
Reliable Industrial IoT-Based Distributed Automation
Vuk Lesi

Duke University

Durham, North Carolina

vuk.lesi@duke.edu

Zivana Jakovljevic

University of Belgrade

Belgrade, Serbia

zjakovljevic@mas.bg.ac.rs

Miroslav Pajic

Duke University

Durham, North Carolina

miroslav.pajic@duke.edu

ABSTRACT
Reconfigurable manufacturing systems supported by Industrial

Internet-of-Things (IIoT) are modular and easily integrable, pro-

moting efficient system/component reconfigurations with minimal

downtime. Industrial systems are commonly based on sequential

controllers described with Control Interpreted Petri Nets (CIPNs).

Existing design methodologies to distribute centralized automa-

tion/control tasks focus on maintaining functional properties of

the system during the process, while disregarding failures that may

occur during execution (e.g., communication packet drops, sens-

ing or actuation failures). Consequently, in this work, we provide

a missing link for reliable IIoT-based distributed automation. We

introduce a method to transform distributed control models based

on CIPNs into Stochastic Reward Nets that enable integration of

realistic fault models (e.g., probabilistic link models). We show how

to specify desired system properties to enable verification under the

adopted communication/fault models, both at design- and run-time;

we also show feasibility of runtime verification on the edge, with a

continuously updated system model. Our approach is used on real

industrial systems, resulting in modifications of local controllers to

guarantee reliable system operation in realistic IIoT environments.

CCS CONCEPTS
• General and reference→ Cross-computing tools and tech-
niques; •Computer systems organization→Dependable and
fault-tolerant systems and networks; • Software and its en-
gineering → Petri nets; Abstraction, modeling and modularity.

KEYWORDS
Distributed automation, Performance and reliability, Petri nets

ACM Reference Format:
Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic. 2019. Reliable Industrial

IoT-Based Distributed Automation. In IoTDI ’19: Internet of Things Design
and Implementation, April 15–18, 2019, Montreal, QC, Canada. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3302505.3310072

1 INTRODUCTION
Recent advances in information technologies and embedded sys-

tems networking are revolutionizing manufacturing industry, lead-

ing to a new stage known as the Industry 4.0 [15]. Namely, to ad-

dress fluctuating market demands, manufacturers have embraced

mass customization (as opposed to mass batch production) and the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00

https://doi.org/10.1145/3302505.3310072

personalization production paradigm [8]. This is achieved by ensur-

ing high level flexibility and adaptability of manufacturing systems

through rapid and cost effective changes in their structure, func-

tionality and capacity [16]. In other words, there is a move toward

Reconfigurable Manufacturing Systems (RMS) that can be ad-hoc

re-configured to support awide variety of products. Themost promi-

nent enabling technologies for RMS development are the (Industrial)

Internet of Things (IIoT) and Cyber-Physical Systems (CPS) [13].

To ensure scalability, convertibility and customization, RMS should

be modularly built on IIoT-enabled smart things - manufacturing

field devices (sensors, tools, machines, ...); these represent CPS that

in addition to the physical devices, integrate computation and com-

munication to support a higher level of automation/autonomy. RMS

capabilities, including modularity and re-configurability, impose

new requirements on the control system design. The traditional au-

tomation pyramid (where each layer of devices strictly has a lower

level of automation than the layer above) is broken up, giving way

to control systems with functionality distributed over different field
devices that communicate with each other. The functionality of an

Industry 4.0 enterprise is based on ubiquitous communication be-

tween things (assets) that form the IIoT, and enable vertical, horizon-

tal and end-to-end integration of manufacturing processes [1, 10].

Yet, reliable functioning of RMS with distributed control/au-

tomation tasks requires high performance connectivity of smart

devices. Key performance indicators of the IIoT connectivity repre-

sent: (1) network availability (robustness to failures), (2) data loss

and transmission errors, (3) data latency and jitter, and (4) data

throughput [9]. For the functions of distributed industrial control

systems, reliable communication, data latency and jitter are critical.

Design of industrial automation/control systems commonly comes

in a form of a relatively low level of abstraction – i.e., as sequential

discrete-event systems. In industrial practice, GRAFCET standard

(IEC 60848) is frequently employed for functional specification of

event-driven sequential control tasks. Control interpreted Petri nets

(CIPN) are the formalism underlying GRAFCET, with the behavioral

equivalence between these shown in [5]. Following this rationale,

and considering the benefits that CIPN and the parent formalism of

Petri nets (PN) provide for industrial automation, we have recently

proposed a method for distribution of control tasks in industrial

automation based on the use of CIPNs [12]. Specifically, starting

from a CIPN representation of the global (i.e., centralized) control

system, which may be extracted from a GRAFCET-compliant design

tool, control system functionalities are automatically distributed to

a number of local controllers (LC) executing on IIoT-enabled smart

devices; local CIPNs, as well as control code in C, for all LCs are

automatically obtained during this procedure. To ensure that the

obtained functionality of the distributed system matches the one of

the centralized system, coordination of the LCs with physical access

to sensors and actuators is performed by means of communication.

94

https://doi.org/10.1145/3302505.3310072
https://doi.org/10.1145/3302505.3310072

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

Automation
Distribution

CIPNg

Global CIPN controller
model (from GRAFCET)

Local CIPN
controller models

Channel
model

Local SRN
controller models

CIPN1CIPN1CIPN1

CIPN→SRN
transformation

SRN1
ctrl

SRN1
ctrl

SRN1
ctrl

SRN1
plant

SRN1
plant
1SRNplant Plant

models

SRNch

Edge-based reliability and
performance monitoring

Offline reliability and
performance verification

Executable code (e.g., C)

Code generation
Control code
adaptation

Figure 1: Methodology for reliable IIoT-based distributed automation – global (i.e., centralized) CIPN-based controllermodel is
transformed into local CIPNs, each of which is used to generate executable code (in C) for smart device controllers. To enable
system analysis for realistic environment (e.g., communication) models, the local CIPNs are further converted into an SRN-
compatible representation; the channel and plant SRNmodels are introduced. Suchmodels are used to verify system reliability
and performance both at design- and run-time; any detected execution scenario that violates system requirements is then used
to adapt the design of local CIPNs to avoid detected failure modes. The paper’s contributions are highlighted in blue.

Yet, communication between smart devices raises the issue of re-

liable information exchange which is crucial in safety- and mission-

critical production systems. GRAFCET and CIPNs are originally

intended for modeling of centralized automation systems, and thus

do not support inclusion of communication channel models for con-

trol design and performance analysis. Hence, control performance

of the newly obtained distributed system, operating in realistic

industrial environments, cannot be guaranteed. On the other hand,

the parent formalism of PNs has been used for modeling and anal-

ysis of communication protocols [6], but stochastic properties of

universally adopted wireless channels cannot be encoded within it.

Consequently, we bridge the gap between the expressiveness of

the widely adopted control models and the need for verification of

automatically synthesized distributed control systems. We achieve

this by automatic translation of the distributed CIPN models into

Stochastic Reward Nets (SRNs) — a variant of PN that supports

stochastic timing features suitable for modeling of communication

channels and time-varying physical executions; this enables cap-

turing of automation-level (control-related) effects of realistic IIoT

designs. SRNs were successfully used to model performance/relia-

bility of software/hardware (e.g., [4, 18]), communication protocols

(e.g., [14]), and distributed systems (e.g., [21]). We exploit composi-

tion of SRN models to verify relevant system properties, based on

probability distributions obtained (and updated at runtime) from

system measurements. Execution scenarios that violate the desired

properties are then used to modify the distributed CIPN controllers

such that potential failure modes are avoided. Finally, we do not

limit the analysis to design-time only. To support dynamic IIoT

environments, we develop an edge-based runtime monitoring sys-

tem that checks properties of interest against system models any

time the models are updated; SRN models are continuously updated

using real-time process and communication channel measurements

obtained by the smart devices and the monitoring system itself.

This paper is organized as follows. Sec. 2 provides an overview of

state-of-the-art distributed automation modeling and design based

on CIPNs as well as its limitations in realistic IIoT-based systems.

Sec. 3 introduces SRNs, the transformation from the CIPN controller

models, and network modeling. In Sec. 4, we present the use of such

models for offline analysis and property verification, and introduce

edge-based runtime verification of distributed automation systems

based on SRNs. Sec. 5 presents the use of our framework on real-

world industrial case studies, before concluding remarks in Sec. 6.

2 STATE-OF-THE-ART AUTOMATION
DISTRIBUTION AND ITS LIMITATIONS

Effective implementation of RMS requires fast and reliable meth-

ods for distribution of control tasks to smart IIoT-enabled devices

acting as local controllers (LCs). However, the system’s control

functionalities are commonly specified as centralized controllers

using tools that produce global (i.e., centralized) controller descrip-

tion as a CIPN (e.g., GRAFCET-compatible tools). Hence, in this

paper, we will employ a recently derived method for distribution

of CIPN-based control tasks to LCs [12], which we outline in this

section. We start with a brief overview of PNs and CIPNs.

