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Abstract. It is important to be able to estimate the quadrature error in Gauss rules. Several approaches
have been developed, including the evaluation of associated Gauss-Kronrod rules (if they exist), or the
associated averaged Gauss and generalized averaged Gauss rules. Integrals with certain integrands can
be approximated more accurately by rational Gauss rules than by Gauss rules. This paper introduces
associated rational averaged Gauss rules and rational generalized averaged Gauss rules, which can be used
to estimate the error in rational Gauss rules. Also rational Gauss-Kronrod rules are discussed. Computed
examples illustrate the accuracy of the error estimates determined by these quadrature rules.

1. Introduction

Let P j denote the space of polynomials of degree at most j and let dλ be a positive measure with
[a, b] = supp(dλ). The n-point Gauss quadrature formula associated with dλ,

I( f ) =

∫
R

f (t) dλ(t) = Gn( f ) + RG
n ( f ), Gn( f ) =

n∑
ν=1

λG
ν f (τG

ν ),

is the unique n-point quadrature rule with polynomial degree of exactness 2n−1, i.e., the remainder satisfies

RG
n (P2n−1) = 0.

Consider the monic orthogonal polynomials, p0, p1, p2, . . . , with respect to the inner product

(1, h) =

∫
R

1(t)h(t) dλ(t).
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They satisfy a three-term recurrence relation

pi+1(t) = (t − αi)pi(t) − βipi−1(t), i = 0, 1, 2, . . . ,

with p−1(t) ≡ 0 and p0(t) ≡ 1. The recursion coefficients αi and βi > 0 that define the polynomials pn
determine the symmetric tridiagonal Jacobi matrix

Jn = Jn(dλ) =



α0
√
β1 0√

β1 α1
√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1

0
√
βn−1 αn−1


.

Golub and Welsch [12] developed an efficient algorithm for the computation of the nodes and weights
of Gn. This algorithm is based on the observations that the nodes of Gn are the eigenvalues of the matrix
Jn, and the weights are proportional to the squares of the first component of the corresponding normalized
eigenvectors. The algorithm requires only O(n2) arithmetic floating points operations (flops) to compute
the nodes and weights of Gn.

In practical applications of a Gauss rule Gn, it is important to be able to estimate the error |(I − Gn)( f )|.
Many techniques for this purpose have been proposed in the literature; see, e.g., [9, 15–18]. The present
paper focuses on error estimation methods that are determined by extensions of Gn, that inherit the n nodes
of Gn. This property makes the computation of the error estimate economical. The best known extension
of Gn of this kind is the (2n + 1)-point Gauss-Kronrod quadrature formula,

I( f ) =

∫
R

f (t) dλ(t) = Kn( f ) + RK
n ( f ), Kn( f ) =

n∑
ν=1

λGK
ν f (τG

ν ) +

n+1∑
µ=1

λK
µ f (τK

µ ).

Its polynomial degree of exactness is at least 3n + 1, i.e.,

RK
n (P3n+1) = 0.

The Gauss-Kronrod quadrature rule is commonly used to estimate the error in Gn( f ) by

|RG
n ( f )| = |(I − Gn)( f )| ≈ |(Kn − Gn)( f )|. (1)

The nodes {τG
ν }

n
ν=1 of the Gauss-Kronrod rule are the nodes of Gn. We refer to the remaining nodes, {τK

µ }
k+1
µ=1,

as the Kronrod nodes. It is possible to compute the nodes and weights of Gauss-Kronrod rules efficiently
by methods described in [1, 2, 14]. The method proposed by Laurie [14] uses the Golub-Welsch algorithm.
A nice recent discussion on many properties of Gauss-Kronrod quadrature rules is provided by Notaris
[18].

