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Nowadays, a wide class of problems can be solved by using the classical newsboy model. However, in problems where uncertainty
of events and randomness are omnipresent, there is a necessity to adapt the existing solutions and/or find new extensions that will
properly answer all requirements. This paper considers a multistage assembly system where interrelated assembly operations with
independent stochastic operation times should be planned in an optimal way. Delivery of items in a requested time implies that
either delay costs or holding costs appear. The goal is to find optimal safety times. We propose an approximate technique based on
successive application of the solution of simpler one-stage problem. The generalized mathematical model suggested is built up on
the relaxed hypothesis and can be used in multistage assembly networks. The existence and uniqueness of the solution are proven.
The preliminary tests are performed and our approximate technique is compared to exact results.

1. Introduction

The newsboy problem is well-known. Different variants and
extensions of the newsboy problem are used inmany applica-
tive scenarios (e.g., [1–9]). New requirements, imposed by
each specific applicative scenario, introducemore complexity.
Therefore, there is a necessity of extended and refined meth-
ods in treating of the newsboy problem. Basically, the solution
of the newsboy problem is known when it is considered on
a simple model. However, it is still an open issue in case of
complex models (e.g., if penalties are random values).

In maintenance systems, one of the main problems is
uncertainty of events that drastically affect the maintenance
efficiency and performance of the system. Typically, these
events are random and correlated with demanding time or
lead time for some reserve part, or time needed to prepare
some reserve part. It is often supposed that a lead time or
time needed to prepare some reserve part equals 0 (a reserve
part is directly available) or constant, which is a very rough
assumption. As many factors influence the above mentioned

time, it has a random deviation, which significantly affects
the system performance. The classical newsboy problem
should be adapted to the given scenario and therefore, the
appropriate mathematical models should be developed.

The following assumptions are used: (1) a multistage
assembly network is represented by a tree in the graph theory
[10], (2) planning of interrelated assembly operations with
independent stochastic operation times, and (3) delivery of
items in a requested time (taking into account that it cannot
be done until all end items are ready). As a consequence,
either delay costs appear (if the given delivery requirement
cannot be satisfied), or holding costs appear (if end items
are ready earlier than the requested delivery time).Therefore,
the goal is to find optimal safety times in order to minimize
the total expected costs. The considered problem includes
several stages, and therefore finding the exact solution is too
difficult. In such situations, the usual way of coping with the
problem is the application of a certain heuristic that is based
on successive applications of the solution of simpler one or
two-stage assembly network [11–13]. A hierarchical structure
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is approximated by a series of two-level structures. Under
certain assumptions, the two-stage problem can be solved as
the classical newsboy problem [14–16]. In [17], the authors
consider the problem of contract assembly with combined
supply lead time and demand quantity uncertainty and use
stochastic operation times as well as stochastic demand.
A more general class of stochastic assembly problems is
considered in [18]. In [12], the authors calculate lower and
upper limits for the decision variables and lower and upper
bounds for the objective function. In [13], the focus is
on dynamic, continuous-time generalization of the single-
period newsboy problem. They reduce a multilevel system
into a series of discrete newsboy problems and give an
appropriate algorithm.

Reference [19] solves the newsboy problem by consider-
ingmultiple discounts and formulates and solves the newsboy
problem by considering multiple upgrades as well as a mixed
newsboy problem characterized with multiple discounts and
upgrades. Reference [20] investigates a multiperiod produc-
tion planning problem for multiple products, where the
uncertain demand and the accumulated effort of market
investment on demand are considered. Reference [21] studies
a newsvendor model with discrete demand and shows that
the optimal ordering decision with discrete demand is very
different from that with continuous demand. Reference [22]
considers the inverse newsvendor problem as a variant of
the traditional newsvendor problem and provides an analysis
of the problem under the assumptions of normally and
exponentially distributed service times.

The research work presented in [11] inspired us and it
serves as our starting point. Namely, on the basis of the
mathematical model in [11], we made a generalization. So,
[11] is a special case of the presented model (see Section 3,
(3)). Our model is built up on the extended assumption that
the summed holding costs of individual stage components
are greater than or equal to holding costs of the assembled
component. The motivation for such a generalization came
from the practical use-case (already mentioned maintenance
systems). However, there are many similar real-life scenarios
(e.g., holding costs of a completely assembled computer that
waits to the installation are less than the sum of holding costs
of each individual component). Therefore, the introduced
relaxation in the starting assumption is important in order to
encompass and properly address the abovementioned class of
real-life use-cases.

In this paper, we suggest a generalized approach with
a random time assumed for the components in leafs (e.g.,
a delivery from some external source or a preparation for
installation). The approach is based on a methodology of
decomposition of the general problem into series of simple
ones.