Formally, a Petri net is a 5-tuple PN = (P,T , F ,W ,M0), where

P = {P1, ..., Pm } is a set of places (graphically presented by circles),

T = {T1, ...,Tn } is a set of transitions (graphically presented by

bars) such that P ∪T , � and P ∩T = �, F ⊆ {P ×T } ∪ {T × P} is
the set of arcs connecting places and transitions,W is the vector of

arc weights, andM0 is the initial marking, denoting which places

contain (how many) tokens at net initialization time [20]. At any

time, the state of PN is defined by its marking, i.e., distribution of

tokens (graphically presented by black circles inside places), while

firing of transitions that removes tokens from some places and

deposits them into others represents change of the PN state.

Control Interpreted Petri Nets (CIPN) are a variant of PNs where

transition firing is synchronized to system inputs (i.e., sensor sam-

pling) while control outputs (i.e., actuation commands) are issued

from active places (i.e., that have a token). Formally, CIPN repre-

sents a 6-tuple CIPN = (P,T , F ,C,A,M0) in which P , T , F , andM0

are the set of places, transitions, arcs, and initial marking, respec-

tively as with PNs [5]. To synchronize sensor measurements with

the CIPN, a set of logical conditions C = {C1, ...,Cn } is introduced;
Ci represents a Boolean function of sensor values and it is allocated

to corresponding transition Ti . Also, CIPN is synchronized with

actuator outputs via a set of actions A = {A1, ...,Am }; Ai repre-
sents a set of Boolean (or some other) functions of actuator outputs

allocated to places Pi . Note that all arcs in CIPN have weight 1, and

in the initial marking M0 only one place contains a token. In the

graphical representation, conditions Ci (actions Aj) are denoted

next to the corresponding transitions Ti (places Pj) (see e.g., Fig. 2).
A transition Ti can fire and pass tokens to the succeeding places, if

all preceding places contain a token, and condition Ci is fulfilled.
The CIPN-based method for distribution of control tasks to LCs,

starts from the global CIPN that captures functional representation

95

Reliable Industrial IoT-Based Distributed Automation IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

P_CTRL_Init

T_CTRL_Start

P_CTRL_bCYL_Extend1

T_CTRL_bCYL_Extended1
b1==1

P_CTRL_cGRIP_Grip_bCYL_Retract1

T_CTRL_bCYL_Retracted1

P_CTRL_aCYL_Extend

T_CTRL_aCYL_Extended

P_CTRL_cGRIP_Release_bCYL_Retract2

a1==1

b0==1

T_CTRL_bCYL_Retracted2
b0==1

st==1

bp=1

cp=1,wait(500ms),bp=0

ap=1

P_CTRL_bCYL_Extend2
bp=1

b1==1
T_CTRL_bCYL_Extended2

cp=0,wait(500ms),bp=0

P_CTRL_aCYL_Retract
ap=0

T_CTRL_aCYL_Retracted
a0==1

Figure 2: CIPN-based centralized control model of the pneu-
matic industrial manipulator shown in Fig. 3.

of the centralized control system, as well as the mapping of sensors

and actuators to IIoT-enabled smart devices (i.e., their LCs). Then,

the method automatically generates local CIPNi, i = 1, ...N , for

each LC using special-purpose graph-search algorithms. In addition

to relevant logical conditions and actions assigned to places and

transitions, each CIPNi may contain communication commands

(i.e., communication API calls) between LCs. These enable coor-

dination and information exchange between LCs, to ensure that

control functionality of distributed control matches the original

CIPN. From CIPNi functional description, C code for LCs is auto-

matically generated. We illustrate this methodology on an example

of pneumatic manipulator with two degrees of freedom (DOF).

Example. A 2-DOF industrial manipulator in a pick-and-place
configuration (Fig. 3) is used as a running example in this paper. The
manipulator consists of two pneumatic double acting cylinders pro-
viding translational degrees of freedom, denoted A and B, and one
pneumatic gripper denoted C. All actuators are controlled by electri-
cally activated monostable dual control valves 5/2 (with 5 ports and 2
positions), triggered by signals xp, x ∈ {a, b, c}. Here, lower letter x de-
notes signals associated to the actuators denoted with capital letter X ,
X ∈ {A,B,C}. Also, cylinders are equipped with proximity switches
that detect their final retracted (home) and extended (end) positions;
home position sensor signals are denoted as x0, and end positions as x1,
x ∈ {a, b}. The system is also equipped with a start switch st. Each
actuator represents a smart field device with integrated LC with physi-
cal access to sensors and dual control valves. The allocation of LCs and
signals is as follows: i) Cylinder A: LC1 ← {ap, a0, a1}, ii) Cylinder
B: LC2 ← {bp, b0, b1, st}, and iii) Gripper C: LC3 ← {cp}.

The manipulator operates as follows. On activation of the start
switch (st==1), cylinder B extends (due to action bp=1). When cylin-
der B reaches end position (b1==1), the gripper is activated and grips
the part at the picking position (cp=1). Then, cylinder B retracts (bp=0)
and when it arrives to the home position (b0==1), cylinder A advances
(ap=1). When cylinder A comes to the end position (a1==1), cylin-
der B starts extending (bp=1), and when it reaches the end position
(b1==1), gripper C releases the part (cp=0) at the placing position.
Then, cylinder B retracts (bp=0, b0==1), followed by retraction of
cylinder A (ap=0, a0==1). The cycle is then automatically repeated
without pressing the start switch. A timer ensures gripping and releas-
ing of a part before retraction of cylinder B – i.e., a delay is inserted

Cylinder A
Cylinder B

Gripper C

Pick and place positions

Controller A

Controller B

Controller C

Figure 3: Running example — 2-DOF pneumatic manipula-
tor in a pick-and-place configuration. Each of the cylinders
and the gripper are controlled by a networked controller.

between commands cp=1 and bp=0 to secure gripping before raising
the object from the picking position; similarly holds for placing.

Fig. 2 shows a CIPN that captures the described functioning of

the manipulator’s global sequential behavior using the CIPN formal-

ism. The use of the CIPN-based distribution of control tasks to LCs

leads to local CIPNi from Fig. 4. Each CIPNi contains: (i) places
and transitions with conditions and actions extracted from the

global CIPN based on sensor/actuator mapping to LCi , and (ii) arcs

that ensure the desired control sequence through token passing.

Furthermore, some of the places in CIPNi contain commands for

transmission (i.e., communication API calls) of certain signals from

LCi to LCj . For example, place PaCTRL_TxB_aEnd contains com-

mand Send(B,a1), which sends information from LC1 (cylinder A)

to LC2 (cylinder B) that sensor a1 is activated (i.e., a1==1 as cylinder
A reached the end position); LC2 receives this information at the

transition TbCTRL_wfAextended.1 Communication between LCs

ensures that the distributed system behaves as globally specified.

However, unpredictable network delays and failures, including

packet drops, may violate functional safety of the distributed system.

For instance, if a message from controller B to controller C fails

to reach controller C (in time), the part ends up ungripped and

the workcycle is wasted, or collision occurs between the gripper

and the part. Also, if a cylinder fails to inform the other that it has

reached the end position, the entire system is deadlocked. Note that

such scenarios cannot occur with centralized control.

Consequently, to ensure reliable system operation in realistic

IIoT environments, it is necessary to analyze distributed control

performance when realistic network and faults models are taken

into account. To achieve this, we first propose the use of Stochastic

Reward Nets (SRN) to model communication and time-variable

executions; the formalism supports modeling of probabilistic prop-

erties of communication channels/execution delays in a framework

suitable for quantitative reliability and control-related performance

analysis. We show how physical components (i.e., the controlled

plants) and communication channels can be modeled with SRNs,

and how the distributed CIPN-based controller models can be au-

tomatically transformed into SRN models. We also show how the

1
We use the abbreviated descriptive notation for places and transitions to improve

model readability; e.g., transition TbCTRL_wfAextended on controller B waits for cylin-

der A to extend, while place PaCTRL_TxB_aEnd on controller A implements sending

of signal a1==1 to controller B.

