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Abstract 

The extended finite element method (xFEM) was used to analyse fatigue crack growth in orthopaedic locking compression plates 
(LCP), made of Titanium alloy, Ti-6Al-4V, loaded in four-point bending. The optimal geometry was defined previously in 
respect to the remaining life of LCP used for patients with different body weights (BW - 60, 90 and 120 Kg). The plate with 
optimal geometry is analysed in more details here to assess the effect of BW and get better insight into fatigue crack growth path. 
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1. Introduction 

Failure due to fatigue crack growth is well known phenomenon, typically associated with initial cracks at the 
stress concentration regions like thickness change and reduced cross-section. Some of typical failures are shown in 
Fig. 1. 
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Figure 1. Typical failures of LCP caused by fatigue, [1], 

Having in mind the seriousness of in-service failure of orthopaedic plates, it is necessary to analyse their 
structural integrity and life from all possible aspects, [2]. Numerical simulations are widely used for simulating 
different behaviour of various implants under static or dynamic loading, such as hips and dental implants, [3-8], 
typically by using the Finite Element Method (FEM) and its extended version for fatigue crack growth, xFEM, [9-
16]. Experimental investigations directly on implants are typically performed by using optical strain measurement 
systems to assess stress-strain state under static loading, [17-19]. 

This analysis uses xFEM to simulate fatigue crack growth under four-point bending in LCPs with different 
designs, having cracks initiated in the stress concentration area. Material parameters for Ti-6Al-4V are expe–
rimentally determined to enable numerical evaluation of remaining life of orthopaedic plates after crack initiation. 

2. EXPERIMENTAL INVESTIGATION  

Tensile testing was conducted according to EN ISO 6891-1 [20], with the  100kN force range and in 
displacement control, under loading rate of 5 mm/minute. Test results are presented in Table 1, indicting low 
elongation, i.e. low plasticity. 

Table 1. Tensile testing results 

Specimen No. 
Yield strength, 

Rp0,2  (MPa) 

Ultimate strength 

Rm  (MPa) 

Elongation 

A (%) 

1 1035 1089 7.7 

2 1015 1062 6.0 

3 1022 1071 6.6 

 
Testing of crack growth rate (da/dN) was preformed on standard Charpy specimens, using three-point bending on 

resonant high frequency pulsator, according to ASTM E647 [21], in load control, with load ratio R=0.1, in 215 – 
235 Hz frequency range. Average load and amplitudes were measured with 0.03 Nm accuracy. Measurement 
system was based on indirect potential drop method, continuously indicating the measurement values 

Results for all 3 tested specimens are given in Fig. 2, as dependence of fatigue crack growth rate, da/dN, vs. 
stress intensity factor amplitude, ΔK, and in Table 2, as coefficients for Paris law. Experimental results are presented 
in more details in [2]. 
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Figure 2. Fatigue crack growth rate vs. ΔK for all 3 specimens 

Table 2. Fatigue crack growth parameters for data from Fig. 2 

Specimen No. Stress intensity factor threshold, Kth, 
MPa√m 

Coefficient 

C 

Exponent 

m 

1 4,5 1.54  10-12 2.15 

2 4,8 3.70  10-13 2.31 

3 4,7 1.05  10-13 2.32 

3. NUMERICAL SIMULATION  

Extended finite element method (xFEM) was used to simulate fatigue crack growth in orthopaedic LCPs. This 
simulation included 5 different plate geometries, as explained in more details in [TG], while here only the optimal 
one (“longest living”) is presented, Fig. 3. 

Tetrahedral finite elements mesh with 108990 nodes, and 71599 elements of size 0.91 mm, was generated and 
used for calculation in ANSYS. Cracks were introduced as edge, quarter-circular, 2 mm in radius, located as shown 
in Fig. 3c.  

Three different body weights have been considered for simulation of four-point bend testing, applying the 
maximal bending moments in upper tibia region, as calculated according to [22], and shown in Table 3. Total of 60 
steps were set in ANSYS. The worst-case tensile properties and crack growth parameters were used (specimens No. 
2 from Table 1 and 2, respectively). 
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Figure 3. Plate: a) geometry, b) boundary conditions, c) mesh around the cracks, d) FE mesh 

Table 3. Loading forces 

Plate type 60 kg BW, kN 90 kg BW, kN 120 kg BW, kN 

D 2.6 3.9 5.2 

 
The optimal geometry from remaining life point of view, was plate D. Its results are presented in Fig. 4 (crack 

length, a, vs. number of cycles, N) for all 3 BWs, and in Table 4, indicating significant reduction in remaining life 
with body weight increase.  
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Figure 4. Crack length a vs number of cycles N for all 3 BWs 

Table 4. xFEM results for three different BWs 

BW, 

Kg 
Number of 

cycles 
Stress intensity factor / MPa 

mm1/2 
Maximal crack length   

mm 

Number of walking 
days 

60 100670 1748 6.39 200 

90 39016 2672 6.76 78 

120 20068 3563 6.58 40 

 
      Crack propagation path is more than 2 mm longer than the plate’s thickness in all cases, since the crack stops 

propagating through thickness at one point and continues along plate surface only. When the surface propagation 
finishes, crack starts going through the thickness again, as shown in Fig. 5. This information can be taken in 
consideration when designing the plates in order to prolong the remaining life after crack initiation. It is obvious that 
more complex path crack has, the longer remaining life of a component will be.       
 

Figure 5. Crack propagation through LCP 
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4. CONCLUSIONS  

Based on the results of remaining life assessment of LCPs, following conclusions can be drawn: 
 Design of LCPs affects significantly their remaining life. The longest crack path in the most complex geometry is 

the best option from the remaining life point of view. 
 Loading due to increased BW significantly reduces remaining life (cca 80% for 120 kg BW and cca 60% for 90 

kg, compared to 60 kg BW case).  
 Numerical simulation can contribute significantly to increasing structural integrity and life of LCPs, since it can 

provide reliable results for complex geometries in fast and efficient way.  
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