The novelty and the main contribution of this paper can
be summarized as

(i) A new model for determining of critical times in one
stage assembly network is given.

(ii) A theoretical result given in Theorem 1 (Section 3) is
new: the existence and uniqueness of the solution in
a given model is proved.

(iii) A heuristic procedure described for the determina-
tion of the so-called starting times for all assem-
bly/production steps is new.

(iv) This generalized model can be used in multistage
assembly networks.

2. Problem Statement

In order to better clarify the problem itself, we separately
provide the assumptions and notations used in the following
text.

2.1. Notations. The following notations are used to establish
mathematical models:

td requested delivery time for end component
e positive holding cost for end component
b positive delay cost for end component
C cost function at final node
Z expected cost function at final node
i node corresponding to component i assembly oper-
ation
ti starting time for component i assembling operation
𝜏i starting time for component i assembling opera-
tion, relative to starting time for end component t0
Li stochastic assembling duration time for component
i
Fi cumulative distribution function for Li
f i density function for Li
Ti time of component i availability
ei positive holding cost for component i
𝑒𝑖 positive stage holding cost at node i
�̂�𝑖 positive stage delay cost at node i
Ci stage cost function at node i
Zi stage expected cost function at node i

2.2. Assumptions. Besides already mentioned initial assump-
tion (a multistage assembly network represented by a tree
in the graph theory, planning of interrelated assembly oper-
ations with independent stochastic operation times and
delivery of items in a requested time taking into account that
it cannot be done until all end items are ready), in accordance
with [11], the following ones are made:

Consider the end component 0.

(i) The delay costs can be expressed as b((t0 + L0)− td)
+,

where x+ =max (x, 0), b is a positive delay cost per
time unit, and td is a requested delivery time for end
component 0;

(ii) In case of several end components, the delay cost is
calculated as the maximum delay;
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Figure 1: The assembly network.

(iii) Delay costs associated with other nodes are not taken
in consideration, although they may affect the delay
at node 0.

Consider node k, and suppose that tk ≥ max (tl +Ll, tm +Lm,
tn +Ln), i.e., component k assembling, cannot start before
preceding stage components are not assembled.Holding costs
at node k are obtained until the next stage assembly operation
starts or the final delivery. The holding costs during the
operations are disregarded.

A graphical presentation of the considered assembly
network can be seen on Figure 1. It consists of the arcs, which
represent the assembling operations, and nodes. Node i is the
node where an assembling operation for component i starts,
whereas the assembling times Li are independent random
variables with continuous cumulative distributions Fi and
density f i, and ei is positive holding cost per time unit.

The goal is to find optimal safety times, i.e., to plan
assembling operations so that the total expected holding and
delay costs are minimized [11].

3. Two-Stage System

As previouslymentioned, the approach is based on amethod-
ology of decomposition of the general problem into series
of simple ones. An approximate solution is obtained by
successively applying the exact solution for a two-stage
system. Therefore, we first consider and analyze the system
presented in Figure 2.

Let 𝑡0 be the optimal starting time for assembly operation
at final node 0. Consider stage that precedes the assembly
operation at final node 0. The stage delay costs can be
expressed as �̂�(𝑇 − 𝑡0)+, where �̂� is a positive stage delay cost
per time unit, 𝑇 = max1≤𝑖≤𝑛{𝑇𝑖} and Ti = ti+Li. Two types
of holding costs are incurred. Individual holding costs for
component i are incurred until all stage assembly operations
are finished and can be expressed as ℎ𝑖 = 𝑒𝑖(𝑇 − 𝑇𝑖). Stage
holding costs are incurred after all stage assembly operations
are finished, and can be expressed as ℎ̂ = 𝑒(𝑡0 − 𝑇)+, where𝑒 is a positive stage holding cost per time unit. The costs
C=C(t1,t2,. . .,tn) can be expressed as: 𝐶 = 𝑒(𝑡0 − 𝑇)+ +∑𝑛𝑖=1 𝑒𝑖(𝑇 − 𝑇𝑖) + �̂�(𝑇 − 𝑡0)+. It is natural (if a delay in the
previous stage (with regard to found optimal time t0) exists,
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Figure 2:The two-stage system.

from linearity and additivity of the expectation, the expected
costs/delay will be transferred to the final stage.) to assume
that delay (𝑇 − 𝑡0)+ will produce the same delay in the next
(final) stage, i.e., corresponding costs should be equal �̂�(𝑇 −𝑡0)+ = 𝑏(𝑇 − 𝑡0)+ thus �̂� = 𝑏 and in the same way 𝑒 = 𝑒. The
cost function can be simplified as follows:

𝐶 = 𝑒 (𝑡0 − 𝑇)+ + 𝑛∑
𝑖=1

𝑒𝑖 (𝑇 − 𝑇𝑖) + 𝑏 (𝑇 − 𝑡0)+ (1)

Notice that the single-stage system (several end items) can be
easily obtained as a special case of the two-stage system with
final node assembly operation time 𝐿 ≡ 0 and 𝑒 = ∑𝑛𝑖=1 𝑒𝑖 (see
Figure 3).