96

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

PcCTRL_cGRIP_Release

(c) Controller C

PcCTRL_Init

TcCTRL_wfRxB_bEnd1
b1==1

TcCTRL_wfRxB_bEnd2

PcCTRL_cGRIP_Grip

b1==1

cp=1

cp=0

cp=0

TaCTRL_wfRxB_bHome2
b0==1

(a) Controller APaCTRL_Init

PaCTRL_aCYL_Extend

TaCTRL_aCYL_Extended

TaCTRL_wfRxB_bHome1
b0==1

PaCTRL_TxB_aEnd

PaCTRL_aCYL_Retract

TaCTRL_aCYL_Retracted
a0==1

ap=1

a1==1

Send(B,a1)

ap=0

PaCTRL_TxB_aHome
Send(B,a0)

(b) Controller B PbCTRL_Init

TbCTRL_Start

PbCTRL_bCYL_Extend1

TbCTRL_bCYL_Extended1
b1==1

PbCTRL_TxC_bEnd1_bCYL_Retract1

TbCTRL_bCYL_Retracted1

PbCTRL_TxA_bHome1

TbCTRL_wfAextended

PbCTRL_TxC_bEnd1_bCYL_Retract2

a1==1

b0==1

TbCTRL_bCYL_Retracted2
b0==1

st==1

bp=1

Send(C,b1),wait(500ms),bp=0

Send(A,b0)

PbCTRL_bCYL_Extend2
bp=1

b1==1
TbCTRL_bCYL_Extended2

Send(C,b1),wait(500ms),bp=0

PbCTRL_TxA_bHome2
Send(A,b0)

TbCTRL_wfAretracted
a0==1

PaCTRL_wfRxB_bHome1

TaCTRL_Start

TaCTRL_RetInit

PcCTRL_wfRxB_bEnd1

TcCTRL_Start

TcCTRL_RetInit

Figure 4: CIPN-based distributed control model of an indus-
trial manipulator from Fig. 3 (obtained from CIPN in Fig. 2).

desired system properties can be specified and efficiently verified

with tools that solve SRN, and how to avoid detected failure-modes

by adapting local CIPNi controllers. As deployment environments

of IIoT-based RMS are dynamic, we also introduce an edge-based

reliability and performance runtime monitoring system that re-

evaluates properties at runtime based on current system models. In

what follows, we describe the stages of the framework from Fig. 1.

3 NETWORKING-AWARE MODELING FOR
DISTRIBUTED SEQUENTIAL CONTROL

Stochastic Reward Nets (SRN) extend the expressiveness of PNs

by introducing stochastic transition firing times, and race policies
for resolving firing of competing transitions. Additionally, general

marking-dependent guard functions and firing rates can be speci-

fied. Moreover, SRN support marking-dependent reward functions

that encode an arbitrary measure of system performance, enabling

extensive reliability and performance analysis [22].
2

To analyze effects of non-zero execution, network transmission

delays, and packet drops on distributed sequential control, we trans-

form the distributed control specification given by CIPNi , into SRN

models SRNctr l
i , i = 1, ...,N ; we also add corresponding SRNplant

i
models of the physical components controlled by SRNctr l

i , and

SRNchannel
j , j = 1, ...,M , modeling used communication channels.

3

2
The PN definition from Sec. 2 can be formally extended to capture features of SRNs;

for more details and complete theoretical review, refer to Ch.12 of [22].

3
This supports the general case when more than one communication channel is used

for information exchange between controllers; e.g., frequency separation may be used

in such wireless networks to minimize communication contention between the devices.

Due to the structure of CIPN and SRN formalisms, the translation

of the local controller models CIPNi to SRNctr l
i is straightforward

for all places and transitions, except:

(1) Places issuing actuation commands by setting a control vari-

able, e.g., actr=value, and transitions conditioned by the

state of an input signal (sensor value), e.g., sensor==value,
(2) Communication API calls for signal transmission in places,

i.e., Send(destination,signal), and for waiting for a sig-

nal on transitions, i.e., transition conditions signal==value.

In essence, exception (1) refers to explicit modeling of the inter-

action between the controllers SRNctr l
i and the plant SRNplant

i .

The implicit, operating system-supported, sampling of sensors and

issuing of actuation commands in the paradigm of CIPNs must be

transformed into the SRN setting such that analytical or simula-

tive solutions of the composition of controller and plant SRNs is

supported. In addition, exception (2) pertains to modeling of the

coordination between controllers that is mediated over the channel

SRNchannel
j . In this case, the implicit transmit/receive paradigm

of CIPNs must be transformed into explicit synchronization of

controllers via a channel model that are to be composed and solved.

To address these challenges, in the rest of the section we present

methods tomodel the physical components, network, and controller-

network interaction, while Sec. 4 focuses on solving the SRN model.

3.1 Modeling Physical Components
We start by describing an example model of physical plants being

controlled by the distributed automation system, as well as the

interaction between the plants and distributed controllers, with

emphasis on SRN-enabled modeling conveniences.

3.1.1 Plant Modeling. Expected plant behavior is usually available

as properties of the controlled process (i.e., plant) are known at

design-time. On our running example, we show how an SRN-based

model of the plant can be developed. Fig. 5(a) shows the SRNmodel

of the two-position linear pneumatic cylinder from Fig. 3. As the

position of the cylinder cannot be controlled anywhere between the

two end positions, places PaCYL_Retracted and PaCYL_Extended
are sufficient to model the two end positions (states) (see Fig. 5(a)).

The cylinder is initially in the retracted (home) position; hence

one token is initially placed in PaCYL_Retracted. The transition
TaCYL_Extending (TaCYL_Retracting) is a timed transition that

models the delay between the extend (retract) actuation signal and

the cylinder reaching the end (home) position. If such delay is fixed

(i.e., does not change during system operation), a deterministic fir-

ing time transition can be utilized, as in Fig. 5(a).
4
On the other hand,

the pneumatic cylinder may not exhibit fully deterministic behavior

in terms of travel time between the end positions. In such cases, the

deterministic time transitions can be replaced with a distribution

that models travel time variations around the nominal travel time.
5

In general, the plant side of the controller-plant interaction is

modeled by guarding transitions in the plant model with functions

dependent on the marking of the controller model. In our example,

4
Note that timed transitions are denoted as rectangles, while immediate transitions

are denoted using the usual bars as in regular PNs.

5
For example, a commonmethod is to use Erlang-k distribution, where each of the k ex-

ponential stages have average firing time
nominal travel t ime

k . Another alternative

is to use the uniform distribution, as in the real-world case studies described in Sec. 5.

97

Reliable Industrial IoT-Based Distributed Automation IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

TaCTRL_wfRxB_bHome2 b0==1

Controller A PaCTRL_Init

PaCTRL_aCYL_Extend

TaCTRL_aCYL_Extended

TaCTRL_wfRxB_bHome1
b0==1

PaCTRL_TxB_aEnd
PaCTRL_aCYL_Retract

TaCTRL_aCYL_Retracted

[g_aCTRL_aCYL_Retracted][g_aCTRL_aCYL_Extended]

Send(B,a1)

PaCTRL_TxB_aHome
Send(B,a0)

Cylinder A
PaCYL_Retracted

TaCYL_Extending TaCYL_Retracting

PaCYL_Extended

[g_aCYL_ExtendEn] [g_aCYL_RetractEn]

(a)

(b) (c)

1, mark(PaCYL_Extended)=1
0, otherwise

g_aCTRL_aCYL_Extended()=

1, mark(PaCYL_Retracted)=1
0, otherwise

g_aCTRL_aCYL_Retracted()=

1, mark(PaCTRL_aCYL_Extend)=1
0, otherwise

g_aCYL_ExtendEn()=

1, mark(PaCTRL_aCYL_Retract)=1
0, otherwise

g_aCYL_RetractEn()=

Guard functions

Figure 5:Modeling the plant and plant-controller interaction: (a) SRNmodel of a two-position pneumatic cylinder; (b) extended
model of the controller for cylinder A from Fig. 4(a) (the model is not SRN as it still maintains communication API) – plant-
controller interaction is captured through transitions guarded by Boolean functions (c) of the plant and controller markings.

transition TaCYL_Extending (TaCYL_Retracting) is guarded by

a Boolean function g_aCYL_ExtendEn (g_aCYL_RetractEn) – i.e.,

the transition is enabled if there is a token in the corresponding

place in the controller model where cylinder extending (retracting)

is commanded (Fig. 5(c)). The following subsection introduces the

controller side of the controller-plant interaction.

Remark 1. Since CIPNs are the de-facto standard for representation
of industrial automation controllers, in this work we assume that a
PN-based model (e.g., a CIPN or SRN model) of the physical plant is
available. On the other hand, if plant models are given as automata,
timed-automata or discrete-event systems, which are other formalisms
widely used to model dynamics of physical systems in industrial
automation, standard methods for translation of such formalisms into
PN-compliant models (e.g., as in [3, 7]) can be used.

3.1.2 Modeling Controller-Plant Interaction. In general, places issu-

ing actuation commands in the form actuator=value in an initial

CIPN controller model, are transformed into places in the corre-

sponding SRN controller model whose number of tokens is assessed

by the aforementioned guard functions in the plant model. For ex-

ample, tomap command ap=1 in place Pa_CTRL_aCYL_Extend from
the CIPN in Fig. 4(a), the cylinder’s transition TaCYL_Extending, in
Fig. 5(a), is guarded by function g_aCYL_ExtendEn that returns 1 if

the cylinder’s controller (Fig. 5(b)) is in place PaCTRL_aCYL_Extend
(i.e., where actuation signal to extend is commanded), and other-

wise returns 0. This effectively models the actuation part of the

controller-plant interaction. Formally, the controller deposits tokens

in places that enable plant transitions; semantically, the controller

sends actuation commands to locally connected actuators.

