, while a value of zero means that only immediate rewards should be
considered. The undiscounted decaying returns and discounted decaying returns for the
whole trajectory are:

R(τ) =
T

∑
t=0

γtrt, γ ∈ (0, 1) (2)

The performance of a policy can be assessed in terms of the expected return on the
trajectory after the adoption of the policy. Assuming that the trajectory length is T and the
environmental state transfer and strategy are random, then the probability of this trajectory
of length T is:

P(τ|π) = ρ0(s0)
T−1

∏
t=0

P(st+1 | st, at)π(at | st) (3)

Electronics 2022, 11, x FOR PEER REVIEW 5 of 17

grasping [29]. However, it still has issues such as inaccurate grasping point positioning
and low efficiency of pushing and grasping collaboration.

3. Methods
3.1. Reinforcement Learning

Reinforcement learning is an important branch of machine learning that differs from
supervised and unsupervised learning in that it can be used to solve sequential decision-
making problems. The concept is to emulate the human learning process through trial and
error. Similarly, in reinforcement learning, an agent interacts with its environment in a
trial-and-error process, using feedback signals from each action performed to assess how
good or bad the action was and to update its decision-making strategy to make better
decisions.

The problem study of reinforcement learning needs to be based on the Markov Deci-
sion Process (MDP) [30]. It first needs to satisfy the Markov Property, the future state 1ta +

at+1obeys a probability distribution that depends only on the current state ts and the cur-
rent action at, independent of the sequence of state actions at past moments:

1 1 0 0, , , ; , ,t t t t t tP s s a P s s s a a+ += ∣ ∣ (1)

For the MDP dynamic process, the initial state of the agent 0S ∈ , and selects action

0a ∈ to execute. The environment enters the next state 1s according to the state transfer
function P , while the return 0r is fed back to the agent, which then enters the process
of the next decision. We can describe a state action interaction trajectory in terms of τ ,

()0 0 1 1, , , ,s a s aτ = … . The specific process is shown in Figure 1.In addition, a discount factor
γ needs to be introduced. It is used to assess the cumulative future reward expectation,
while a value of zero means that only immediate rewards should be considered. The un-
discounted decaying returns and discounted decaying returns for the whole trajectory are:

0
() , (0,1)

T
t
t

t
R rτ γ γ

=
= ∈ (2)

The performance of a policy can be assessed in terms of the expected return on the
trajectory after the adoption of the policy. Assuming that the trajectory length is T and
the environmental state transfer and strategy are random, then the probability of this tra-
jectory of length T is:

() () ()
1

0 0 1
0

(|) ,
T

t t t t t
t

P s P s s a a sτ π ρ π
−

+
=

= ∏ ∣ ∣ (3)

Figure 1. Reinforcement Learning Model.

tr 1tr +

ts ta +1ts +1ta +2ts

reward

tr
action

ta

1tr +

1ts +

state

ts

Figure 1. Reinforcement Learning Model.

In the process of optimizing a strategy, it is necessary to calculate the value of each
state or state-action, expressed as a value function and a Q-value function, respectively.
As both satisfy the Bellman equation, the optimal state value function and action-value
function are introduced:

V∗(s) = max
a

ss′∼P
[
r(s, a) + γV∗

(
s′
)]

(4)

Electronics 2022, 11, 2065 6 of 17

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗
(
s′, a′

)]
(5)

The core of the optimal value function is the update of the value function, where the
algorithm learns the value model through information from the interaction sequence and
updates the strategy through the value model. Its optimal strategy is to choose the action
with the highest Q value [31]:

a∗(s) = argmax
a

Q∗(s, a) (6)

Dynamic planning can be used to update the action-value function in an environment
where the state transfer model is known:

Vπ(s)← r(s, π(s)) + E
s′∼P

[
Vπ
(
s′
)]

(7)

Whereas in the case of unknown models, the two main types of methods are Monte
Carlo (MC) and Time Difference (TD). Monte Carlo is an unbiased estimation method with
a strategy update that requires a complete trajectory, large variance, and low efficiency.
Another class of TD algorithms, on the other hand, combines the advantages of Monte
Carlo and dynamic programming. It enables both learning strategies from real data without
the need for environmental models and single-step updates. Its updated formula is

Q(s, a)← Q(s, a) + α
(
r(s, a) + γV

(
s′
)
−Q(s, a)

)
(8)

The off-policy form of the TD algorithm is the most widely used (Q-Learning) [32].
Often a network is used to fit the optimal Q. Therefore, during the iterative process, the
TD-Target can be used as the update target for each set of state transfer samples:

yi = r(si, ai) + γmax
a′i

Qθ

(
s′i, a′i

)
(9)

3.2. State Space

As the state St in the Markov model, the method in this paper uses observations
from vision sensors with RGB-D images of the robot’s working area acquired by the depth
camera at each moment. Pre-processing of camera-captured scene images using known
camera parameters. After converting the RGB-D image to a 3-dimensional point cloud, the
point cloud is projected vertically to the gravity direction to obtain a color mapping map
and a height mapping map in the top view direction, and the point cloud is filled with
0 values to account for missing pixel point values in the mapping map calculation. Both
mapping maps have the same resolution and are 224 × 224 in size, with pixel locations
corresponding to each other. The value corresponding to each pixel point in the color
mapping map in the depth mapping map is the depth information of that point in 3D space.

In this paper, the set of grasping actions of a robot is called the action space, and
the position of an object in the space can be represented by six variables (x, y, z, α, β, γ).
Therefore each grasping action in the action space should contain two elements: movement
position (xr, yr, zr) and movement gestures (αr, βr, γr). The grasping of the robot is set to
grip in the vertical direction facing the table. The action posture is simplified to the rotation
angle θ of the robot’s end-effector along the z-axis, which is the direction of the robot’s
action. The range of rotation angles of the robot end gripper is (0, 2π). The robot is set
to have 16 different directions of grasping action at the same position, i.e., the range of
rotation angles is discrete into 16 parts. The action space is parameterized according to
the above settings. At time t, the robot’s action space A contains 16 × 224 × 224 grasping
actions at = (q, θ), which are represented in the robot coordinate system as (xr, yr, zr, θ).