Ideally, the Kronrod nodes {τK
µ }

n+1
µ=1 are real. This enhances their usefulness, because the use of complex-

valued Kronrod nodes requires that the integrand can be defined in the complex plane by analytic con-
tinuation from the interval [a, b]. Unfortunately, there are several known situations when the Kronrod
nodes are complex; see, e.g., [1, 18] for discussions and references. For this reason alternatives to Gauss-
Kronrod quadrature rules for the estimation of the error in Gn( f ) have been developed. One of these is the
(2n + 1)-point averaged Gauss quadrature formula introduced by Laurie [13],

I( f ) =

∫
R

f (t) dλ(t) = Ln( f ) + RL
n( f ), Ln( f ) =

n∑
ν=1

λGL
ν f (τG

ν ) +

n+1∑
µ=1

λL
µ f (τL

µ), (2)

with polynomial degree of exactness at least 2n + 1, i.e.,

RL
n(P2n+1) = 0.
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The symmetric tridiagonal Jacobi matrix associated with the quadrature rule (2) is given by (cf. [21])

JL
n = JL

n(dλ) =



α0
√
β1 0√

β1 α1
√
β2

. . .
. . .

. . .√
βn−1 αn−1

√
βn√

βn αn
√
βn√

βn αn−1
√
βn−1√

βn−1 αn−2
√
βn−2

. . .
. . .

. . .√
β2 α1

√
β1

0
√
β1 α0



.

It follows that the nodes and weights of the rule (2) can be computed with the aid of the Golub-Welsch
algorithm applied to the above matrix in O(n2) flops. The error of Gn( f ) can be estimated by

|RG
n ( f )| = |(I − Gn)( f )| ≈ |(Ln − Gn)( f )|. (3)

Spalević [21], by using results on the characterization of positive quadrature rules by Peherstorfer [20],
proposed a modification of the quadrature rule (2),

I( f ) =

∫
R

f (t) dλ(t) = Sn( f ) + RS
n( f ), Sn( f ) =

n∑
ν=1

λGS
ν f (τG

ν ) +

n+1∑
µ=1

λS
µ f (τS

µ), (4)

which he referred to as a generalized averaged Gauss quadrature formula. It has polynomial degree of
exactness at least 2n + 2, i.e.,

RS
n(P2n+2) = 0.

When the measure dλ is even on its support [−c, c] (c > 0), Sn has polynomial degree of exactness at least
2n + 3. The symmetric tridiagonal Jacobi matrix associated with the quadrature rule (4) takes the form

JS
n = JS

n(dλ) =



α0
√
β1 0√

β1 α1
√
β2

. . .
. . .

. . .√
βn−1 αn−1

√
βn√

βn αn
√
βn+1√

βn+1 αn−1
√
βn−1√

βn−1 αn−2
√
βn−2

. . .
. . .

. . .√
β2 α1

√
β1

0
√
β1 α0



.

Hence, the nodes and weights of the rule (4) also can be computed efficiently with the Golub-Welsch
algorithm in O(n2) flops. The rule (4) also can be used to estimate the error in Gn( f ). We have the error
estimate

|RG
n ( f )| = |(I − Gn)( f )| ≈ |(Sn − Gn)( f )|. (5)

When the measure dλ is positive, both Ln and Sn have lower polynomial degree of exactness than Kn,
but Ln and Sn always exist with real nodes {τL

µ}
n+1
µ=1 and {τS

µ}
n+1
µ=1, respectively, that alternate with the Gauss
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nodes {τG
ν }

n
ν=1. Besides, all weights of the rules Ln and Sn are positive. Moreover, the rules Ln and Sn are

easier to compute than the rule Kn when the latter exists. Further results on quadrature rules based on the
construction from [21] and their relation to Gauss-Kronrod quadrature rules can be found in [3–5, 19, 22–24].

The Gauss formula Gn and its extensions Kn, Ln, and Sn give high accuracy when the integrand can
be approximated well by a polynomial of small to moderate degree. However, this is not the case when
the integrand has poles or other singularities close to the support of the measure dλ. In this situation, it
is natural to require that the quadrature rule is exact not only for all polynomials of a certain degree, but
also for elementary rational functions with poles close to or at the singularities of the integrand. It is the
purpose of the present paper to develop analogues of the quadrature rules (2) and (4) with this property.