Similarly to the described actuation modeling, in the controller

model we introduce guard functions on the plant model’s state (i.e.,

token distribution) to model plant sensing. Formally, each transition

in the CIPN controller model conditioned by sensor==value is

replaced with an immediate transition guarded by a Boolean guard

function that evaluates to 1 if the plant model currently has a token

in the place corresponding to the state where the given sensor’s

reading is equal to the specific value, and otherwise to 0. Note that

more than one plant’s place may be considered simultaneously for

complex transitions (i.e., that use multiple sensors). Extensions to

real-valued variables and more complex guard functions are also

supported, but are not considered here to simplify our presentation.

To illustrate this, the intermediary controller model correspond-

ing to the CIPN model of the controller for this cylinder (Fig. 4(a)) is

shown in Fig. 5(b), while Fig. 5(c) contains the corresponding guard

functions. Transition TaCTRL_aCYL_Retracted guarded by a0==1
in Fig. 4(a) is mapped into transition TaCTRL_aCYL_Retracted
in Fig. 5(b) guarded by function g_aCTRL_aCYL_Retracted. Note
that this controller model includes only the interaction between the

controller and the plant, and carries over the CIPN communication

paradigm — transmissions Send(destination,signal), and sig-
nal receptions modeled by transitions guarded by signal==value.

3.2 Modeling Network-Controller Interaction
In the CIPN models of distributed controllers, communication be-

tween a transmitter and a receiver is handled via a place issuing a

Send(destination,signal) command on the transmitter, while

the receiver guards the transition from its place preceding reception

with a corresponding signal==value condition, as illustrated in

Fig. 6(a). A suitable SRN-compatible representation is needed for

this place/transition to enable interaction with the communication

channel. Yet, explicit networkmodeling is (a) medium-, (b) protocol-,

and (c) implementation-dependent. For instance, Fig. 6(c) shows the

model of a half-duplex, acknowledge-required unicast CSMA-CA-

based communication channel. While other channel models can be

as easily adopted, in this paper we define the transformation of the

sending/receiving semantics from CIPNs into an SRN-compatible

representation for this specific channel model. Note that while

seemingly simple, this model captures application-level (control-

related) effects for the experimentally observed communication

delays/faults in IIoT deployments. Additionally, as we will show in

Sec. 5, this abstraction was successfully used to discover flaws in

existing implementations of distributed automation systems.

The considered channel can either be idle, busy transmitting a

communication packet, just completed the transmission in prepara-

tion to take the acknowledgement (ACK), or busy transmitting an

ACK, as shown in Fig. 6(c). The transition Tch_wfTx is enabled only
when the respective transmitter is in a corresponding transmit state.

Thus, guard function g_Tx is dependent on the number of tokens

in Pa_wfTx place on the transmitter (i.e., where the transmitter is

issuing packet transmission, as shown in Fig. 6(b)).

In the general case with multiple transmitters, the transmitter

that first deposits a token into its transmit place (i.e., initiates trans-

mission), triggers a change in the channel state. Race conditions

between transmitters can be resolved deterministically (e.g., by pri-

orities), or probabilistically. Once Tch_wfTx transition is enabled,

the token in the channel model can transition to place Pch_TxBusy

98

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

A (Tx)

Pa_Tx
Send(B,a)

B (Rx)

Ta_Rx
a==1

A (Tx)

Pa_wfTx

Ta_wfTx

B (Rx)

Pb_TxAck

Tb_TxAck

Pa_wfAck

Tb_wfRx
[g_Rx]

Channel
Pch_Idle

Tch_wfTx

Tch_wfAck

Pch_Txd

[g_Tx]

Pch_TxBusy

Tch_Tx

Pch_AckBusy

Tch_AckTx

[g_Ack]
Ta_wfAck

Pa_TxDone

[g_TxFin]

[g_Txd]

1, mark(Pa_wfTx)=1
0, otherwise

g_Tx()=

1, mark(Pch_Txd)=1
0, otherwise

g_Txd()=

1, mark(Pb_TxAck) =1
0, otherwise

g_Ack()=

1, mark(Pch_Idle)=1
0, otherwise

g_TxFin()=

1,

0, otherwise
g_Rx()=

mark(Pch_Txd)=1 &&
mark(Pa_wfAck)=1

(a) CIPN (b) SRN Tx/Rx model (c) SRN Channel model (d) Guard functions

Figure 6: SRNmodel of a half-duplex, ACK-required unicast CSMA-CA channel. Places model channel states, immediate tran-
sitions are enabled when packet (ACK) transmission is enabled on Tx (Rx); stochastic firing time transitions model the delay.

(i.e., the channel changes state), where it will dwell until the stochas-

tic time transition Tch_Tx modeling the network/channel-induced

delay fires. Also, once Tch_Tx fires, the packet is sent, enabling the

transition Ta_wfTx, advancing the transmitter into wait-for-ACK

state. Hence, as the channel is ready to transmit the ACK (token

in Pch_Txd), and the transmitter is waiting for the ACK (token in

Pa_wfAck), the receiver receives the packet, advancing to Pb_TxAck
place (i.e., Tb_wfRx fires). This captures packet transmission model.

After a message transmission, the channel model advances to

Pch_AckBusy state, as the transition Tch_wfAck is enabled. Imme-

diately, the receiver continues execution as the ACK is handled

by lower layers of the communication stack. Consequently, the

receiver’s token advances through Tb_TxAck, which concludes the

receiver’s activity in the packet exchange. On the other hand, the

transmitter is blocked at Ta_wfAck by the guard g_TxFin, until the
ACK propagates through the channel. The channel is busy transmit-

ting the ACK until the stochastic firing time transition Tch_AckTx
fires, returning the channel into idle state, and advancing the trans-

mitter into Pa_TxDone, which concludes acknowledging.

Note that in addition to modeling of event sequencing, the

SRN models allow for capturing time-to-transmit and time-to-ACK,

which we model using two independent stochastic-time transitions.

This enables adoption of realistic models where anACK packet prop-

agates much faster, as it is much shorter than the original packet,

and is immediately preceded by a successful full-packet transmis-

sion. Complete transmitter/receiver and channel models are shown

in Fig. 6(b)-(d). For improved readability, transitions and places are

colored according to their dependencies in Fig. 6(b) and (c).

Furthermore, this model imposes two race conditions, between

transitions Tch_wfTx and Ta_wfAck, and between Tch_wfAck and

Tb_TxAck. In both scenarios, the competing transitions are simul-

taneously enabled, and firing of the former disables the latter (si-

multaneous transition firing is not allowed in PNs). In the first case,

when transmitter A receives the ACK, guard g_TxFin no longer in-

hibits Ta_wfAck, as the channel is in Pch_Idle state. However, the

token in Pch_Idle also enables another transmitter A’ to change

the state of the channel from Pch_Idle to Pch_TxBusy, which in

turn disables Ta_wfAck. In the second case, as the receiver is ready

to advance through ACK transmission (Tb_TxAck is enabled), and

the channel to start transmitting the ACK (Tch_wfAck is enabled),

firing of Tb_TxAck disables Tch_wfAck as it removes the token from

Pb_TxAck; this causes the guard g_Ack to inhibit Tch_wfAck.
We addresswith transition priority assignment; if prio(Ta_wfAck)

>prio(Tch_wfTx) and prio(Tch_wfAck)>prio(Tb_TxAck) the race
conditions are resolved properly; this is semantically correct as the

first transmitter must complete transmission before another one can

initiate the next transmission in CSMA-CA-based networks (first

scenario), and the receiver has to initiate ACK transmission upon

packet reception before continuing execution (second scenario).

Remark 2. The presented modeling approach is flexible, and can
be adjusted for different PHY- and MAC-layer variations. For instance,
if an ACK is not required for low-criticality transmissions, the above
presented channel model can easily be modified by eliminating places
and transitions modeling ACK transmission/reception. Low-level pro-
tocol features, such as multiple-retry schemes, can also be accounted
for. For instance, standard exponential-based retransmission back-off
can be modeled by probabilistically flushing tokens from Pch_TxBusy
place in case of transmission failure, and depositing new tokens at a
stochastic rate. Other random back-off models are also allowed.

Furthermore, in the presented model, the receiver advances to trans-
mitting the ACK through Tb_wfRx transition that is guarded by g_Rx
dependent both on the channel and the transmitter markings. This
ensures that, in the case of multiple receivers, only the one targeted by
the active transmitter advances execution; i.e., the channel is unicast.
The guard function g_Rx can easily be modified to model multicast
or broadcast channels. For presentation clarity, we consider the com-
munication model from Fig. 6 throughout the paper as it applies to
the network underlying our case study. For details on the use of PNs
for modeling of communication and cooperation protocols refer to [6].

Example (Industrial Manipulator with 2-DOF). We used the
presented methodology for translation of distributed CIPN controllers
into SRN models that also capture communication (i.e., networking)
between the controllers, to fully transform the CIPN model from Fig. 4
into an SRN model shown in Fig. 7. The following section analyzes the
model utility by introducing formally-encoded functional and safety
properties that can be verified in tools that support analysis of SRNs.