Electronics 2022, 11, 2065 7 of 17

3.3. Rewards

There are two parts to the common reward design, reward r. The distance reward
function, r1, represents the distance between the robotic arm’s end and the target region’s
center point. When the end of the robotic arm is within the target region, the sparse reward
function (r2) is a single-step reward with an ambient feedback value of 1.

r1 =

√
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2 (10)

r2 =

{
0 not at the target point
1 otherwise

(11)

r = r1 + r2 is the algorithm’s original reward function, which is used as the simulation
robot arm’s default reward function when the reward function is constant. This section
designs a segmented reward function based on action effects for robot push-grasp learning.
Different action effects are considered in the calculation of the reward for the current action,
and environmental changes are taken into account in the calculation of the cumulative
desired reward. The current award is defined as

Ra t(st, st+1) = r + Γ(φt)Ia t(st, st+1) (12)

The current reward consists of a basic movement reward Iat(St, St+1) and a movement
effect reward Γ(φt). The basic action reward is the baseline and the action effect reward in-
dicates the degree of reward or punishment. Andrew Hundt et al. proposed an exponential
reward mechanism to determine the reward for different actions of the robot based on the
type of action and the importance of the different actions [33]. The method in this paper
involves two types of robots actions and expects to achieve the effect of pushing actions to
assist grasping actions, so an exponential reward mechanism is used to generalize the basic
action reward for pushing and grasping actions, defined as:

Γcxp(φt) = η0 + η12s−smax (13)

where η0 and η1 are action-independent parameters, Sϕ ≤ Smax is the reward parameter
associated with the action type ϕ. For the two actions involved in this paper, the parameters
of the push action sc = 0 and the parameters of the grasp action sg = smax = 1.

The designed action effect reward Iat is a segmentation function. During different
training periods, the robot is rewarded with a penalty for the different results of the two
actions during grasping. The action effect bonus consists of a grab action effect reward and
a push action effect reward:

Iat(st, st+1) =

{
Ig(st, st+1), i f at = ag
Ic(st, st+1), i f at = ac

(14)

For grasping actions, the action effect reward Ig is defined as follows:

Ig(st, st+1) =

−1.0, i f do nothing
−0.5, i f grasp empty
−0.25, i f touch but not grasp
0.0, i f grasp but drop
1.0, i f grasp and li f t

(15)

As the first two actions have no effect on the object being grasped, they can be classified
as the same type of effect, dividing the effect of robot grasping into 4 cases: (1) empty grasp
where there is no object; (2) gripper touches an object but fails to grasp it successfully;
(3) grasps an object but fails to hold it and drops it; (4) successful grasp and removal of
the object in four different situations, giving a bonus ranging from −1 to 1. The gripping

Electronics 2022, 11, 2065 8 of 17

effect of the robot can be judged by the distance between the fingers of the robot when the
gripper is initially closed, the distance between the fingers after the gripper is closed and
moved, and the change in state before and after the action. The change in the state before
and after the movement is determined by calculating the difference between the depth
mapping maps before and after the movement.

The push assists in the gripping action. The definitions are as follows:

Ic(st, st+1) =

{
−1.0 i f φg(st+1) ≤ φg(st)
1.0 otherwise

(16)

Instead of only rewarding successful grasping, the robot is rewarded or punished
for various grasping effects. The robot learns the coordination and synergy between the
pushing and grasping actions by rewarding or punishing it with a churn based on the
predicted outcome of the next training session.

3.4. Network

In designing the network architecture, we draw inspiration from the success of
Zeng et al. [2]. In proposing an Actor-Critic approach that incorporates deep networks,
there are several key differences that contribute to the superiority of our proposed frame-
work over theirs.

DenseNet is a deep convolutional neural network with dense connections [34]. It
helps to back-propagate the gradient during training and solves the problem of gradient
disappearance or gradient explosion of traditional deep convolutional neural networks to
some extent. The vision module of our framework is based on DenseNet-121’s full convo-
lutional network (FCN) model (Figure 2). Each depth height map and the corresponding
color image are rotated 16 times at an angle of π/8 radians, and together they form the
state input. It is important to note that the single-channel depth map is channel cloned and
processed into the same three-channel (DDD) as the color image and normalized. After
channel cascading the outputs of the three networks, the outputs are interleaved using
two additional 1 × 1 convolutional layers, a nonlinear activation function (ReLU) [35] and
spatial batch normalization [36], followed by bilinear up sampling, resulting in an output
image with the same resolution as the input image, which predicts a dense pixel mapping
with the same q-value as the output size. Each pixel in the output Q-value map represents
a push or grasp action primitive at the corresponding 3D position, and the rotation angle
of the height map corresponds to the rotation angle of the end-effector. The dense pixel
approach parameterization simplifies the action space and thus speeds up the convergence.

In our framework, the core of the action module framework is the Actor-Critic algo-
rithm. Our algorithm inherits the successful experience of DQN while (experience replay
and target network freeze), adding Policy network for outputting continuous action values.
The Actor learns the policy function π, the Critic learns the action value function Q, and
the Actor makes an action according to the policy. The Critic gives Actor a score, and the
Actor improves his strategy based on this score. The Critic relies on the rewards given by
the environment to improve himself and make his scoring more and more accurate. Main
implementation process: the Actor makes the robot arm perform the action according to the
behavior strategy at, return rt and the new state st+1. The Actor stores this state transition
(st, at, rt, st+1) in the replay memory buffer R as the dataset for training the online network.
From the replay memory buffer R, N transitions are sampled according to the policy as a
mini-batch training data for the online policy network and the online Q network. The target
value network is fixed in the algorithm, and after updating the online Q and online policy
networks, a Target_Q network with the same structure and parameters are copied from the
online Q network again every C steps and samples data from the experience replay and
outputs a stable target value Q_target. The specific algorithm is described in greater detail
in the following section, with detailed steps listed in Algorithm 1.