This paper is organized as follows. Section 2 recalls some known results on rational Gauss-type
quadrature rules. In Section 3, we introduce rational averaged Gauss quadrature formulas and rational
generalized averaged Gauss quadrature formulas. Section 4 discusses the application of these rules to the
estimation of the error in rational Gauss quadrature rules, and presents computed examples. Concluding
remarks can be found in Section 5.

2. Rational Gauss-type quadrature formulas

Let {ζµ}Mµ=1 be a set of distinct nonvanishing real or complex numbers such that

1 + ζµt , 0 for t ∈ [a, b], µ = 1, 2, . . . ,M. (6)

Typically, the ζµ are real or appear in complex conjugate pairs. Let d be a nonnegative integer, and let m be
an integer such that 0 ≤ m ≤ d. Introduce the m-dimensional linear space of rational functions

Qm = span

r : r(t) =
1

(1 + ζµt)s , s = 1, 2, . . . , sµ, µ = 1, 2, . . . ,M,
M∑
µ=1

sµ = m


and define the linear space

Sd = Qm ⊕ Pd−1−m (7)

of dimension d. We are interested in N-point quadrature rules

I( f ) =

∫
R

f (t) dλ(t) = QN,m( f ) + RN,m( f ), QN,m( f ) =

N∑
ν=1

λ̃ν f (̃τν), (8)

that are exact for all functions in the linear space (7). The following result is stated by Gautschi [8]:

Theorem 2.1. Assume that the distinct points {ζµ}Mµ=1 satisfy (6), and let 0 ≤ m ≤ d. Define the polynomial, of exact
degree m,

ωm(t) =

M∏
µ=1

(1 + ζµt)sµ

and the modified measure

dλ̃ =
dλ
ωm

.

Assume that this measure admits an N-point quadrature formula of polynomial degree of exactness d − 1,∫
R

p(t) dλ̃(t) =

N∑
ν=1

λν f (τν) for all p ∈ Pd−1, (9)
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Define

τ̃ν = τν, λ̃ν = λνωm(τν), ν = 1, 2, . . . ,N, (10)

Then the quadrature formula (8) satisfies

RN,m(Sd) = 0 (11)

with Sd defined by (7).
Conversely, if (8) and (11) hold with pairwise distinct nodes τ̃ν ∈ [a, b], then so does (9) with τν and λν given by

(10).

For N = n and d = 2n, we have 0 ≤ m ≤ 2n and S2n = Qm ⊕ P2n−1−m. This special case of Theorem 2.1
is shown by Gautschi [9, Theorem 3.25]; see also [6]. It leads the construction of the n-point rational Gauss
quadrature formula

I( f ) =

∫
R

f (t) dλ(t) = Gn,m( f ) + RG
n,m( f ), Gn,m( f ) =

n∑
ν=1

λ̃G
ν f (̃τG

ν ), RG
n,m(S2n) = 0.

The nodes and weights of Gn,m are obtained as

τ̃G
ν = τG̃

ν , λ̃G
ν = λG̃

νωm(τG̃
ν ), ν = 1, 2, . . . ,n,

where τG̃
ν andλG̃

ν are the nodes and weights of the n-point (polynomial) Gauss quadrature formula associated
with the measure dλ̃ = dλ/ωm.

The situation when N = 2n + 1 and d = 3n + 2, with 0 ≤ m ≤ 3n + 2, is discussed by Gautschi [9, Theorem
3.41] and in [11]. In this case, S3n+2 = Qm ⊕ P3n+1−m, which leads to the construction of the (2n + 1)-point
rational Gauss-Kronrod quadrature formula. Thus, let N = 2n + 1 and d = 3n + 2. We then obtain the
(2n + 1)-point rational Gauss-Kronrod quadrature formula

I( f ) =

∫
R

f (t) dλ(t) = Kn,m( f ) + RK
n,m( f ), Kn,m( f ) =

n∑
ν=1

λ̃GK
ν f (̃τG

ν ) +

n+1∑
µ=1

λ̃K
µ f (̃τK

µ ), RK
n,m(S3n+2) = 0.