4 SYSTEM ANALYSIS AND VERIFICATION
The developed SRN-based models can be used to verify desired

system properties. Given the probability distributions of network

99

Reliable Industrial IoT-Based Distributed Automation IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

[g_bCTRL_bCYL_Extended]

Controller BPbCTRL_Init

TbCTRL_Init

PbCTRL_bCYL_Extend1

TbCTRL_bCYL_Extended1

[g_bCTRL_bCYL_Extended]

PbCTRL_wfTxC_bEnd1

TbCTRL_wfTxC_bEnd1

PbCTRL_wfAckC_bEnd1

TbCTRL_wfAckC_bEnd1

PbCTRL_bCYL_Retract1

[g_TxFin]

[g_Txd]

TbCTRL_bCYL_Retracted1
[g_bCTRL_bCYL_Retracted]

PbCTRL_wfTxA_bHome1

TbCTRL_wfTxA_bHome1

PbCTRL_wfAckA_bHome1

TbCTRL_wfAckA_bHome1
[g_TxFin]

[g_Txd]

PbCTRL_wfCgrip

TbCTRL_wfCgrip
500ms

PbCTRL_TxAckA_aEnd

TbCTRL_TxAckA_aEnd

TbCTRL_wfRxA_aEnd
[g_b_Rx_aEnd]

PbCTRL_wfAextended

PbCTRL_bCYL_Extend2

TbCTRL_bCYL_Extended2

PbCTRL_wfTxC_bEnd2

TbCTRL_wfTxC_bEnd2
[g_Txd]

PbCTRL_wfAckC_bEnd2

TbCTRL_wfAckC_bEnd2
[g_TxFin]

PbCTRL_wfCrelease

TbCTRL_wfCrelease
500ms

PbCTRL_bCYL_Retract2

TbCTRL_bCYL_Retracted2
[g_bCTRL_bCYL_Retracted]

PbCTRL_wfTxA_bHome2

TbCTRL_wfTxA_bHome2
[g_Txd]

PbCTRL_wfAckA_bHome2

TbCTRL_wfAckA_bHome2
[g_TxFin]

PbCTRL_TxAckA_aHome

TbCTRL_TxAckA_aHome

TbCTRL_wfRxA_aHome
[g_b_Rx_aHome]

PbCTRL_wfAretracted

Gripper C PcGRIP_Released

TcGRIP_wfGripCmd

TcGRIP_wfReleaseCmd

PcGRIP_Gripped

[g_cGRIP_GripEn]

TcGRIP_Gripping

PcGRIP_Releasing

TcGRIP_Releasing

[g_cGRIP_ReleaseEn]

PcGRIP_Gripping

Controller C PcCTRL_Init

PcCTRL_TxAckB_bEnd1

TcCTRL_TxAckB_bEnd1

TcCTRL_wfRxB_bEnd1
[g_c_Rx_bEnd1]

TcCTRL_wfRxB_bEnd2

PcCTRL_cGRIP_Grip

[g_c_Rx_bEnd2]

PcCTRL_TxAckB_bEnd2

TcCTRL_TxAckB_bEnd2

PcCTRL_cGRIP_Release

TcCTRL_RetInit

TaCTRL_aCYL_Extended
[g_aCTRL_aCYL_Extended]

Controller A PaCTRL_Init

PaCTRL_TxAckB_bHome1

TaCTRL_TxAckB_bHome1

TaCTRL_wfRxB_bHome1
[g_a_Rx_bHome1]

PaCTRL_aCYL_Extend

PaCTRL_wfTxB_aEnd

TaCTRL_wfTxB_aEnd

PaCTRL_wfAckB_aEnd

TaCTRL_wfAckB_aEnd
[g_TxFin]

[g_Txd]

TaCTRL_wfRxB_bHome2
[g_a_Rx_bHome2]

PaCTRL_TxAckB_bHome2

TaCTRL_TxAckB_bHome2

PaCTRL_aCYL_Retract

TaCTRL_aCYL_Retracted

[g_aCTRL_aCYL_Retracted]

PaCTRL_wfTxB_aHome

TaCTRL_wfTxB_aHome
[g_Txd]

PaCTRL_wfAckB_aHome

TaCTRL_wfAckB_aHome
[g_TxFin]

PaCTRL_wfRxB_bHome2

Figure 7: SRN-based distributed control model of a simple industrial manipulator; models of cylinders A and B, as well as the
channel model are shown in Fig. 5(a), and Fig. 6(c), respectively; guard functions are defined as per the pattern shown therein.

delays, actuator and plant response times, as well as controller

settings as inputs, PN software packages can be used for system

analysis. If all timed transitions are either immediate or have expo-

nential firing time, the model can be solved using analytic/numeric

methods [11, 22]. On the other hand, for generally distributed firing

times, discrete event simulation is performed. As assuming exponen-
tially distributed or immediate firing times is not valid in most IIoT
applications, we use the Stochastic Petri Net Package (SPNP) [11]
that also supports discrete-event simulation for quantitative system

analysis. We now discuss specification of relevant system properties

as well as employed design- and run-time verification setup.

4.1 Specifying System Properties
Safety Properties. Safety properties can be specified as reward func-

tions — arbitrary functions of the controller and plant states (i.e.,

markings) that are evaluated at every marking update (i.e., discrete

simulation step). For instance, for our running example, gripper C

must never be closed while cylinder B is advancing downward to-

wards the part; this leads to collision between the gripper and part. If

mark(PcGRIP_Gripped)==1 AND mark(PbCTRL_bCYL_Extend1)==1
holds, the safety property is violated. Thus, a Boolean reward func-

tion that returns 1when the condition holds, and 0 otherwise is used

to evaluate probability of occurrence of such an event; any nonzero

such probability is used as an indicator about potential safety viola-

tion. To simplify our notation, we denote functions of this form as

R()=if(BooleanCondition,ValueIfTrue,ValueIfFalse).
For our running example, SPNP returns that the system is safe

when the network-induced communication delays are exponentially

distributed (rate parameter used for packet delays is 1/200 while it

is 1/1000 for ACK). In Sec. 5, we use actual channel measurements

acquired from a deployed system for analysis using the SPNP tool.

Liveness Properties. Besides safety, it is important to ensure the

system makes forward progress and performs according to desired

performance specification; we somewhat abuse the notation and

refer to these as liveness properties. Analysis of SRN models results

in a set of average measures for each place and transition. For places,

average number of tokens and average probability of a place being

100

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

non-empty can be defined. These measures provide insight in the

system dwell time in a particular state. For example, we expect that

the channel dwells zero time in Pch_Txd place as otherwise would

indicate a problem with ACK transmissions (this can be verified

by analyzing the model within SPNP). Also, actuation systems are

commonly provisioned by specific upper bounds on the actuator

active times. In our running example, probability that the pneumatic

cylinders are either in the state of extending or retracting can be

used to compute average duty cycles of the mechanical components,

which can be used to verify that the system is operating within

prespecified limitations, or anticipate increased wear.

Conversely, average throughput of tokens through each of the

transitions can be defined, as well as probability that a transition is

enabled. Transition throughput can then be used as a performance

metric; for example, the speed at which the pick and place cycle is

performed for our running example – analysis using SPNP reveals

that the throughput of all controller transitions is 0.295 tokens
sec

resulting in the processing time of 3.389 sec
unit .

6

4.2 SRN-based System Analysis
The derived SRN models are used for design- and run-time system’s

safety and performance analysis using existing PN-supported tools.

Capabilities of Petri Net-Based Tools. When analytic/numeric meth-

ods are utilized, violation of safety properties can be determined at

the time of construction of the reachability graph; i.e., the undesir-

able marking(s) can be identified without statistical simulations. On

the other hand, if discrete-event simulation is performed (e.g., in

the case of non-exponentially distributed firing times), reachability

of markings where a safety property is violated is determined on

per-simulation-run basis; i.e., obtained results translate into prob-

abilistic guarantees. Two broadly used PN-based tools are [2, 11],

which implement a type of stopping criteria both for analytic/nu-

meric and simulative solution modes. Therefore, if a safety property

violation is detected (i.e., non-zero probability of reaching undesired

state), the analysis can be halted.

Runtime Monitoring Support. Various runtime effects such as com-

munication channel utilization, component aging, and mechanical

wear may affect the parameters of the developed model; thus, re-

sults of design-time (i.e., offline) system analysis based on initially

obtained SRN models may not continue to hold during system exe-

cution. Hence, the ability to check for statical property violation at

runtime is crucial for reliability and performance monitoring. We

explored runtime support for monitoring of distributed automation

systems; the stopping criteria feature of PN-based tools is very use-

ful for runtime safety verification as the supervisor can be warned

on predicted unreliability, before the full analysis is completed.

We developed an execution environment in which process mea-

surements (e.g., cylinder travel times) and channel features (e.g.,

packet propagation delays) are acquired in real-time, and used

for runtime adaption of the prespecified parameters of probabilis-

tic features within the SRN model. To ensure timely response in

bandwidth-constrained IIoT-based deployments, we explore execu-

tion of the model checking tool on the edge, rather than the cloud

(details are provided in Sec. 5). Edge-based monitor deployment

6
Given the specific structure of PNs modeling controller behavior, the throughput of

all transitions is the same as no tokens are being generated or flushed at runtime.

is naturally promoted for IIoT-based automation, as continuously

powered gateway devices that support higher-level coordination

and decision-making exist by design in such systems.