The system has two components, an action module based on the Actor-Critic algorithm
framework and a vision module based on the FNC framework. The visual 3D data observed

Electronics 2022, 11, 2065 9 of 17

by the statically mounted RGB-D camera is reprojected onto the orthogonal RGB-D height
map and entered into the FCN Vision Model as the current state st. A value network is the
effect of performing a push or grab action based on the position of each pixel in the image
corresponding to the space of the input Q network, visualizing the value of the action
output from the network as a heat map with the same resolution as the input image. At
the same time, we sample the mini-batch data from the replay memory buffer, update the
policy network, and the value network.

In general, we want to optimize a policy with parameters so that it can learn a value
function (Critic) from data interacting with the environment, which will help the policy
function (Actor) learn a better policy. It is worth noting that the original push or grip action
is chosen based on the acquired strategy. Also, the visual changes in the workspace are
examined by comparing the workspace images in two subsequent states. If no significant
visual change is detected, the robot will perform a pushing action. Otherwise, a grasping
action will be executed. In self-supervised learning, this process is repeated over and over
again. The grasping and pushing actions are trained using a single shared network, the
Fully Connected Network.

Algorithm 1. Detailed steps of the improved algorithm CSAC-PER

1 : Initializing of the network Q
(
s, a
∣∣θQ), µ(s|θµ)

2 : Initializing the parameters of the target network (Q′, µ′)θQ′ ← θQ , θµ′ ← θµ

3 : Initializing the noise of exploration ε

4 : Initializing experience replay R1, R2
5 : for episode = 1, M do
6 : Initialize the environment and initial state S1
7 : for t = 1, T do
8 : for candidate j = 1, J do
9 : Sampling the ajaccording to the distribution W
10 : end for

11 : Select the optimal K actions K ← argsort
(

Q
(
s, aj

)J
j=1

)
1:K

12 : µ = 1
K ∑

k∈K
ak, σ = 1

K−1 ∑
k∈K
|ak − µ|, Update W

13 : Output optimal action at = µ + ε

14 : Store the samples (st, at, rt, st+1) into R1
15 : Sort the data according to the reward function and store it inR2
16 : Priority sampling of N samples from R2
17 : Calculate the value function : so f tmaxβ(Q′(si+1, ai+1))

18 : Calculate the objective function :
yi ← r + γ(1− d)so f tmaxtmaxβ(Q′(si+1, ai+1))

19 : Updating the value network :
L = 1

N ∑
i

(
yi −Q

(
si, ai | θQ))2

20 : Updating the policy network :

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a | θQ)∣∣∣∣

s=si ,a=µ(si)

∇θµ µ(s | θµ)

∣∣∣∣∣
si

21 : Update target networks :
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

22 : end for
23 : end for

where R1, R2 have experienced replay buffers of a size much smaller than the time step T; d
is an integer discrete value in the range of [0, 1] to indicate whether the intelligence reaches
the termination state during the learning process; ε is the action of adding noise, used
to calculate the value function and the exploration of the agent, ε ∼ clip(N(0, δ),−c,+c);
The softmax operation for the continuous action space involves an integral that is difficult

Electronics 2022, 11, 2065 10 of 17

to compute, so its unbiased estimate can be obtained by importance sampling; τ is the
discount factor used to smooth the update process in the network update.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17

Figure 2. The framework of our system.

In our framework, the core of the action module framework is the Actor-Critic algo-
rithm. Our algorithm inherits the successful experience of DQN while (experience replay
and target network freeze), adding Policy network for outputting continuous action val-
ues. The Actor learns the policy function π, the Critic learns the action value function Q,
and the Actor makes an action according to the policy. The Critic gives Actor a score, and
the Actor improves his strategy based on this score. The Critic relies on the rewards given
by the environment to improve himself and make his scoring more and more accurate.
Main implementation process: the Actor makes the robot arm perform the action accord-
ing to the behavior strategy ta , return tr and the new state 1ts + . The Actor stores this
state transition 1(, , ,)t t t ts a r s + in the replay memory buffer R as the dataset for training the
online network. From the replay memory buffer R, N transitions are sampled according
to the policy as a mini-batch training data for the online policy network and the online Q
network. The target value network is fixed in the algorithm, and after updating the online
Q and online policy networks, a Target_Q network with the same structure and parame-
ters are copied from the online Q network again every C steps and samples data from the
experience replay and outputs a stable target value Q_target. The specific algorithm is de-
scribed in greater detail in the following section, with detailed steps listed in Algorithm 1.

The system has two components, an action module based on the Actor-Critic algo-
rithm framework and a vision module based on the FNC framework. The visual 3D data
observed by the statically mounted RGB-D camera is reprojected onto the orthogonal
RGB-D height map and entered into the FCN Vision Model as the current state ts . A value
network is the effect of performing a push or grab action based on the position of each
pixel in the image corresponding to the space of the input Q network, visualizing the value
of the action output from the network as a heat map with the same resolution as the input
image. At the same time, we sample the mini-batch data from the replay memory buffer,
update the policy network, and the value network.

In general, we want to optimize a policy with parameters so that it can learn a value
function (Critic) from data interacting with the environment, which will help the policy
function (Actor) learn a better policy. It is worth noting that the original push or grip ac-
tion is chosen based on the acquired strategy. Also, the visual changes in the workspace
are examined by comparing the workspace images in two subsequent states. If no signif-
icant visual change is detected, the robot will perform a pushing action. Otherwise, a
grasping action will be executed. In self-supervised learning, this process is repeated over
and over again. The grasping and pushing actions are trained using a single shared net-
work, the Fully Connected Network.