Its nodes and weights are given by

τ̃G
ν = τG̃

ν , τ̃K
µ = τK̃

µ , λ̃GK
ν = λG̃K

ν ωm(τG̃
ν ), λ̃K

µ = λK̃
µωm(τK̃

µ ), ν = 1, 2, . . . ,n, µ = 1, 2, . . . ,n + 1,

where τG̃
ν and τK̃

µ are the nodes, while λG̃K
ν and λK̃

µ are the weights, of (2n + 1)-point (polynomial) Gauss-

Kronrod quadrature formula associated with the measure dλ̃ = dλ/ωm.
Theorem 2.1 can be shown for other choices of d and N in a similar manner as the proof of Gautschi [9,

Theorem 3.25].

3. Rational averaged and generalized averaged Gauss quadrature formulas

Let α̃i, i = 0, 1, 2, . . . , and β̃i, i = 1, 2, 3, . . . , be the coefficients of the three-term recurrence relation
satisfied by the monic orthogonal polynomials with respect to the measure dλ̃. The nodes of the n-point
Gauss rule associated with this measure are the eigenvalues of the symmetric tridiagonal Jacobi matrix

Jn(dλ̃) =



α̃0

√
β̃1 0√

β̃1 α̃1

√
β̃2

. . .
. . .

. . .√
β̃n−2 α̃n−2

√
β̃n−1

0
√
β̃n−1 α̃n−1


;
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cf. the discussion in Section 1.
Consider the special case of Theorem 2.1 when N = 2n + 1 and d = 2n + 2, with 0 ≤ m ≤ 2n + 2 and

S2n+2 = Qm ⊕ P2n+1−m. We obtain the (2n + 1)-point rational averaged Gauss quadrature formula

I( f ) =

∫
R

f (t) dλ(t) = Ln,m( f ) + RL
n,m( f ), Ln,m( f ) =

n∑
ν=1

λ̃GL
ν f (̃τG

ν ) +

n+1∑
µ=1

λ̃L
µ f (̃τL

µ), RL
n,m(S2n+2) = 0.

The nodes and the weights of Ln,m are obtained as

τ̃G
ν = τG̃

ν , τ̃L
µ = τ̃L

µ, λ̃GL
ν = λG̃L

ν ωm(τG̃
ν ), λ̃L

µ = λL̃
µωm(τ̃L

µ), ν = 1, 2, . . . ,n, µ = 1, 2, . . . ,n + 1,

where τG̃
ν and τ̃L

µ are the nodes, while λG̃L
ν and λL̃

µ are the weights, of the (2n+1)-point (polynomial) averaged

Gauss quadrature formula associated with the measure dλ̃ = dλ/ωm. The nodes are the eigenvalues and
the weights are proportional to the squares of the first component of associated normalized eigenvectors of
the matrix

JL
n(dλ̃) =



α̃0

√
β̃1 0√

β̃1 α̃1

√
β̃2

. . .
. . .

. . .√
β̃n−1 α̃n−1

√
β̃n√

β̃n α̃n

√
β̃n√

β̃n α̃n−1

√
β̃n−1√

β̃n−1 α̃n−2

√
β̃n−2

. . .
. . .

. . .√
β̃2 α̃1

√
β̃1

0
√
β̃1 α̃0



.

It follows that the nodes and the weights can be computed in only O(n2) flops by the Golub-Welsch
algorithm.

The special case of Theorem 2.1 when N = 2n + 1 and d = 2n + 3, with 0 ≤ m ≤ 2n + 3 and S2n+3 =
Qm ⊕ P2n+2−m, gives the (2n + 1)-point rational generalized averaged Gauss quadrature formula

I( f ) =

∫
R

f (t) dλ(t) = Sn,m( f ) + RS
n,m( f ), Sn,m( f ) =

n∑
ν=1

λ̃GS
ν f (̃τG

ν ) +

n+1∑
µ=1

λ̃S
µ f (̃τS

µ), RS
n,m(S2n+3) = 0.