Especially if n=1, 𝑇 = 𝑇1, we get the standard Newsboy
problem𝐶 = 𝑒1(𝑡𝑑−𝑇1)++𝑏(𝑇1−𝑡𝑑)+with the optimal solution
given by: 𝑡1 = 𝑡𝑑 − 𝐹−11 (𝑏/(𝑏 + 𝑒1)).

Consider the general case again. As x+=x+(-x)+, the cost
function can be expressed as

𝐶 = 𝑒 (𝑡0 − 𝑇) + 𝑛∑
𝑖=1

𝑒𝑖 ((𝑇 − 𝑡0) − (𝑇𝑖 − 𝑡0))
+ (𝑏 + 𝑒) (𝑇 − 𝑡0)+

= ( 𝑛∑
𝑖=1

𝑒𝑖 − 𝑒) (𝑇 − 𝑡0) + 𝑛∑
𝑖=1

𝑒𝑖 (𝑡0 − 𝑇𝑖)
+ (𝑏 + 𝑒) (𝑇 − 𝑡0)+

(2)

We assume the following: the summed holding costs per time
unit of first stage components are greater than or equal to the
holding cost per time unit of second stage component at final
node 0 (Figure 2), i.e., ∑𝑛𝑖=1 𝑒𝑖 ≥ 𝑒. For ∑𝑛𝑖=1 𝑒𝑖 = 𝑒 the cost
function is

𝐶 = 𝑛∑
𝑖=1

𝑒𝑖 (𝑡0 − 𝑇𝑖) + (𝑏 + 𝑛∑
𝑖=1

𝑒𝑖)(𝑇 − 𝑡0)+ (3)
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Figure 3: The single-stage system (several end items).

which is the model analysed in [11]. As 𝑇𝑖 = 𝑡𝑖 + 𝐿 𝑖, i.e., T�̂� = max𝑖{𝑇𝑖}, we get
𝐶 = ( 𝑛∑

𝑖=1

𝑒𝑖 − 𝑒)(max
𝑖
{𝑡𝑖 + 𝐿 𝑖 − 𝑡0})

+ 𝑛∑
𝑖=1

𝑒𝑖 (𝑡0 − 𝑡𝑖 − 𝐿 𝑖)
+ (𝑏 + 𝑒) (max

𝑖
{𝑡𝑖 + 𝐿 𝑖 − 𝑡0})+

(4)

If we denote 𝜏𝑖 = 𝑡0 − 𝑡𝑖, the cost function is

𝐶 = ( 𝑛∑
𝑖=1

𝑒𝑖 − 𝑒)max
𝑖
{𝐿 𝑖 − 𝜏𝑖} + 𝑛∑

𝑖=1

𝑒𝑖 (𝜏𝑖 − 𝐿 𝑖)
+ (𝑏 + 𝑒) (max

𝑖
{𝐿 𝑖 − 𝜏𝑖})+

(5)

The expected cost function 𝑍 = 𝐸(𝐶) = 𝑍(𝜏1, 𝜏2, . . . , 𝜏𝑛) is
𝑍 = ( 𝑛∑

𝑖=1

𝑒𝑖 − 𝑒)𝐸(max
𝑖
{𝐿 𝑖 − 𝜏𝑖})

+ 𝑛∑
𝑖=1

𝑒𝑖 (𝜏𝑖 − 𝐸 (𝐿 𝑖))
+ (𝑏 + 𝑒) 𝐸((max

𝑖
{𝐿 𝑖 − 𝜏𝑖})+)

(6)

It can be concluded that the expected cost function Z has a
unique minimum in a finite point.

Theorem 1. The expected cost function Z given by (6) has a
unique minimum in finite point (𝜏∗1 , 𝜏∗2 , . . . , 𝜏∗𝑛 ).