Figure 2. The framework of our system.

3.5. Dynamic Prioritized Experience Replay

The beta distribution, as an important class of underlying distributions in multivariate
statistical analysis, has a wide range of applications in fields such as mathematical statis-
tics [37]. In Bayesian inference, the Beta distribution is a conjugate prior distribution of
the Bernoulli, binomial, negative binomial, and geometric distributions. Beta distributions
come in many shapes, which can give the magnitude of the probability of occurrence of all
probabilities. The expression of its probability density function is given by:

f (x) =
xa−1(1− x)b−1

B(a, b)
(17)

The denominator in Equation (15) is the beta function, the expression of which is:

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt (18)

When the parameters a, b takes different values, the probability density function can
be fitted to different function shapes (Figure 3). When a = b = 1, it happens to be uniformly
distributed. Bayes says that knowing nothing also means that any probability is the same
and is possible, and in the earliest papers, it was most common to use uniform distribution
pairs for sampling in experience replay.

To avoid the high probability of samples with large TD errors being sampled, samples
with low TD errors are never sampled, making the sampled samples lack diversity and
leading to the overestimation of the training process. We use the Bata distribution function
to sample the sample data after sorting the sample data in the experience reply according
to their TD errors from largest to smallest based on priority experience playback so that
samples with large and small TD errors have the same probability of being sampled, and
the rest can be sampled approximately uniformly. As the number of training steps increases
and when α = β = 1 metamorphoses into common uniform sampling. Then α reaches the
threshold value and β continues to increase, gradually reaching the effect of preferential
experience replay.

Electronics 2022, 11, 2065 11 of 17

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17

3.5. Dynamic Prioritized Experience Replay
The beta distribution, as an important class of underlying distributions in multivari-

ate statistical analysis, has a wide range of applications in fields such as mathematical
statistics [37]. In Bayesian inference, the Beta distribution is a conjugate prior distribution
of the Bernoulli, binomial, negative binomial, and geometric distributions. Beta distribu-
tions come in many shapes, which can give the magnitude of the probability of occurrence
of all probabilities. The expression of its probability density function is given by:

1 1(1)()
(,)

a bx xf x
B a b

− −−= (17)

The denominator in Equation (15) is the beta function, the expression of which is:
1 1 1
0(,) (1)a bB a b t t dt− −= − (18)

When the parameters a, b takes different values, the probability density function can
be fitted to different function shapes (Figure 3). When 1a b= = , it happens to be uniformly
distributed. Bayes says that knowing nothing also means that any probability is the same
and is possible, and in the earliest papers, it was most common to use uniform distribution
pairs for sampling in experience replay.

Figure 3. Beta distribution with different parameters.

To avoid the high probability of samples with large TD errors being sampled, sam-
ples with low TD errors are never sampled, making the sampled samples lack diversity
and leading to the overestimation of the training process. We use the Bata distribution
function to sample the sample data after sorting the sample data in the experience reply
according to their TD errors from largest to smallest based on priority experience playback
so that samples with large and small TD errors have the same probability of being sam-
pled, and the rest can be sampled approximately uniformly. As the number of training
steps increases and when 1α β= = metamorphoses into common uniform sampling.
Then α reaches the threshold value and β continues to increase, gradually reaching the
effect of preferential experience replay.

Finally, using Bata distribution sampling can achieve the effect of priority sampling
while also enriching the sampling samples and giving the machine more curiosity to ex-
plore unexpected strategies (Figure 4). The method avoids compensating for probability
distribution errors and is easier to implement because it does not directly calculate the
priority weights and sampling probabilities of the samples.

Figure 3. Beta distribution with different parameters.

Finally, using Bata distribution sampling can achieve the effect of priority sampling
while also enriching the sampling samples and giving the machine more curiosity to
explore unexpected strategies (Figure 4). The method avoids compensating for probability
distribution errors and is easier to implement because it does not directly calculate the
priority weights and sampling probabilities of the samples.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17

Figure 4. Two paths to explore the optimal strategy.

4. Experimental Results
The system uses an i7 9700k processor and an NVIDIA RTX 2070s for computing.

Our system adopts the loss function using the Huber loss function and the optimizer is
the Adam optimizer. Our simulation environment consists of a UR5 robot arm with an
RG2 gripper in CoppeliaSim (shown in Figure 5).

Figure 5. Simulation environment.

4.1. Baseline Methods
In this section, we perform a series of experiments to evaluate our system. The objec-

tives of the experiments are: (1) prove that our training method is effective in speeding up
the exploration and training process. (2) Verify that the proposed CSAC-PER algorithm is
effective in improving the action synergy and achieving effective grasping of the target
object with higher learning efficiency than the traditional sampling algorithm.

To verify the effect of exploration strategy and network structure on training speed
and grasping accuracy, several baseline models were used as described below:
(1) Grasping-only is a greedy deterministic grasping strategy that uses a fully convolu-

tional network to predict the action and uses a greedy strategy to select the next ac-
tion to be executed [38].

(2) VPG maps action Q values by two action full convolutional networks and uses rein-
forcement learning methods to learn the synergy between “push” and “grasp” to
achieve target grasping.

4.2. Evaluation Metrics
The proposed CSAC-PER and other baseline methods were evaluated in the test

cases. The robot needs to pick up and clear all objects from the workspace. For each test

Figure 4. Two paths to explore the optimal strategy.

4. Experimental Results

The system uses an i7 9700k processor and an NVIDIA RTX 2070s for computing. Our
system adopts the loss function using the Huber loss function and the optimizer is the
Adam optimizer. Our simulation environment consists of a UR5 robot arm with an RG2
gripper in CoppeliaSim (shown in Figure 5).

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17

Figure 4. Two paths to explore the optimal strategy.