When the weight function is even, we may choose d = 2n + 4, so 0 ≤ m ≤ 2n + 4 and S2n+4 = Qm ⊕ P2n+3−m.
Then we have RS

n,m(S2n+4) = 0. The nodes and weights of Sn,m are given by

τ̃G
ν = τG̃

ν , τ̃S
µ = τS̃

µ, λ̃GS
ν = λG̃S

ν ωm(τG̃
ν ), λ̃S

µ = λS̃
µωm(τS̃

µ), ν = 1, 2, . . . ,n, µ = 1, 2, . . . ,n + 1,

where τG̃
ν and τS̃

µ are the nodes, andλG̃S
ν andλS̃

µ are the weights, of the (2n+1)-point (polynomial) generalized

averaged Gauss quadrature formula associated with the measure dλ̃ = dλ/ωm. The nodes and weights can
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be computed by applying the Golub-Welsch algorithm to the matrix

JS
n(dλ̃) =



α̃0

√
β̃1 0√

β̃1 α̃1

√
β̃2

. . .
. . .

. . .√
β̃n−1 α̃n−1

√
β̃n√

β̃n α̃n

√
β̃n+1√

β̃n+1 α̃n−1

√
β̃n−1√

β̃n−1 α̃n−2

√
β̃n−2

. . .
. . .

. . .√
β̃2 α̃1

√
β̃1

0
√
β̃1 α̃0



.

We note that the polynomial quadrature formulas Gn, Kn, Ln, and Sn are special cases of the rational
quadrature formulas Gn,m, Kn,m, Ln,m, and Sn,m, respectively, for m = 0.

It follows from Theorem 2.1 that the construction of rational quadrature formulas for the measure dλ
comes down to the construction of the corresponding polynomial quadrature rules for the modified measure
dλ̃ = dλ/ωm. If this polynomial quadrature rule is not internal (i.e., if one or several of its nodes are outside
the interval [a, b]), then, if a pole coincides with a node, our construction of the desired rational quadrature
rule may have to be modified. This difficulty easily can be remedied by moving the problematic pole.

We remark that the modified measure dλ̃ does not have to be real-valued and of constant sign on [a, b]
(in fact, it may be complex-valued, since the poles ζµ may be complex). However, Gauss quadrature rules
associated with a complex-valued measure are not guaranteed to exist. When all poles are real and outside
the interval [a, b], or appear in complex conjugate pairs, the measure dλ̃ is of constant sign on [a, b] and the
required quadrature rules exist.

We turn to the existence and internality of quadrature rules considered. Assume that the measure dλ̃ is
real-valued and of constant sign on the interval [a, b]. It is well known that the polynomial Gauss-Kronrod
quadrature formula might neither be internal nor have real nodes; see [18] for a recent discussion and
references. This also holds for rational Gauss-Kronrod quadrature rules. The averaged and generalized
averaged polynomial quadrature rules always exist, but might not be internal. This issue is investigated
and illustrated for several special measures in [3–5, 21].

4. Error estimates for rational Gauss quadrature formulas

We mentioned in Section 1 that the polynomial quadrature rules Kn, Ln, and Sn may be used to estimate
the error in the Gauss rule Gn; see (1), (3), and (5). All these error estimations are economical in the sense
that the quadrature rules Kn, Ln, and Sn inherit the n nodes of Gn.

In this paper we are interested in applying the rational quadrature rule Kn,m, Ln,m, and Sn,m to estimate the
error in the rational Gauss rule Gn,m. If the measure dλ̃ defined in Theorem 2.1 is used for the construction
of Gn,m, as well as of Kn,m, Ln,m, and Sn,m, then this secures that the rules Kn,m, Ln,m, and Sn,m inherit n nodes
(̃τG
ν ) from Gn,m making the error estimates economical. This can be accomplished by using the the same

integer m and the same spaceQm for all four kinds of rational quadrature rules considered. This means that
the quadrature rules Kn,m, Ln,m, and Sn,m will have the same rational degree, but higher polynomial degree,
of exactness, as Gn,m. The permitted values of m are 0 ≤ m ≤ 2n.
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We write the formulas for error estimation in the form

|RG
n,m( f )| = |(I − Gn,m)( f )| ≈ |(Kn,m − Gn,m)( f )|,

|RG
n,m( f )| = |(I − Gn,m)( f )| ≈ |(Ln,m − Gn,m)( f )|,

|RG
n,m( f )| = |(I − Gn,m)( f )| ≈ |(Sn,m − Gn,m)( f )|.