Proof. First, we show that the expected cost function Z given
by (6) is a convex function with arguments 𝜏1, 𝜏2, . . . , 𝜏𝑛. The
second part

𝑛∑
𝑖=1

𝑒𝑖 (𝜏𝑖 − 𝐸 (𝐿 𝑖)) (7)

is a linear function and thus a convex function, whereas the
convexity of the first part and the third part, respectively,

( 𝑛∑
𝑖=1

𝑒𝑖 − 𝑒)𝐸(max
𝑖
{𝐿 𝑖 − 𝜏𝑖})

(𝑏 + 𝑒) 𝐸((max
𝑖
{𝐿 𝑖 − 𝜏𝑖})+)

(8)

follows from monotonicity and linearity of expectation and
convexity of a maximum of convex functions. That means
that the expected cost function Z is a convex function as the
sumof convex functions. On the other side, as lim‖𝑡‖→+∞𝐶 =+∞ (see (1)) frommonotonicity of expectation it follows that
lim‖𝜏‖→+∞𝑍 = lim‖𝑡‖→+∞𝐸(C) = +∞.

Properties of the expected cost function Z listed above
provide the existence of a unique minimum in finite point(𝜏∗1 , 𝜏∗2 , . . . , 𝜏∗𝑛 ).

It can be concluded that the exact solution is found in
the two-stage system taking into account the introduced
assumption.

3.1. Optimal Starting Times Determination. Let 𝐷 =
max𝑖{𝐿 𝑖 − 𝜏𝑖}, as 𝐷 = 𝐷+ − 𝐷−, where x- =max (-x, 0)=(-
x)+, the expected cost function is: 𝑍 = (𝑒 − ∑𝑛𝑖=1 𝑒𝑖)𝐸(𝐷−) +∑𝑛𝑖=1 𝑒𝑖(𝜏𝑖 − 𝐸(𝐿 𝑖)) + (𝑏 + ∑𝑛𝑖=1 𝑒𝑖)𝐸(𝐷+). For estimation
of optimal starting times, it is necessary to determine the
expectation of non-negative random variables D+ and D-. As
cumulative distribution functions are 𝐹𝐷+(𝑡) = 𝑃(𝐷+ < 𝑡) =∏𝑖𝐹𝑖(𝜏𝑖 + 𝑡) and 𝐹𝐷−(𝑡) = 𝑃(𝐷− < 𝑡) = 1 − ∏𝑖𝐹𝑖(𝜏𝑖 − 𝑡),
corresponding expectations are:

𝐸 (𝐷+) = ∫+∞
0

(1 −∏
𝑖

𝐹𝑖 (𝜏𝑖 + 𝑡)) d𝑡,
𝐸 (𝐷−) = ∫+∞

0
∏
𝑖

𝐹𝑖 (𝜏𝑖 − 𝑡) d𝑡
(9)

thus the expected cost function is:

𝑍 = (𝑒 − 𝑛∑
𝑖=1

𝑒𝑖)∫+∞
0

∏
𝑖

𝐹𝑖 (𝜏𝑖 − 𝑡) d𝑡
+ 𝑛∑
𝑖=1

𝑒𝑖 (𝜏𝑖 − 𝐸 (𝐿 𝑖))
+ (𝑏 + 𝑛∑

𝑖=1

𝑒𝑖)∫+∞
0

(1 −∏
𝑖

𝐹𝑖 (𝜏𝑖 + 𝑡))d𝑡
(10)



Mathematical Problems in Engineering 5

1

0

m

i

i1

i2

ij

in

(，Ｃ)1,(？Ｃ)1
(，Ｃ)2,(？Ｄ)2

(，Ｃ)Ｄ,(？Ｃ)Ｄ

(，Ｃ)Ｈ ,(？j)Ｈ

L,e,b,？=e,＜=b

(ＮＣ)Ｄ (ＮＣ)2 ＮＣ Ｎ0 Ｎ＞

，Ｃ,？Ｃ

t
(ＮＣ)Ｈ (ＮＣ)1

Figure 4: A two-stage system as a part of the multistage system.

The stationary point of function Z is the solution of the
following system of equations:

𝜕𝑍𝜕𝜏𝑖
= (𝑒 − 𝑛∑

𝑖=1

𝑒𝑖) 𝜕𝜕𝜏𝑖 (∫
+∞

0
∏
𝑖

𝐹𝑖 (𝜏𝑖 − 𝑡) d𝑡) + 𝑒𝑖
+ (𝑏 + 𝑛∑

𝑖=1

𝑒𝑖) 𝜕𝜕𝜏𝑖 (∫
+∞

0
(1 −∏

𝑖

𝐹𝑖 (𝜏𝑖 + 𝑡))d𝑡)
= 0, 𝑖 = 1, 2, .., 𝑛

(11)

Finally, the stationary point is the solution of the following
system of nonlinear equations:

𝑒𝑖 = (−𝑒 + 𝑛∑
𝑖

𝑒𝑖)(∫+∞
0

𝑓𝑖 (𝜏𝑖 − 𝑡)∏
𝑗 ̸=𝑖

𝐹𝑗 (𝜏𝑗 − 𝑡) d𝑡)