Remark 3 (Estimating distributions vs. directly using sam-

ple-based measurements). State-of-the-art PN tools support para-
metric specification of transition firing times conforming to most
well-studied probability density functions (more than 15 distribu-
tions), suitable for flexible modeling of discrete event processes [2, 11].
In this setting, distributions are fitted to offline data to create an accu-
rate model of the real system. Still, state-of-the-art tools also support
sample-based firing times — i.e., the solver can sample firing time
arrays during simulation that are obtained from measurements at
runtime, rather than generating a random sample from a predefined
distribution [11]. Our system is capable of exploiting this feature such
that the additional step of fitting a probability distribution to the ac-
quired data can be eliminated, increasing the statistical fitness of the
obtained measures to the real system. Consequently, while analysis of
a model fitted with offline date is, our online edge-based performance
and reliability monitoring is not dependent on the IID assumption as
it employs process and channel measurements acquired at runtime.

5 INDUSTRIAL CASE STUDIES
On two real-world industrial case-studies, we show applicability of

our methodology for IIoT-enabled distributed automation: (I) 3-DOF

pneumatic manipulator, and (II) a complex pneumatic manipulator

with parallel processes. The considered manipulators are not classi-

cal; they are modularly designed in terms of mechanical subsystems

and their control (using a smart IoT device), to facilitate reconfig-

uration. Also the considered control scenarios do not follow the

conventional IEC 62264 hierarchical industrial automation pyramid.

While we limited our evaluation to manipulators in our physical

testbed, our approach applies to other IIoT-enabled equipment.

In both case-studies, we start from distributed control models

obtained using existing techniques. We transform these CIPNs into

SRNs and perform analysis with the developed plant and channel

models. We first show how to discover potential problems that arise

with the use of existing distributed controllers executing in realistic

IIoT environments, before showing how these can be addressed

through patches in the code generation stage (by introducing suit-

able communication constructs and exploiting LC runtime support).

5.1 Case Study I: 3-DOF Industrial Manipulator
5.1.1 Physical Setup and Modeling. The considered manipulator is

configured to pick a part at the picking location, transfer it to the

immersion location and immerse it into liquid, retract the part from

liquid, shake of excess liquid (by means of rotation), and return the

part to the original location. The pneumatic cylinder configuration

with highlighted components is shown in Fig. 8(a), while the top por-

tion of the system (i.e., cylinders) are shown in Fig. 8(b1). Cylinders

A and B, providing translational DOF, as well as C, providing the ro-

tational DOF, are all equipped with end-position sensors, while the

gripper D is not (similarly to our running example). Each cylinder

modules is controlled by a low-cost ARM Cortex-M3-based NXP

LPC1768 microcontroller (i.e., LC in Fig. 8(b2)) clocked at 96MHz.
All LCs execute the C code generated from the formal CIPN descrip-

tion using our framework from [12]. Finally, LCs form a low-power,

low-latency network via IEEE 802.15.4-compliant radio modules.

101

Reliable Industrial IoT-Based Distributed Automation IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Cylinder A

Cylinder B

Gripper D

Pick and return
position

Controller A

Controller B Controller C

Cylinder C

Controller D

(3) NUC

4.5”

(1) 3-DOF manipulator

3.5”

(2) LC

(a) 3-DOF manipulator in a pick-immerse-
shake-return configuration (b) System components

Immerse
position

Figure 8: Case Study I: (a) 3-DOF industrial manipulator;
(b1) Cylinders A and B provide translational DOFs, C pro-
vides rotational DOF, gripper D handles parts; each is con-
trolled by a low-cost ARM Cortex-M3-based LC (b2). Size-
and power-aware NUC (b3) monitors system’s performance
(pneumatic cylinders do not scale to the LC and the NUC).

Cylinder

Forward stroke bounds Reverse stroke bounds

Lower [ms] Upper [ms] Lower [ms] Upper [ms]

A 1100 1120 689 715

B 107 143 146 172

C 119 130 111 122

D 45 55 45 55

Table 1: Travel times for the cylinder are modeled using uni-
form distribution with parameters specified in the table.

Local CIPN controller models, obtained using the existing frame-

work from [12], are transformed into SRN-compatible represen-

tation, and plant and channel models are developed as described

in Sec. 3. Plant model parameters (i.e., cylinder travel times) are

obtained from experimental measurements as they depend on a

number of external parameters (e.g., control valve setting, nominal

air pressure). Therefore, in the SRNmodels, cylinder response times

(i.e., travel times from home to end positions) are modeled using

the uniform distribution with parameters given in Table 1.
7

Similarly, channel parameters (i.e., propagation delay distribu-

tions) were obtained from the data acquired from the physical setup.

Fig. 9 shows the histograms of acquired transmit-to-receive and

receive-to-ACK times in experiments executed over two days, il-

lustrating small changes when the system operates in nominal

conditions. Truncated normal distribution
8
is adopted with param-

eters µ = 4.84ms , σ = 4.7 · 10−6, xmin = 4.83ms , xmax = 4.85ms
for Tx → Rx and µ = 0.57 ms , σ = 4.7 · 10−6, xmin = 0.56 ms ,
xmax = 0.58ms for Rx → Ack times; these parameters were used

for offline system verification. To also cover the scenarios where

environmental and operating conditions may significantly change,

probability distribution parameters were updated at runtime based

7
The case study model is substantially more complex than the running example model.

However, the CIPN/SRN model schematics are omitted due to their close semantical

similarity with the running example.

8
Truncated normal distribution is a variant of the Gaussian normal distribution that

allows the random variable to be bounded from bellow and/or above. In addition to

the model being realistic as a communication packet will never have zero or infinite

propagation time, our experiments showed that the distribution was able to fit the

obtained experimental data very well.

Figure 9: Histograms of packet and ACK propagation delays
measured over two days from our industrial testbed.

on acquired delay measurements, and the properties reverified on

an edge-based near-gateway monitor device, as described below.

5.1.2 Verification and Runtime Monitoring. We run SPNP on an

Intel Core i3-based NUC platform, shown in Fig. 8(b3), which is suit-

able for edge-based near-gateway deployment. The NUC platform

monitors the deployed industrial manipulator by collecting event-

triggered communication packets between distributed controllers,

and receiving additional diagnostic measurements from controllers

themselves (e.g., cylinder travel times, actuation to sensing delays),

obtained from local on-line monitoring using the Microchip ZENA

IEEE 802.15.4-compliant adapter.

We considered an exhaustive list of safety and liveness properties

prescribed by a domain expert. To illustrate our approach, in this

paper we focus on the following properties:

Property 1 (Gripper D is always gripped during cylinder A

stroke). Violation of this property implies dropping of the part dur-
ing transfer between the picking/placing position and the immersion
position causing damage to the part and/or the manipulator platform.
We add the reward function indicating violation of this property as:
R1()=if((mark(PdGRIP_Gripped)==0 AND

mark(PaCTRL_aCYL_Extend)==1) OR

((mark(PdGRIP_Gripped)==0 AND

mark(PaCTRL_aCYL_Retract)==1)) ,1,0).

Property 2 (Gripper D is always released during cylinder

B part-approaching stroke). Violation of this property implies
collision between the gripper and the part. The corresponding reward
function indicating property violation is specified as:
R2()=if((mark(PdGRIP_Released)==0 AND

mark(PbCTRL_bCYL_Extend1)==1,1,0).

Property 3 (Cylinder C duty cycle is at least 5.5%). Viola-
tion of this property implies abrupt rotation of the part after immersion
causing increased wear of mechanical components. The probability of
places PcCTRL_RotateCW and PcCTRL_RotateCCW collectively rep-
resent the fraction of time cylinder C is rotating.

Property 4 (Manipulator processes parts at the maximum

rate of 3
sec .
unit). Violation of this property implies increased mechan-

ical wear and potential issues with feeding surrounding manufactur-
ing systems at a rate higher than expected. The average throughput of
any of the controllers’ transitions is indicative of this liveness property
(i.e., the rate at which controllers visit their initial state equals the
rate at which parts are handled).

Furthermore, we consider the following representative scenarios,

which were observed during system operation.

Scenario 1 (Nominal system operation). This scenario per-
tains to offline verification of prescribed properties using nominal plant

102

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

parameters, and the acquired channel model corresponding to exper-
imental measurements at the time of deployment (i.e., parameters
from Sec. 5.1.1); our experiments showed that the model parameters
would not significantly change in nominal operating conditions.

Scenario 2 (Congestion-induced network unavailability).

Due to increased channel utilization, network packets may be delayed
or dropped at higher than nominal rates; our experiments showed that
bimodal (or multimodal) distributions may occur in such conditions.

Scenario 2 was observed when a large number of additional LCs

was introduced, all using the same wireless channel for communi-

cation. To realize this scenario and increase channel utilization in

a realistic manner (in terms of channel temporal and bandwidth

requirements), we emulated additional pneumatic manipulators

similar to the real manipulators considered here – i.e., a mixture of

the running example and case study I/II manipulators were imple-

mented with real controllers, but software-emulated cylinders.