The following numerical examples, in which the OPQ suite [10] is used, illustrate the performance of these
estimates. The computations were carried out in MATLAB with about 15 significant decimal digits.
Example 1. In this example we consider the analytically computable integral

I =

∫ 1

−1

dt
√

2.2 − 0.9t − t2
= arcsin

29
31

+ arcsin
11
31
≈ 1.572367443645470.

The integrand has two real simple poles defined by

−1/ζ1 = 1.1, −1/ζ2 = −2.

We calculate the quadrature formulas Gn,m, Kn,m, Ln,m, and Sn,m (which exist in all considered cases), compare
them to the exact value of I by calculating the differences |I − Gn,m|, |I − Kn,m|, |I − Ln,m|, and |I − Sn,m|, and
estimate the error of Gn,m by the the differences |Kn,m−Gn,m|, |Ln,m−Gn,m|, and |Sn,m−Gn,m|, for m = 0, 1, 2 and
n = 2, 5, 7, 10. In the case of m = 1 both −1/ζ1 = 1.1 and −1/ζ2 = −2 are considered. The results are shown
in Table 1. This table shows the errors |I −Gn,m|, |I −Kn,m|, |I − Ln,m|, and |I − Sn,m| to decrease for a fixed m as
n is increased. A comparison of these differences shows that Kn,m gives higher accuracy than Sn,m and Sn,m,
yields higher accuracy than Ln,m, and Ln,m is more accurate than Gn,m (except in some cases when n = 2).
Comparing the error estimates |Kn,m − Gn,m|, |Ln,m − Gn,m|, and |Sn,m − Gn,m| to the actual error |I − Gn,m|, we
see that all the rules Kn,m, Ln,m, and Sn,m give good estimates of the error in Gn,m.

The errors |I − Gn,m|, |I − Kn,m|, |I − Ln,m|, and |I − Sn,m| generally are smaller when m = 1 and −1/ζ1 = 1.1
than when m = 1 and −1/ζ2 = −2. It can be difficult to predict how incorporating poles in quadrature rules
will affect the accuracy of the rules. The error estimates |Kn,m − Gn,m|, |Ln,m − Gn,m|, and |Sn,m − Gn,m| can
help us to decide which poles to include to make the rational Gauss quadrature formula Gn,m as accurate
as possible.
Example 2. Consider the integral

I =

∫ 1

−1

cos t
2

cos5 t
dt

= −4

 35
217/2

ln

∣∣∣∣∣∣4 sin 1
2 − 23/2

4 sin 1
2 + 23/2

∣∣∣∣∣∣ +
840 sin7 1

2 − 1540 sin5 1
2 + 1022 sin3 1

2 − 279 sin 1
2

6144 sin8 1
2 − 12288 sin6 1

2 + 9216 sin4 1
2 − 3072 sin2 1

2 + 384


≈ 7.392300895896495.

All poles of the integrand are real and of multiplicity 5. They can be written in the form

−
1
ζµ

= ±(2l − 1)
π
2
, l ∈N. (12)

It is natural to let m be even and use the poles closest to and on both sides of the interval of integration.
We carry out the same computations as in the previous example for n = 3 and m = 0, 2, . . . , 12. For
m = 2, 4, 6, 8, 10, we choose poles that in (12) correspond to l = 1 of multiplicity 1, 2, 3, 4, 5, respectively, and
for m = 12 we choose poles that correspond to l = 1 of multiplicity 5 and poles that correspond to l = 2 of
multiplicity 1. Table 2 displays the computed results. Since n = 3, we do not have a theoretical justification
for m > 6 in Gn,m, for m > 8 in Ln,m, for m > 10 in Sn,m (since the weight function is even), and for m > 11 in
Kn,m. However, the accuracy in all quadrature formulas increases with m (except that K3,10 is more accurate
than K3,12). We observe that all the considered error estimates give good results.
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I =