4. Experimental Results
The system uses an i7 9700k processor and an NVIDIA RTX 2070s for computing.

Our system adopts the loss function using the Huber loss function and the optimizer is
the Adam optimizer. Our simulation environment consists of a UR5 robot arm with an
RG2 gripper in CoppeliaSim (shown in Figure 5).

Figure 5. Simulation environment.

4.1. Baseline Methods
In this section, we perform a series of experiments to evaluate our system. The objec-

tives of the experiments are: (1) prove that our training method is effective in speeding up
the exploration and training process. (2) Verify that the proposed CSAC-PER algorithm is
effective in improving the action synergy and achieving effective grasping of the target
object with higher learning efficiency than the traditional sampling algorithm.

To verify the effect of exploration strategy and network structure on training speed
and grasping accuracy, several baseline models were used as described below:
(1) Grasping-only is a greedy deterministic grasping strategy that uses a fully convolu-

tional network to predict the action and uses a greedy strategy to select the next ac-
tion to be executed [38].

(2) VPG maps action Q values by two action full convolutional networks and uses rein-
forcement learning methods to learn the synergy between “push” and “grasp” to
achieve target grasping.

4.2. Evaluation Metrics
The proposed CSAC-PER and other baseline methods were evaluated in the test

cases. The robot needs to pick up and clear all objects from the workspace. For each test

Figure 5. Simulation environment.

Electronics 2022, 11, 2065 12 of 17

4.1. Baseline Methods

In this section, we perform a series of experiments to evaluate our system. The
objectives of the experiments are: (1) prove that our training method is effective in speeding
up the exploration and training process. (2) Verify that the proposed CSAC-PER algorithm
is effective in improving the action synergy and achieving effective grasping of the target
object with higher learning efficiency than the traditional sampling algorithm.

To verify the effect of exploration strategy and network structure on training speed
and grasping accuracy, several baseline models were used as described below:

(1) Grasping-only is a greedy deterministic grasping strategy that uses a fully convolu-
tional network to predict the action and uses a greedy strategy to select the next action
to be executed [38].

(2) VPG maps action Q values by two action full convolutional networks and uses
reinforcement learning methods to learn the synergy between “push” and “grasp” to
achieve target grasping.

4.2. Evaluation Metrics

The proposed CSAC-PER and other baseline methods were evaluated in the test cases.
The robot needs to pick up and clear all objects from the workspace. For each test case, n
test runs (n = 10) were executed. The number of objects in the workspace varies in the
range of 1–10 objects. Three evaluation metrics are used to assess the performance of the
model. For all these metrics, the higher the value, the better. These metrics are as follows:

Grasping success rate: The ratio of the number of successful grasps to the total number
of grasping actions performed in n test runs per test case.

Completion rate: A robot is successful if it achieves the grasp of the target within the
action execution threshold, which measures the ability to grasp all objects in each test case.

Action efficiency: the proportion of successful grasping actions to all grasping actions
is counted, and the average value of m groups of experiments is calculated, and this index
measures the efficiency of the robot in completing the grasping task.

4.3. Simulation Experiments

The training phase sets the maximum threshold for the number of executed actions
and defines that when the action number threshold is exceeded, the grasping environment
is reset, and the next round of grasping training is implemented. If the target object is
successfully grasped, a new target object is specified for the next training, and if there is
no target object in the entire training area, the environment is reset for the next round of
grasping training. The CSAC-PER algorithm is compared with other baseline methods for
the training performance of the robot with 2500 training sessions. And the performance of
the robot under different methods is plotted as shown in Figure 6.

It can be seen from the training performance graph that the Grasping-only method
performs the worst during the training process. The training performance graph shows that
the Grasping-only method performs the worst during the training process. Because it only
uses the grasping method to achieve target grasping, it ignores the impact of the pushing
action on the unknown environment, resulting in its worst training performance for target
grasping, with a low success rate and a training performance of about 50%. Reinforcement
learning is used in the VPG method to train the pushing action, which can change the
unknown environment structure, better expose the target to the workspace, and achieve
the grasping operation on the target. The VPG training efficiency for pushing is slightly
higher than before, but the performance of pushing only to change the structure of the
environment is not stable enough for grasping, and the training performance is around
75%. The average grasping success rate of the robot trained with the CSAC-PER algorithm
continues to rise, but after 1500 training cycles, there is a tendency to converge, and the
average success rate’s growth rate slows. Although there were fluctuations during the last
1000 training sessions, the model gradually converged and the average grasping success

Electronics 2022, 11, 2065 13 of 17

rate hovered around 80%, and the overall performance of training was better than other
methods.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

case, n test runs (10n =) were executed. The number of objects in the workspace varies in
the range of 1–10 objects. Three evaluation metrics are used to assess the performance of
the model. For all these metrics, the higher the value, the better. These metrics are as fol-
lows:

Grasping success rate: The ratio of the number of successful grasps to the total num-
ber of grasping actions performed in n test runs per test case.

Completion rate: A robot is successful if it achieves the grasp of the target within the
action execution threshold, which measures the ability to grasp all objects in each test case.

Action efficiency: the proportion of successful grasping actions to all grasping actions
is counted, and the average value of m groups of experiments is calculated, and this index
measures the efficiency of the robot in completing the grasping task.

4.3. Simulation Experiments
The training phase sets the maximum threshold for the number of executed actions

and defines that when the action number threshold is exceeded, the grasping environment
is reset, and the next round of grasping training is implemented. If the target object is
successfully grasped, a new target object is specified for the next training, and if there is
no target object in the entire training area, the environment is reset for the next round of
grasping training. The CSAC-PER algorithm is compared with other baseline methods for
the training performance of the robot with 2500 training sessions. And the performance
of the robot under different methods is plotted as shown in Figure 6.

Figure 6. Grasping performance of different baselines methods.