Scenario 3 (Component Fault – Gradually increasing air

pressure due to a fault in the air pressure control system).

Due to a fault in the air pressure control system, increased air pressure
is delivered to the pneumatic cylinders causing gradual shortening of
cylinder response times (i.e., travel times between end positions).

We implemented Scenario 3 by gradually increasing air pressure

in the pneumatic system to emulate a system component fault.

5.1.3 Results. Table 2 shows results of model analysis
9
for these

properties. Average model analysis runtime in SNPN, capturing

1000 discrete-event simulations of 1000 sec duration (> 200 manip-

ulator cycles), on the NUC is 28.2 sec . As the centralized control

system is correct by design, and wireless communication does not

incur significant delays and packet drops between local controllers

under nominal conditions (Scenario 1), the system performs as

expected (average cylinder C duty cycle is 6.1208%, average part

processing time is 3.9368 sec .), and safety properties are not violated.
An acquired sequence of events during a sample of the manipulator

run under nominal conditions is shown in Fig. 11(top).
10

In Scenario 2, as gripper D is not equipped with end-position

sensing (due to its size constraints), communication between con-

trollers B and D is most-vulnerable; by design, controller B sends

a grip command to controller D and waits deterministically for

500 ms assuming that the operation has finished after this time

elapses. If the communication packet fails, for instance, controller

D may leave gripper D released when it is supposed to grip the part

before cylinder B retracts it from the picking position, as shown

in Fig. 11(bottom) during an experimental run in this scenario.

From our runtime analysis, we observed that protocol-level re-

tries are insufficient to provide reliable packet delivery. Generally,

the channel model presented in Fig. 6(c) does not cover unsuccess-

ful transmissions, which acount 3% of all packet transmissions. By

running the analysis on the derived model, we obtain significant

probabilities of violation of properties P1 and P2 (26.9% and 3.3%,

respectively). In the case of controllers A, B, and C, unsuccessful

communication causes a deadlock; in essence, receiving controllers

9
Our analysis is based on discrete-event simulation supported by SNPN, as our model

includes non-exponentially-distributed transitions. Recall that if all transitions are

either immediate or exponential, analytic/numeric solutions can be obtained.

10
Timing diagrams were obtained by directly measuring sensing/actuation signals.

0.97

Pch_Idle
Tch_wfTx

Tch_wfAck

Pch_Txd

[g_Tx]

Tch_Tx

Pch_AckBusy

Tch_AckTx

[g_Ack]

Pch_TxBusy

Pch_Txd1
Tch_TxFail

Tch_TxSuccess

0.03

Tch_Retry

Tch_wfRetry

Figure 10: SRN model of a half-duplex, ACK-required uni-
cast CSMA-CA-based communication channel with explicit
delayed retries. In this specific case, 97% of transmissions are
initially successful, while 3% are retransmitted at least once.

are eternally left waiting for a signal to continue execution, and the

(unsuccessful) transmitter exhausts protocol-level retries. Cylinder

C average duty cycle and the production rate are omitted in Table 2,

as the system is often halted due to a communication interruption.

We thus employ the reasoning enabled by the presented SRN

model analysis to modify the translation of the CIPN’s communica-

tion semantics; we do this during code generation for LCs in order

to include application-level transmission retries. Consequently, we

also redesign the channel model to account for this change; Fig. 10

shows the improved channel model from Fig. 6(b). We redeployed

the entire distributed system, using the modified semantics for com-

munication APIs in LCs, and reproduced Scenario 2. We showed

that in this case, despite network congestion, the system operated

safely with marginal performance degradation – i.e., single part

average processing time increases by ∼ 0.03 sec due to application-

level retransmission-handling delays. Note that the probability of

successful transmission is updated at runtime (as shown in Sec. 4.2),

to eliminate pessimistic results in non-congested deployment sce-

narios, and to maximize analysis accuracy under dynamic runtime

conditions. In addition, while the discrete-event analysis by SPNP

tool takes 28.6 sec on average on the NUC, asserting possible safety

violation takes only 313.6ms (an order of magnitude lower than

the system’s cycle time), which prevents faulty system operation.

Finally, in Scenario 3, due to the gradually increasing air pres-

sure, parts were processed at a higher average rate, and cylinder

C duty cycle was reduced, potentially endangering process qual-

ity and increasing component wear. Over time, part processing

time is reduced to 3.2154 sec and cylinder C duty cycle decreased to

5.6214%, as shown in Table 2. Discrete-event model simulation takes

an average of 29.7 sec on the NUC using incremental channel and

process measurements, and warns the supervisor that the system’s

performance is degrading. This information is used to correct the

fault before system performance degrades below acceptable limits.

5.2 Case Study II: Industrial Manipulator with
Parallel Processes

The manipulator is configured in a parallel loading/unloading con-

figuration; it consists of two (parallel) cylinders A and B, and a

rotary cylinder C. The rotary cylinder rotates a base with parts,

while cylinders A and B load/unload parts in parallel. The CIPN

model of the centralized controller is shown in Fig. 13(a). The exist-

ing CIPN models for local controllers are shown in Fig. 13(b), (c).
11

11
Models of controllers A and B are identical; thus, only a single model of controller X

for cylinder X is shown in Fig. 13(b), where X ∈ {A, B }.

103

Reliable Industrial IoT-Based Distributed Automation IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Property

Average violation probability over scenarios

(S1) Nominal conditions

(S2) Network unavail. due to congestion

(S3) Air pressure control fault

w/o app-level retries w/ app-level retries

(P1) 0.0000 0.2690 [0.2459, 0.2908] 0.0000 0.0000

(P2) 0.0000 0.0330 [0.0237, 0.0423] 0.0000 0.0000

Property Cylinder C average duty cycle [%]

(P3) 6.1208 [6.1202, 6.1213] — 6.0761 [6.0754, 6.0768] 5.6214 [5.6210, 5.6218]

Property Inverse of average throughput [seconds per unit]

(P4) 3.9368 [3.9366, 3.9370] — 3.9671 [3.9668, 3.9674] 3.2154 [3.2152, 3.2156]

Table 2: Case Study I: Property violation probabilities and performance measures over different scenarios; for network un-
availability due to congestion without application-level retries, performance measures are not given due to frequent operation
interruptions. Confidence intervals are computed with 99% confidence.

Figure 11: Case Study I: Experimental sensing/actuation tim-
ing diagrams: (top) correct execution under nominal condi-
tions; (bottom) execution when the part is not gripped (see
ALARM) due to a dropped packet from controller B to D,
caused by network congestion.

This cylinder configuration is of special interest as cylinders A

and B simultaneously stroke forward to load/unload parts; thus,

controllers A and B in the distributed setting must simultaneously

command the forward stroke of their respective cylinders, when

commanded to do so by controller C (followed by completion of the

rotary movement of cylinder C). While the communication from

controller C to controllers A and B can be realized using a multicast

protocol, guarantees must be provided that cylinders A and B both

receive the signal, and synchronously issue actuation commands.

On the other hand, while broadcast is, multicast communication

is not natively supported by the IEEE 802.15.4 low-power wire-

less communication standard employed in the previous case study.

While there exist works on achieving multicast communication via

IPv6 protocol (e.g., [19]), simultaneous delivery and processing of

packets on multiple receiving nodes cannot be guaranteed. From

Cylinder A
Cylinder C

Controller A

Controller C

Loading

Cylinder BController B Unloading

Figure 12: Case Study II: Industrial manipulator in a parallel
loading/unloading configuration. Parts are loaded by cylin-
der A, and unloaded by cylinder B simultaneously, while the
rotary cylinder C ‘replaces’ the loading/unloading positions
by means of rotating the loading base.

the analysis of the SRN-models obtained as described in Sec. 3,
12

we

found again that the translation of the controller communication

semantics needed to be adjusted (from the one in Fig. 6(b)), as the

resulted distributed automation system was violating safety prop-

erties. For instance, if only one of the controllers A or B receives

the packet and commences actuation, the system transitions into

an erroneous state; for example, a new part is loaded against the

previous one that is not yet unloaded.

We thus modified the semantics of the communication-APIs in

translation from the CIPNs as part of code generation; this was done

to utilize the low-power, low-bandwidth synchronization protocol

devised in [17], which is fully compatible with our LC platform

implementation.When the synchronization protocol was employed,

it enabled synchronous execution of actuation commands on con-

trollers A and B, once both controllers received the signal from

controller C. This may introduce additional delays, as additional

handshaking between controllers A and B is added, as well as po-

tential additional retransmissions between cylinders C and A, and

C and B, which are originally nonexistent in the CIPN-based dis-

tributed automation model. Still, with (worst-case) 100ms added to

the production cycle time, sub-10 µs synchronization of cylinder A

and B strokes is achieved, resulting in a verifiably safe system.