+ (𝑏 + 𝑛∑
𝑖=1

𝑒𝑖)

⋅ (∫+∞
0

𝑓𝑖 (𝑡 + 𝜏𝑖)∏
𝑗 ̸=𝑖

𝐹𝑗 (𝑡 + 𝜏𝑗) d𝑡) ,
𝑖 = 1, 2, .., 𝑛

(12)

The obtained system of equations can be solved by numerical
integration. Let us suppose that (𝜏∗1 , 𝜏∗2 , . . . , 𝜏∗𝑛 ) is the solution
of the above system. The optimal starting times 𝑡∗𝑖 = 𝑡0 − 𝜏∗𝑖
for the two-stage system can be determined accordingly.

3.2. An Extension to Multistage System. Let us consider the
two-stage system with root in node i that is a part of the

multistage system (Figure 4). The cost function for the stage
that precedes the assembly operation at node i is (see (2))

𝐶𝑖 = (∑
𝑗

(𝑒𝑖)𝑗 − 𝑒𝑖)(𝑇𝑖 − 𝑡𝑖) +∑
𝑗

(𝑒𝑖)𝑗 (𝑡𝑖 − (𝑇𝑖)𝑗)
+ (�̂�𝑖 + 𝑒𝑖) (𝑇𝑖 − 𝑡𝑖)+

(13)

where (Ti)j=(ti)j+(Li)j is the availability of component (i)j,𝑇𝑖 = max𝑗{(𝑇𝑖)𝑗} and �̂�𝑖,𝑒𝑖 the corresponding stage delay and
stage holding costs. It is necessary to estimate stage delay costs�̂�𝑖, i.e., stage holding costs 𝑒𝑖. As mentioned in the problem
formulation, delays at other nodesmay affect the delay at final
node 0.

One possible methodology could be to distribute delay
costs at final node 0 down the assembly tree.

Assume that the assembly operation at node i starts with
delay Δ𝑡𝑖. A change of delay costs Δ 𝑖𝐵 at final node 0 is

Δ 𝑖𝐵 = Δ𝑡𝑖{{{
�̂�; 𝑇𝑖 = 𝑇
0; 𝑇𝑖 < 𝑇 (14)

So, the expectation of random variable Δ 𝑖𝐵/Δ𝑡𝑖 can be taken
as stage delay costs �̂�𝑖 at node i:
�̂�𝑖 = 𝐸(Δ 𝑖𝐵Δ𝑡𝑖 ) = �̂�𝑃 (𝑇𝑖 = 𝑇) = �̂�𝑃(𝑇𝑖 = max {𝑇𝑗}

𝑗

)

= �̂�(∏
𝑗 ̸=𝑖

𝐹𝐿𝑗−𝐿 𝑖 (𝑡∗𝑖 − 𝑡∗𝑗 ))
(15)

where 𝐹𝐿𝑗−𝐿 𝑖 is the distribution function of random variable𝐿𝑗 − 𝐿 𝑖. On the other side, if stage assembly operations are
finished before requested time, that will affect holding costs
at final node 0.
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Assume that the assembly operation at node i started in
some previousmoment 𝑡𝑖−Δ𝑡𝑖. A change of holding costsΔ 𝑖𝐸
at final node 0, is

Δ 𝑖𝐸 = Δ𝑡𝑖{{{
𝑒 −∑
𝑗 ̸=𝑖

𝑒𝑗; 𝑇𝑖 = 𝑇
𝑒𝑖; 𝑇𝑖 < 𝑇 (16)

The expectation of random variable Δ 𝑖𝐸/Δ𝑡𝑖 can be taken as
stage holding costs 𝑒𝑖 at node i:

𝑒𝑖 = 𝐸(Δ 𝑖𝐸Δ𝑡𝑖 )
= (𝑒 −∑

𝑗 ̸=𝑖

𝑒𝑗)𝑃(𝑇𝑖 = 𝑇) + 𝑒𝑖𝑃 (𝑇𝑖 < 𝑇)

= (𝑒 −∑
𝑗

𝑒𝑗)𝑃(𝑇𝑖 = 𝑇) + 𝑒𝑖
= (𝑒 −∑

𝑗

𝑒𝑗)(∏
𝑗 ̸=𝑖

𝐹𝐿𝑗−𝐿 𝑖 (𝑡∗𝑖 − 𝑡∗𝑗 )) + 𝑒𝑖

(17)

The cost functionCi at stage that precedes assembly operation
at node i is completely defined:

𝐶𝑖 = (∑
𝑗

(𝑒𝑖)𝑗 − 𝑒𝑖)(𝑇𝑖 − 𝑡𝑖) +∑
𝑗

(𝑒𝑖)𝑗 (𝑡𝑖 − (𝑇𝑖)𝑗)
+ (�̂�𝑖 + 𝑒𝑖) (𝑇𝑖 − 𝑡𝑖)+

(18)

and the expected cost function 𝑍𝑖 = 𝐸(𝐶𝑖) is as follows:
𝑍𝑖 = (∑

𝑗

(𝑒𝑖)𝑗 − 𝑒𝑖)𝐸(𝑇𝑖 − 𝑡𝑖)
+∑
𝑗

(𝑒𝑖)𝑗 (𝑡𝑖 − 𝐸 ((𝑇𝑖)𝑗))
+ (�̂�𝑖 + 𝑒𝑖) 𝐸 ((𝑇𝑖 − 𝑡𝑖)+)

(19)

In order to provide the convergence of the above process,
it is necessary to show that 𝑍𝑖 is a convex function; i.e., it
is enough to prove ∑𝑗(𝑒𝑖)𝑗 ≥ 𝑒𝑖. This condition is valid as
it follows directly from the general hypothesis: the summed
holding costs per time unit of stage components are greater
than or equal to the holding cost per time unit of stage
component that follows (Figure 4), i.e.,∑𝑗(𝑒𝑖)𝑗 ≥ 𝑒𝑖:

𝑒𝑖 = (𝑒 −∑
𝑘

𝑒𝑘)𝑃(𝑇𝑖 = 𝑇) + 𝑒𝑖
= (𝑒 −∑

𝑘

𝑒𝑘)𝑃(𝑇𝑖 = 𝑇) + 𝑒𝑖 ≤ 𝑒𝑖 ≤ ∑
𝑗

(𝑒𝑖)𝑗
(20)

In thisway, the problem solution of safety time estimation can
be extended to the multistage assembly network.
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Figure 5: An assembly network 1 for the considered problem set.
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Figure 6: An assembly network 2 for the considered problem set.

At the end of this section, we provide a brief sum-up of
the proposed procedure.

After finding optimal times in the two-stage tree and a
root in final node 0 (12), the summed holding costs and delay
costs from final node 0 are being distributed to nodes of
the previous stage by using the described procedure ((15),
(17)). With each distribution tom nodes of the previous stage
(Figure 4), the starting problem is being decomposed into m
problems of the lower orders, which are further solved in the
same way.

4. Some Numerical Results and Discussion

We used two sets of sample problems in order to evaluate the
suggested approximate procedure.

4.1. Problem Sets. The following problem set is used to
evaluate the suggested approximate procedure. The three-
stage networks are considered in Figures 5 and 6. As it can
be seen from the pictures, the problem set 1 is decomposed
into two 2-stage problems, whereas the problem set 2 is more
complex and decomposed into three 2-stage problems.

Weuse the following parameters for a numerical example.
Holding costs ei at every node are constant and equal to 1,
whereas delay costs b at final node 0 belong to {5, 25, 50}.
For assembly operations time exponential distribution 𝑋 :
E(1), i.e., normal distribution 𝑌 : N(0, 1)is used. Fur-
ther, we assume that distributions of operation times are:
L0=L1=L3=X, L2= L5=Y

2, L4=2X, L6=2Y
2 with expected
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Table 1: Results for the example in Figure 5.

a b t2 t3 t4 Z %(1) 0.00 5 -5.6817 -8.9957 -9.8808 8.6353
-4.4636 -8.1565 -9.0760 8.8418 2.34(2) 0.00 25 -9.5108 -13.8605 -14.8619 13.6123
-8.1273 -15.1227 -16.0435 14.0289 2.97(3) 0.00 50 -11.3712 -16.1748 -17.2351 16.0047
-9.8716 -18.2755 -19.1849 16.7053 4.19(4) 0.50 5 -3.9700 -6.0422 -6.9813 4.3201
-3.2318 -5.5694 -6.5320 4.4202 2.26(5) 0.50 25 -5.7672 -8.5509 -9.5439 6.8207
-5.0636 -9.0402 -10.0066 7.0165 2.79(6) 0.50 50 -7.0828 -9.6849 -10.7116 8.0456
-5.9340 -10.5754 -11.5333 8.3495 3.64(7) 0.80 5 -2.8292 -4.1775 -5.1954 1.7158
-2.4927 -4.0226 -5.0093 1.7447 1.66(8) 0.80 25 -3.5906 -5.2513 -6.2422 2.7094
-3.2255 -5.3903 -6.3844 2.7699 2.18(9) 0.80 50 -3.8246 -5.7494 -6.7340 3.2010
-3.5743 -6.0797 -7.0557 3.3351 4.02

Table 2: Results for the example in Figure 6.