It can be seen from the training performance graph that the Grasping-only method
performs the worst during the training process. The training performance graph shows
that the Grasping-only method performs the worst during the training process. Because
it only uses the grasping method to achieve target grasping, it ignores the impact of the
pushing action on the unknown environment, resulting in its worst training performance
for target grasping, with a low success rate and a training performance of about 50%. Re-
inforcement learning is used in the VPG method to train the pushing action, which can
change the unknown environment structure, better expose the target to the workspace,
and achieve the grasping operation on the target. The VPG training efficiency for pushing
is slightly higher than before, but the performance of pushing only to change the structure
of the environment is not stable enough for grasping, and the training performance is
around 75%. The average grasping success rate of the robot trained with the CSAC-PER
algorithm continues to rise, but after 1500 training cycles, there is a tendency to converge,
and the average success rate’s growth rate slows. Although there were fluctuations during

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Number of training steps

VPG
CSAC-PER

Grasping-only

Figure 6. Grasping performance of different baselines methods.

We further conduct simulation experiments on the dynamic sampling of experience
replay based on the CSAC algorithm. Firstly, two parameters, α = 0.5 and β = 0.5, are
initialized with thresholds of 1 and 12. And set the number of training steps to iteratively
update α, β. For experience replay on training performance, the original CSAC algorithm
and CSAC-PER, CSAC-β are compared, and the training performance is shown in Figure 7.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17

the last 1000 training sessions, the model gradually converged and the average grasping
success rate hovered around 80%, and the overall performance of training was better than
other methods.

We further conduct simulation experiments on the dynamic sampling of experience
replay based on the CSAC algorithm. Firstly, two parameters, α = 0.5 and β = 0.5, are ini-
tialized with thresholds of 1 and 12. And set the number of training steps to iteratively
update α, β. For experience replay on training performance, the original CSAC algorithm and
CSAC-PER, CSAC-β are compared, and the training performance is shown in Figure 7.

Figure 7. Grasping performance of different sampling algorithms.

At first, the robot will fully utilize the sampled samples and increase its exploration
of the complex environment, so CSAC-β performance is low in the early stages. However,
as the training progresses, the training performance improves, and the final grasping suc-
cess rate is around 90%. Prioritized experience replay (PER) initially improves the algo-
rithm’s efficiency in utilizing samples, but updating the importance of sampling weights
and priorities after each training increases the algorithm’s complexity, particularly in ro-
bot grasping training, which can significantly increase training time. Although perfor-
mance is higher in the early stages, and the final grasping success rate of CSAC-PER is
around 80%, the number of trials is likely insufficient. The original CSAC uses a uniform
distribution pair for sampling, which will flood the samples with higher values among all
samples, and there is a problem of inefficient utilization, and the convergence is expected
to be slower than the previous two.

4.4. Evaluation Tests
During the testing phase, four different test scenarios are selected from four different

test scenarios to validate the training model’s performance (Figure 8). The test cases com-
pare CSAC-β to other baseline methods in which the robot manipulates target objects with
clutter effects by placing ordered irregularly shaped blocks against the environment. To
test the task completion rate and action efficiency, 20 rounds of experiments were run for
each test case to obtain an average value, and it should be noted that we programmed the
robot to grasp the target object in 5 consecutive actions at a time.

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Number of training steps

CSAC-β
CSAC-PER
CSAC

Figure 7. Grasping performance of different sampling algorithms.

At first, the robot will fully utilize the sampled samples and increase its exploration of
the complex environment, so CSAC-β performance is low in the early stages. However, as
the training progresses, the training performance improves, and the final grasping success
rate is around 90%. Prioritized experience replay (PER) initially improves the algorithm’s
efficiency in utilizing samples, but updating the importance of sampling weights and
priorities after each training increases the algorithm’s complexity, particularly in robot
grasping training, which can significantly increase training time. Although performance is
higher in the early stages, and the final grasping success rate of CSAC-PER is around 80%,
the number of trials is likely insufficient. The original CSAC uses a uniform distribution
pair for sampling, which will flood the samples with higher values among all samples, and
there is a problem of inefficient utilization, and the convergence is expected to be slower
than the previous two.

Electronics 2022, 11, 2065 14 of 17

4.4. Evaluation Tests

During the testing phase, four different test scenarios are selected from four different
test scenarios to validate the training model’s performance (Figure 8). The test cases
compare CSAC-β to other baseline methods in which the robot manipulates target objects
with clutter effects by placing ordered irregularly shaped blocks against the environment.
To test the task completion rate and action efficiency, 20 rounds of experiments were run
for each test case to obtain an average value, and it should be noted that we programmed
the robot to grasp the target object in 5 consecutive actions at a time.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

(a) test 1

(b) test 2

(c) test 3

(d) test 4

Figure 8. Four different test cases.

As shown in Figure 9, grasping-only has a relatively low action efficiency and com-
pletion rate for the grasping test task. For the VPG method with added pushing action,
the action is selected only by the Q value of the predicted action, and the effect of action
synergy is not obvious, and the efficiency and completion rate of the task action in the test
cases are only about 70% and 60%. We propose a priority playback approach (CSAC-PER)
to break uniform sampling and give greater sampling weights to samples with high learn-
ing efficiency, resulting in further improvement in action efficiency and task completion
rate. Based on the a priori of beta distribution, we propose the dynamically prioritized
experience replay of beta distribution (CSAC-β), which significantly improves task action
efficiency and task completion rate, essentially reaching over 90%.

Figure 9. Evaluating the Performance of Grasping on Test Cases.

5. Conclusions
One of the challenges in robotics is to perform grasping tasks in unstructured envi-

ronments. In this paper, we propose an improved a-c algorithm, consider a further dy-
namic sampling algorithm (CSAC-β) based on beta distribution based on prioritized ex-
perience replay, and experimentally investigate the robot’s grasping performance in test
scenarios involving random clutter and obscured objects. Our solution relies on self-su-
pervised learning-based learning, which eliminates the need for extensive manual data
collection and requires no human involvement throughout the process, and the control
strategy involves a series of optimizations from sampling methods to sample selection to
obtaining the optimal behavioral strategy for the value network. The simulation results
show that the objects can be effectively removed from the workspace, that the grasping

Figure 8. Four different test cases.