∫ 1

−1

dt
√

2.2 − 0.9t − t2
≈ 1.572367443645470

m n |I − Gn,m| |I − Kn,m| |Kn,m − Gn,m| |I − Ln,m| |Ln,m − Gn,m| |I − Sn,m| |Sn,m − Gn,m|

0 2 6.3413e-02 5.6604e-04 6.2847e-02 7.1534e-04 6.4128e-02 5.6604e-04 6.2847e-02
0 5 3.0105e-03 7.3209e-06 3.0178e-03 2.6543e-05 3.0370e-03 2.0574e-05 3.0310e-03
0 7 4.4253e-04 3.9039e-07 4.4292e-04 1.6962e-06 4.4422e-04 1.3519e-06 4.4388e-04
0 10 2.6344e-05 3.8811e-09 2.6348e-05 3.4368e-08 2.6378e-05 2.6851e-08 2.6371e-05

1 (ζ1) 2 1.0121e-02 6.9811e-04 1.0819e-02 1.9587e-04 1.0316e-02 8.3380e-05 1.0204e-02
1 (ζ1) 5 2.7045e-04 1.1664e-07 2.7057e-04 6.0590e-07 2.7106e-04 2.9539e-07 2.7075e-04
1 (ζ1) 7 2.7952e-05 2.8215e-09 2.7955e-05 3.3258e-08 2.7985e-05 1.8884e-08 2.7971e-05
1 (ζ1) 10 1.1490e-06 4.1750e-11 1.1490e-06 6.5060e-10 1.1497e-06 4.0900e-10 1.1494e-06

1 (ζ2) 2 7.8692e-02 2.2289e-03 7.6463e-02 2.8247e-04 7.8975e-02 1.1817e-03 7.7511e-02
1 (ζ2) 5 3.7134e-03 9.9552e-06 3.7233e-03 3.5262e-05 3.7486e-03 2.8128e-05 3.7415e-03
1 (ζ2) 7 5.4311e-04 5.4814e-07 5.4366e-04 2.2511e-06 5.4536e-04 1.8391e-06 5.4495e-04
1 (ζ2) 10 3.2200e-05 5.2638e-09 3.2205e-05 4.4628e-08 3.2245e-05 3.5616e-08 3.2236e-05

2 2 2.3121e-02 1.0007e-03 2.4121e-02 3.3774e-04 2.3458e-02 4.6347e-04 2.3584e-02
2 5 3.5248e-04 3.2027e-07 3.5280e-04 8.0691e-07 3.5329e-04 4.7279e-07 3.5295e-04
2 7 3.5516e-05 6.2912e-09 3.5522e-05 4.3594e-08 3.5559e-05 2.7084e-08 3.5543e-05
2 10 1.4377e-06 5.0342e-11 1.4377e-06 8.4003e-10 1.4385e-06 5.5415e-10 1.4382e-06

Table 1: Calculations for Example 1.

I =

∫ 1

−1

cos t
2

cos5 t
dt ≈ 7.392300895896495

n m |I − Gn,m| |I − Kn,m| |Kn,m − Gn,m| |I − Ln,m| |Ln,m − Gn,m| |I − Sn,m| |Sn,m − Gn,m|

3 0 9.8634e-01 2.9631e-03 9.8931e-01 1.2172e-02 9.9852e-01 7.3152e-03 9.9366e-01
3 2 6.3463e-01 2.5868e-03 6.3722e-01 4.7847e-03 6.3941e-01 3.1325e-03 6.3776e-01
3 4 3.5847e-01 1.4045e-03 3.5988e-01 1.3587e-03 3.5983e-01 5.8543e-04 3.5906e-01
3 6 1.6524e-01 5.0823e-04 1.6575e-01 3.7834e-04 1.6562e-01 1.8873e-04 1.6505e-01
3 8 5.0900e-02 9.9526e-05 5.1000e-02 1.5534e-04 5.1056e-02 1.2948e-04 5.0771e-02
3 10 1.3325e-03 5.0332e-09 1.3325e-03 1.8294e-06 1.3343e-03 8.4632e-08 1.3324e-03
3 12 7.9586e-04 7.9342e-09 7.9585e-04 8.2065e-07 7.9668e-04 1.4048e-08 7.9587e-04