a b t3 t4 t5 t6 Z %(1) 0.00 5 -10.8038 -11.5284 -10.7891 -11.3452 11.2195
-11.3934 -11.3820 -10.8962 -11.7067 11.8147 3.51(2) 0.00 25 -17.0659 -17.8230 -17.2410 -17.8448 17.7063
-16.3767 -18.5712 -16.7905 -17.9286 18.4801 4.19(3) 0.00 50 -20.2048 -20.9545 -20.4889 -21.1705 20.7971
-18.5125 -19.3732 -16.5802 -18.6037 22.3192 6.82(4) 0.50 5 -6.8610 -7.7265 -6.8320 -7.6252 8.0147
-6.1766 -7.1368 -5.9168 -7.0536 8.2506 2.86(5) 0.50 25 -9.9837 -10.8667 -10.0536 -10.8490 20.8745
-9.0003 -9.9779 -8.2540 -9.3247 21.6670 3.66(6) 0.50 50 -11.4793 -12.3481 -11.5799 -12.4326 34.4485
-11.7443 -11.8789 -9.6807 -11.8666 36.3321 5.18(7) 0.80 5 -4.5742 -5.5234 -4.5465 -5.4594 3.6143
-4.4311 -5.4151 -4.2227 -5.1586 3.7029 2.39(8) 0.80 25 -5.7823 -6.7320 -5.7992 -6.7488 10.3934
-5.4264 -6.4102 -5.1177 -6.1380 10.7023 2.89(9) 0.80 50 -6.3553 -7.3029 -6.3896 -7.3216 17.8629
-5.8198 -7.0863 -5.4804 -6.4555 18.6259 4.10

operation time equal 1. Dispersion of given distributions is
parameterized in the following way. Instead of distribution
L, a + (1-a)⋅L, a∈ {0, 0.5, 0.8} is taken, this way, the expected
operation time remains 1, but dispersion will be changed.The
goal is to determine optimal starting times t2, t3, t4 when a
certain assembly operations should be activated in order to
minimize the total expected costs. Assume that the requested
delivery time is td= 0.

4.2. Parameter Sensitivity and Comparison Analysis. Tables 1
and 2, respectively, show obtained results for 9 test examples.

Table 1 presents the results for the example in Figure 5,
whereas Table 2 presents the results for the example in
Figure 6. For every test example, there are two subrows. The
first subrow contains the values of parameters a and b and
the exact solutions for optimal starting times t2, t3, t4, i.e.
t3, t4, t5, and t6 in which minimum of the total expected
costs is reached. The exact solutions are obtained in MatLab.
The second subrow contains solutions obtained by using the
proposed approximation and the value of the total expected
costs, i.e., deviation ofminimal total expected costs expressed
in percentage.



8 Mathematical Problems in Engineering

Table 3: Problem set 2 results from Axäter [11].

Optimum by simulation Approximate policy
ts1 ts2 tm Costs ts1 ts2 tm Costs
-4.3 -3.1 -2.3 3.68 -4.20 -3.20 -2.26 3.94
-5.0 -3.5 -2.5 6.46 -4.57 -3.53 -2.53 6.86
-5.3 -3.6 -2.7 7.82 -4.76 -3.70 -2.68 8.69
-4.6 -3.2 -2.6 9.18 -4.49 -3.49 -2.66 9.86
-5.8 -3.9 -3.4 16.16 -5.42 -4.32 -3.33 17.57
-7.1 -4.4 -3.8 19.12 -5.90 -4.75 -3.70 22.29
-5.2 -3.3 -3.3 17.89 -4.98 -3.99 -3.31 20.04
-8.3 -4.7 -4.6 31.85 -6.84 -5.64 -4.67 34.41
-9.9 -5.5 -5.4 38.79 -7.80 -6.49 -5.41 43.69

The column “%” in Tables 1 and 2 presents a relative error
between expected costs of the exact solution and expected
costs of the solution obtained by using the proposed heuristic.
For fixed value of parameter b and with an increased value of
parameter a, a relative error decreases. From Table 1, it can be
seen that the suggested model treats changes in the assembly
system in an adequate way: the smaller dispersion (i.e., the
bigger value of parameter a), the less deviation from the exact
solution. From the other side, the deviation increases with
a disproportion of costs, h and b (h is always equal to 1,
b takes values 5, 25, 50). In Table 2, the slightly increased
value of error in some cases of the problem set 2 compared
to the problem set 1 can be influenced by ∗) the increased
complexity of the considered problem and ∗) the existence of
more critical paths L6L2L0, L4L1L0 (as the time distributions
L6 and L4 are doubled).