As shown in Figure 9, grasping-only has a relatively low action efficiency and com-
pletion rate for the grasping test task. For the VPG method with added pushing action,
the action is selected only by the Q value of the predicted action, and the effect of action
synergy is not obvious, and the efficiency and completion rate of the task action in the test
cases are only about 70% and 60%. We propose a priority playback approach (CSAC-PER)
to break uniform sampling and give greater sampling weights to samples with high learn-
ing efficiency, resulting in further improvement in action efficiency and task completion
rate. Based on the a priori of beta distribution, we propose the dynamically prioritized
experience replay of beta distribution (CSAC-β), which significantly improves task action
efficiency and task completion rate, essentially reaching over 90%.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

(a) test 1

(b) test 2

(c) test 3

(d) test 4

Figure 8. Four different test cases.

As shown in Figure 9, grasping-only has a relatively low action efficiency and com-
pletion rate for the grasping test task. For the VPG method with added pushing action,
the action is selected only by the Q value of the predicted action, and the effect of action
synergy is not obvious, and the efficiency and completion rate of the task action in the test
cases are only about 70% and 60%. We propose a priority playback approach (CSAC-PER)
to break uniform sampling and give greater sampling weights to samples with high learn-
ing efficiency, resulting in further improvement in action efficiency and task completion
rate. Based on the a priori of beta distribution, we propose the dynamically prioritized
experience replay of beta distribution (CSAC-β), which significantly improves task action
efficiency and task completion rate, essentially reaching over 90%.

Figure 9. Evaluating the Performance of Grasping on Test Cases.

5. Conclusions
One of the challenges in robotics is to perform grasping tasks in unstructured envi-

ronments. In this paper, we propose an improved a-c algorithm, consider a further dy-
namic sampling algorithm (CSAC-β) based on beta distribution based on prioritized ex-
perience replay, and experimentally investigate the robot’s grasping performance in test
scenarios involving random clutter and obscured objects. Our solution relies on self-su-
pervised learning-based learning, which eliminates the need for extensive manual data
collection and requires no human involvement throughout the process, and the control
strategy involves a series of optimizations from sampling methods to sample selection to
obtaining the optimal behavioral strategy for the value network. The simulation results
show that the objects can be effectively removed from the workspace, that the grasping

Figure 9. Evaluating the Performance of Grasping on Test Cases.

Electronics 2022, 11, 2065 15 of 17

5. Conclusions

One of the challenges in robotics is to perform grasping tasks in unstructured environ-
ments. In this paper, we propose an improved a-c algorithm, consider a further dynamic
sampling algorithm (CSAC-β) based on beta distribution based on prioritized experience
replay, and experimentally investigate the robot’s grasping performance in test scenarios
involving random clutter and obscured objects. Our solution relies on self-supervised
learning-based learning, which eliminates the need for extensive manual data collection
and requires no human involvement throughout the process, and the control strategy
involves a series of optimizations from sampling methods to sample selection to obtaining
the optimal behavioral strategy for the value network. The simulation results show that
the objects can be effectively removed from the workspace, that the grasping task can be
successfully completed, that the grasping success rate is improved from the original (up to
90%), and that there is a significantly high completion rate (up to 90%) and action efficiency
(up to 80%), indicating that the strategy is effective in terms of synergy push and grasping
behavior. Although the efficiency of our proposed approach is not ideal, to begin with, as
we weaken the idea of greed and focus more on future returns, the actual results also prove
that the best returns in the present may not be the best in the future.

6. Discussion

We also note the following limitations of our approach. In the visual module, we
follow DenseNet as the backbone network for feature extraction. With the development of
computer vision, we prepare the attention mechanism to join the visual network of deep
Q-network, especially channel attention (SE, CBAM) has a significant effect on improving
the model performance. For the action module, the dynamic sampling of the experience
pool requires us to determine the number of update steps to be set by ourselves according
to the specific project scale and experience, which is uncontrollable. And due to the
diversity of sampling methods, the preliminary efficiency is low. And inefficient upfront
due to the diversity of sampling methods. We plan to address this issue in future work
by incorporating dynamic sampling distribution of distributed adaptive experience pools
into the framework. There is no set standard for training hyperparameters; instead, it is
more empirical and thus a significant challenge. Inverse reinforcement learning by strategy
or expert demonstration is a solution and one of the future research directions. Despite
significant progress in DRL research, there are still issues such as insufficient generalization
ability and failure to consider the robustness of the robot itself that limit the use of DRL in
real-world applications. As part of future work, we will also improve the robot’s robustness
and resilience by improving its interaction with its environment.

Author Contributions: Conceptualization and methodology, T.Y. and H.W.; software, validation,
formal analysis, investigation, data curation and writing—original draft preparation, T.Y.; writing—
review and editing, T.Y., H.W. and X.X.; supervision, P.B.P. and A.R.; project administration, X.X. and
H.W.; funding acquisition, H.W. and X.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by Anhui Provincial Natural Science Foundation (2108085ME166),
Natural Science Research Project of Universities in Anhui Province (KJ2021A0408), the Open Project
of China International Science and Technology Cooperation Base on Intelligent Equipment Manufac-
turing in Special Service Environment (ISTC2021KF08).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, W.J.; Yang, G.; Lin, Y.; Ji, C.; Gupta, M.M. On definition of deep learning. In Proceedings of the 2018 World Automation

Congress (WAC), Stevenson, WA, USA, 3–6 June 2018; pp. 1–5.
2. Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Learning synergies between pushing and grasping with

self-supervised deep reinforcement learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4238–4245.