Table 2: Calculations for Example 2.
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I =

∫
∞

0

tk
√

1 + θt/2
e−η − e−t tk−1e−tdt, η = −1, θ = 1, k = 5/2

m n Gn,m |Kn,m − Gn,m| |Ln,m − Gn,m| |Sn,m − Gn,m|

0 2 2.063020079887507 - 2.8922e-03 5.2860e-03
0 5 2.059594730987161 - 2.5304e-04 3.3970e-04
0 7 2.059377785222887 - 5.6105e-05 7.3338e-05
0 10 2.059325354240259 - 7.9601e-06 1.0082e-05

1 2 2.068253915837720 - 8.8504e-03 8.7643e-03
1 5 2.059302045808841 - 1.5005e-05 1.3904e-05
1 7 2.059317845147125 - 1.0231e-06 1.0201e-06
1 10 2.059316768475453 - 1.6087e-08 -

3 2 1.998440028870835 - 6.1002e-02 6.0882e-02
3 5 2.059315914991958 - 8.8412e-07 9.1595e-07
3 7 2.059316779964540 - 2.6303e-08 3.0938e-08
3 10 2.059316806712986 - 1.0604e-09 -

5 5 2.059316318353998 - 4.7331e-07 5.1435e-07
5 7 2.059316785983647 - 2.0914e-08 2.3833e-08
5 10 2.059316807138894 - 7.7277e-10 -

7 5 2.059316638891903 - 1.5524e-07 1.8982e-07
7 7 2.059316789669078 - 1.7445e-08 1.9732e-08
7 10 2.059316807330022 - 5.9073e-10 6.6784e-10

Table 3: Calculations for Example 3.

Example 3. We consider the generalized Bose-Einstein integral, which finds applications in solid state
physics. Details on the computation of this integral are described by Gautschi [7, 9]. The generalized
Bose-Einstein integral can be written in the form

I =

∫
∞

0

tk
√

1 + θt/2
e−η − e−t tk−1e−tdt,

with three parameters η < 0, θ ≥ 0, and k ∈
{

1
2 ,

3
2 ,

5
2

}
. For the measure of integration, we take the generalized

Laguerre measure dλ(t) = tk−1e−tdt on [0,∞) . The integrand has infinitely many simple complex conjugate
poles and one simple real pole. The poles are

ζµ = −
1

η + (µ + 1)iπ
, ζµ+1 = −

1
η − (µ + 1)iπ

, µ = 1, 3, . . . ,m − 2, ζm = −
1
η
.

This suggests to let m be odd in the rational quadrature rules. An analytical expression for the Bose-Einstein
integral is not known, but it can be approximated by Gn,m if this quadrature rule exists. Selected results
for η = −1, θ = 1, k = 5/2, and different choices of n and m are displayed in Table 3. The Gauss-Kronrod
rules Kn,m do not exist in any of the considered cases, the rule Ln,m exists in all considered cases, while Sn,m
exists in all considered cases except for n = 10 and m = 1, 3, 5. Table 3 shows Gn,m and the error estimates
|Ln,m − Gn,m| and |Sn,m − Gn,m|when they exist.
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5. Conclusion

Rational Gauss-type quadrature formulas Kn,m, Ln,m, and Sn,m can be used to estimate the error in the
rational Gauss quadrature formula Gn,m in an efficient manner. Rational Gauss-Kronrod rules have been
introduced by Gautschi, Gori, and Lo Cascio [11]. The present paper introduces rational averaged and
rational generalized averaged quadrature rules that may exist when rational Gauss-Kronrod rules do not.
Numerical experiments confirm efficiency of the new error estimation techniques proposed.
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[15] G.V. Milovanović, M.M. Spalević, M.S. Pranić, On the remainder term of Gauss-Radau quadratures for analytic functions, J.

Comput. Appl. Math. 218 (2008), 281–289.
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[22] M.M. Spalević, A note on generalized averaged Gaussian formulas, Numer. Algor. 46 (2007), 253–264.
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