Comparing our results with results of the problem set 2
from Axsater [11] (which is more realistic than the problem
set 1), the following could be noticed:

(i) regarding deviation of the assembly operation dura-
tion both techniques show similar behavior, i.e., a
greater deviation of assembly operations durations
(smaller value of the parameter a) produce a greater
relative error;

(ii) in our case, the moments of initiating certain oper-
ations on the nodes (i)j preceding the operation
corresponding to node i aremainly estimated in same
way—either all starting times are overestimated or all
of them are underestimated (see Tables 1 and 2), i.e.,

t3opt < t3approx ,
t4opt < t4approx ,

Table 1. rows (1) , (4) , (7)
t3opt > t3approx ,
t4opt > t4approx ,

Table 1. rows (2) , (3) , (5) , (6) , (8) , (9)
t5opt < t5approx ,
t6opt < t6approx ,

Table 2. rows (3) , (4) , (5) , (6) , (7) , (8) , (9)

t5opt > t5approx ,
t6opt > t6approx ,

Table 2. row (1)
(21)

This is expected since our proposed heuristic consists
of series of consecutive goals and each goal represents an
“overall” optimization of starting times corresponding to
nodes (𝑖)j so that an assembly operation at node 𝑖 that follows
could be started at presumed time 𝑡

𝑖
.

This is not the case for Axsater [11] procedure, i.e., ts1opt <
ts1approx and ts2opt > ts2approx (Table 3).

So, we obtained an improvement of the results presented
in [11]. The obtained results are promising: (1) the values of
deviation are relatively small, and (2) the time improvement
becomes significant with the increase of levels; i.e., the greater
number of level is introduced in the problem, and the better
improvement in results is visible. One of the motivations for
the study was also to consider problems with more complex
assembly graphs. In a more complex model, it could be
noticed a confirmation in the effectiveness of the used heuris-
tic, i.e., a confirmation of the promising results obtained in
the simpler model. A comparison of our suggested heuristic
with exact solutions on even more complex graphs is not
presented as large and complex instances are difficult to be
optimally solved by using exact methods [11].

As already mentioned, [11] elaborated that the considered
problem with several stages is, in general, too difficult to be
solved exactly. So, the important research question that we
considered is to construct a heuristic that should be improved
by means of two issues: (1) the quality of approximation and(2) a generalization, so that it can “cover” different practical
use-cases, which was originally our motivation to start with.
In the presented numerical results, we estimated its quality of
approximation. The benefit of using the suggested heuristics
is the possibility to solve the starting problem for an assembly
network with arbitrary many stages.

4.3. Statistical Analysis. In order to draw the conclusion with
statistical confidence, i.e., to establish whether the perfor-
mance on the two selected problem sets differs with statistical
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significance, the ANOVA test is performed. The comparative
analysis showed that, for fixed value of parameter b and with
an increased value of parameter a, a relative error decreases.
Now, we take another point of view in which we would like to
analyze the following:

(i) Is the average value of the relative error (“%”) signifi-
cant, for different, variable values of parameters a and
b?

(ii) As a consequence of the previous point, what couldwe
expect about the relative error (“%”) without regard to
specific values of a and b, if problem set changes?

The analysis is set up as follows:

(1) Statement of heuristic performance hypothesis: For
the two problem sets, the relative error “%” distribu-
tion is compared using the null-hypothesis as

H0: There is no difference in the mean “%”
between the two problem sets.
H1: There is a difference in mean “%” between
the two problem sets.

(2) Significance level: The test is performed at a signifi-
cance level of 𝛼 = 0.05.

(3) Interpretation of results: If the p-value from the
ANOVA-test is less than 0.05, the results are referred
to as significantly different and the null-hypothesis,
H0, is rejected at the defined significance level. If the
p-value is greater than 0.05, then the null-hypothesis
is not rejected.

According to the obtained data from Tables 1 and 2, the p-
value is 0,3291, which supports the null-hypothesis.

5. Conclusion

New or changed requirements in maintenance systems
increase overall complexity and impose the necessity of
finding the solution of appropriate complex models. In such
a case, the solution can be found only by using some
approximate techniques. This paper considers a multistage
assembly system in which the goal is to find optimal starting
assembly times taking into account randomness of various
events. We proposed one approximation of the multilevel
hierarchical structure in the assembly procedure by a series of
two-stage structures. A new model for determining optimal
starting times in two-stage assembly network is given. The
existence and uniqueness of the solution in a given model
is proven. Further, this generalized model can be used in
arbitrary-level assembly systems.

Future work will consider finding the problem solution
of safety time estimation in the two-stage assembly network
with further relaxation of the introduced assumption (e.g.,
through an appropriate parameterization, e.g., holding costs
and delay costs could be also time functions, random vari-
ables).
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