Electronics 2022, 11, 2065 16 of 17

3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

4. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

5. Bahdanau, D.; Brakel, P.; Xu, K.; Goyal, A.; Lowe, R.; Pineau, J.; Courville, A.; Bengio, Y. An actor-critic algorithm for sequence
prediction. arXiv 2016, arXiv:1607.07086.

6. Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation,
and Machine Learning; Springer: New York, NY, USA, 2004.

7. Pan, L.; Cai, Q.; Huang, L. Softmax deep double deterministic policy gradients. Adv. Neural Inf. Process. Syst. 2020, 33, 11767–11777.
8. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
9. Zhao, D.; Wang, H.; Shao, K.; Zhu, Y. Deep reinforcement learning with experience replay based on SARSA. In Proceedings of the

2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–6.
10. Fang, M.; Li, Y.; Cohn, T. Learning how to active learn: A deep reinforcement learning approach. arXiv 2017, arXiv:1708.02383.
11. Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724. [CrossRef]
12. Redmon, J.; Angelova, A. Real-time grasp detection using convolutional neural networks. In Proceedings of the 2015 IEEE

International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1316–1322.
13. Mahler, J.; Liang, J.; Niyaz, S.; Laskey, M.; Doan, R.; Liu, X.; Ojea, J.A.; Goldberg, K. Dex-net 2.0: Deep learning to plan robust

grasps with synthetic point clouds and analytic grasp metrics. arXiv 2017, arXiv:1703.09312.
14. Chu, F.J.; Xu, R.; Vela, P.A. Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 2018, 3, 3355–3362. [CrossRef]
15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015;
pp. 91–99.

16. Han, M.; Pan, Z.; Xue, T.; Shao, Q.; Ma, J.; Wang, W. Object-agnostic suction grasp affordance detection in dense cluster using
self-supervised learning. Docx. arXiv 2019, arXiv:1906.02995.

17. Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Fei-Fei, L.; Savarese, S. Densefusion: 6d object pose estimation by iterative
dense fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 3343–3352.

18. Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In Proceedings of the
2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3406–3413.

19. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robot. Res. 2017, 37, 027836491771031. [CrossRef]

20. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation (2018). arXiv 2018, arXiv:1806.10293.

21. Quillen, D.; Jang, E.; Nachum, O.; Finn, C.; Ibarz, J.; Levine, S. Deep reinforcement learning for vision-based robotic grasping: A
simulated comparative evaluation of off-policy methods. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 6284–6291.

22. Breyer, M.; Furrer, F.; Novkovic, T.; Siegwart, R.; Nieto, J. Comparing task simplifications to learn closed-loop object picking using
deep reinforcement learning. IEEE Robot. Autom. Lett. 2019, 4, 1549–1556. [CrossRef]

23. Clavera, I.; Held, D.; Abbeel, P. Policy transfer via modularity and reward guiding. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1537–1544.
[CrossRef]

24. Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable deep reinforcement learning for robotic manipulation.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25
May 2018; pp. 6244–6251.

25. Singh, A.; Yang, L.; Hartikainen, K.; Finn, C.; Levine, S. End-to-end robotic reinforcement learning without reward engineering.
arXiv 2019, arXiv:1904.07854.

26. Liang, H.; Lou, X.; Choi, C. Knowledge induced deep q-network for a slide-to-wall object grasping. arXiv 2019, arXiv:1910.03781.
27. Joshi, S.; Kumra, S.; Sahin, F. Robotic grasping using deep reinforcement learning. In Proceedings of the 2020 IEEE 16th

International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 1461–1466.
28. Xu, K.; Yu, H.; Lai, Q.; Wang, Y.; Xiong, R. Efficient learning of goal-oriented push-grasping synergy in clutter. IEEE Robot. Autom.

Lett. 2021, 6, 6337–6344. [CrossRef]
29. Yang, Y.; Liang, H.; Choi, C. A deep learning approach to grasping the invisible. IEEE Robot. Autom. Lett. 2020, 5, 2232–2239.

[CrossRef]
30. Jaakkola, T.; Singh, S.; Jordan, M. Reinforcement learning algorithm for partially observable Markov decision problems. In

Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, CO, USA, 28 November–1
December 1994; pp. 345–352.

31. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
32. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1177/0278364914549607
http://doi.org/10.1109/LRA.2018.2852777
http://doi.org/10.1177/0278364917710318
http://doi.org/10.1109/LRA.2019.2896467
http://doi.org/10.1109/IROS.2017.8205959
http://doi.org/10.1109/LRA.2021.3092640
http://doi.org/10.1109/LRA.2020.2970622

Electronics 2022, 11, 2065 17 of 17

33. Hundt, A.; Killeen, B.; Greene, N.; Wu, H.; Kwon, H.; Paxton, C.; Hager, G.D. “Good robot!”: Efficient reinforcement learning for
multi-step visual tasks with SIM to real transfer. IEEE Robot. Autom. Lett. 2020, 5, 6724–6731. [CrossRef]

34. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

35. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the Icml, Haifa, Israel,
21–24 June 2010.

36. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.

37. Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [CrossRef]
38. Zeng, A.; Song, S.; Yu, K.T.; Donlon, E.; Hogan, F.R.; Bauza, M.; Ma, D.; Taylor, O.; Liu, M.; Romo, E.; et al. Robotic pick-and-place

of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 3750–3757.

http://doi.org/10.1109/LRA.2020.3015448
http://doi.org/10.1080/0266476042000214501

	Introduction
	Related Work
	Deep Learning for Robotic Grasping
	Reinforcement Learning for Robotic Grasping

	Methods
	Reinforcement Learning
	State Space
	Rewards
	Network
	Dynamic Prioritized Experience Replay

	Experimental Results
	Baseline Methods
	Evaluation Metrics
	Simulation Experiments
	Evaluation Tests

	Conclusions
	Discussion
	References