6 CONCLUSION
In this paper, we have presented a methodology that takes as inputs

widely used CIPN-based controller models for industrial automa-

tion, which preclude correctness and fault-tolerance analysis of

distributed automation deployments. Such models are transformed

12
Complete model schematic is omitted due to space limitations.

104

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

TcCTRL_RxAB_Retracted2
a0==1 AND b0==1

c1==1

P_CTRL_Init

T_CTRL_Start

P_CTRL_cCYL_RotateCW

T_CTRL_cCYL_End

st==1

cp=1

P_CTRL_aCYL_Extend1

T_CTRL_aCYL_Extended1

P_CTRL_aCYL_Retract1
P_CTRL_bCYL_Retract1

T_CTRL_bCYL_Extended1

b1==1

P_CTRL_bCYL_Extend1

a1==1

T_CTRL_a&bCYL_Retracted1
a0==1 AND b0==1 c0==1

T_CTRL_cCYL_Home

P_CTRL_aCYL_Retract1

T_CTRL_aCYL_Extended1

P_CTRL_aCYL_Extend1

P_CTRL_bCYL_Extend1

T_CTRL_bCYL_Extended1

b1==1

P_CTRL_bCYL_Retract1

a1==1

T_CTRL_a&bCYL_Retracted1
a0==1 AND b0==1

P_CTRL_cCYL_RotateCCW cp=0

(a) Centralized controller

(c) Controller C
PcCTRL_cCYL_RotateCW

PcCTRL_TxAB_cEnd
TcCTRL_RxAB_Retracted1
a0==1 AND b0==1cp=1

Send({A,B},c1)

PcCTRL_cCYL_RotateCCW
cp=0

TcCTRL_cCYL_Home
c0==1

PcCTRL_TxAB_cHome
Send({A,B},c0)

(b) Controller X
X ∈ {A,B}

TxCTRL_xCYL_Extended2

TxCTRL_xCYL_Retracted2

PxCTRL_wfRx_cEnd

TxCTRL_wfRx_cEnd

PxCTRL_xCYL_Extend1

TxCTRL_xCYL_Extended1
x1==1

xp=0

xp=1

PxCTRL_TxA_xHome1

Send(C,x0)

x1==1

PxCTRL_xCYL_Retract2
xp=0

x0==1

PxCTRL_xCYL_Retract1

TxCTRL_xCYL_Retracted1
x0==1

xp=0

TxCTRL_wfRx_cHome
c0==1

PxCTRL_xCYL_Extend2

xp=1

PxCTRL_TxA_xHome2

Send(C,x0)

TxCTRL_RetInit

c1==1

PxCTRL_Init

TxCTRL_Start

PcCTRL_Init
cp=0

TcCTRL_Start
st==1

TcCTRL_cCYL_End
c1==1

Figure 13: Case Study II — Global (a), and local (b),(c) CIPN controller models of the industrial manipulator from Fig. 12.

into an SRN-compatible representation that natively supports sto-

chastic modeling of communication channels and system faults. We

have shown how analysis/verification of the distributed automa-

tion system can be performed with probabilistic guarantees within

the SRN paradigm. In addition, we have revised existing strategies

for automatic synthesis of distributed control code based on re-

sults obtained from SRN models. To support dynamic deployment

environments of IIoT-based automation systems, we have proven

feasibility of an edge-based monitoring system that re-checks at

runtime relevant system properties against models that are con-

tinuously updated from acquired real-time process and network

channel measurements. We have evaluated our approach on real-

world case-studies including industrial manipulators. As avenue

for future work, we will explore inclusion of true non-determinism

within the controller and channel models, which would allow us to

capture adversarial affects on distributed automation systems.

ACKNOWLEDGMENTS
Thiswork is sponsored in part by theONRunder agreements N00014-

17-1-2012 and N00014-17-1-2504, as well as the NSF CNS-1652544

grant. It was also partially supported by the Serbian Ministry of

Education, Science and Technology research grant TR35004.

REFERENCES
[1] Peter Adolphs, Heinz Bedenbender, D Dirzus, M Ehlich, U Epple, M Hankel, R

Heidel, M Hoffmeister, H Huhle, B Kärcher, et al. 2015. Reference architecture

model industrie 4.0 (rami4. 0). ZVEI and VDI, Status Report (2015).
[2] Giacomo Bucci, Laura Carnevali, Lorenzo Ridi, and Enrico Vicario. 2010. Oris: a

tool for modeling, verification and evaluation of real-time systems. International
Journal on Software Tools for Technology Transfer 12, 5 (01 Sep 2010), 391–403.

[3] Franck Cassez and Olivier H. Roux. 2006. Structural translation from Time Petri

Nets to Timed Automata. J. of Systems and Software 79, 10 (2006), 1456 – 1468.

[4] Gianfranco Ciardo, Jogesh K Muppala, and Kishor S Trivedi. 1992. Analyzing

concurrent and fault-tolerant software using stochastic reward nets. J. Parallel
and Distrib. Comput. 15, 3 (1992), 255–269.

[5] R. David and H. Alla. 2010. Discrete, continuous, and hybrid petri nets (2nd edition).
[6] Michel Diaz. 1982. Modeling and analysis of communication and cooperation

protocols using Petri net based models. Computer Networks 6, 6 (1982), 419 – 441.

[7] S. Donatelli. 1993. Superposed stochastic automata: a class of stochastic Petri

nets with parallel solution and distributed state space. Performance Evaluation
18, 1 (1993), 21 – 36.

[8] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schönsleben, M. Tseng, and

A. Bernard. 2013. Product variety management. {CIRP} Annals - Manufacturing
Technology 62, 2 (2013), 629 – 652. https://doi.org/10.1016/j.cirp.2013.05.007

[9] P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandao, and M.S. Rocha. 2018.

Delay Estimation of Industrial IoT Applications Based on Messaging Protocols.

IEEE Transactions on Instrumentation and Measurement 67, 9 (2018), 2188–2199.
[10] Y. He, J. Guo, and X. Zheng. 2018. From Surveillance to Digital Twin: Challenges

and Recent Advances of Signal Processing for Industrial Internet of Things. IEEE
Signal Processing Magazine 35, 5 (2018), 120–129.

[11] Christophe Hirel, Bruno Tuffin, and Kishor S. Trivedi. 2000. SPNP: Stochastic

Petri Nets. Version 6.0. In Computer Performance Evaluation.Modelling Techniques
and Tools. Springer Berlin Heidelberg, 354–357.

[12] Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic. 2018. Distributing Sequential

Control for Manufacturing Automation Systems. IEEE Transactions on Control
Systems and Technology (2018). submitted.

[13] Zivana Jakovljevic, Vidosav Majstorovic, Slavenko Stojadinovic, Srdjan Zivkovic,

Nemanja Gligorijevic, and Miroslav Pajic. 2017. Cyber-Physical Manufacturing

Systems (CPMS). In Proceedings of 5th International Conference on Advanced
Manufacturing Engineering and Technologies. Springer International, 199–214.

[14] R Jayaparvathy, S Anand, S Dharmaraja, and S Srikanth. 2007. Performance

analysis of IEEE 802.11 DCF with stochastic reward nets. International Journal of
Communication Systems 20, 3 (2007), 273–296.

[15] Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang Wahlster.

2013. Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Forschungsunion.

[16] Y. Koren, X. Gu, and W. Guo. 2018. Reconfigurable manufacturing systems:

Principles, design, and future trends. Frontiers of Mechanical Engineering 13, 2

(2018), 121–136. https://doi.org/10.1007/s11465-018-0483-0

[17] V. Lesi, Z. Jakovljevic, andM. Pajic. 2016. Towards Plug-n-Play Numerical Control

for Reconfigurable Manufacturing Systems. In 21st IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). 1–8.

[18] Yue Ma, James J Han, and Kishor S Trivedi. 2001. Composite performance and

availability analysis of wireless communication networks. IEEE Transactions on
Vehicular Technology 50, 5 (2001), 1216–1223.

[19] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. Transmission of IPv6
packets over IEEE 802.15.4 networks (No. RFC 4944). Technical Report.

[20] T. Murata. 1989. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 77,

4 (1989), 541–580.

[21] Srinivasan Ramani, Kishor S Trivedi, and Balakrishnan Dasarathy. 2000. Perfor-

mance analysis of the CORBA event service using stochastic reward nets. In Proc.
of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS). 238–247.

[22] Kishor S Trivedi and Andrea Bobbio. 2017. Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge University Press.

105

https://doi.org/10.1016/j.cirp.2013.05.007
https://doi.org/10.1007/s11465-018-0483-0

	Abstract
	1 Introduction
	2 State-Of-the-Art Automation Distribution and its Limitations
	3 Networking-Aware Modeling for Distributed Sequential Control
	3.1 Modeling Physical Components
	3.2 Modeling Network-Controller Interaction

	4 System Analysis and Verification
	4.1 Specifying System Properties
	4.2 SRN-based System Analysis

	5 Industrial Case Studies
	5.1 Case Study I: 3-DOF Industrial Manipulator
	5.2 Case Study II: Industrial Manipulator with Parallel Processes

	6 Conclusion
	Acknowledgments
	References

