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A Hybrid Genetic Optimization Method for Accurate Target 
Localization 
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This paper considers the problem of estimating the position of a target based on the time of arrival (TOA) measurements from 
a set of receivers whose positions are known. The weighted least square (WLS) technique is applied as an efficient existing 
approach. The optimization problem is formulated by the minimization of the sum of squared residuals between estimated 
and measured data as the objective function.  The hybrid Genetic Algorithm-Nelder-Mead (GA-NM) method is proposed that 
combines the global search and local search abilities in an effective way in order to improve the performance and the solution 
accuracy. The corresponding Cramer-Rao lower bound (CRLB) on the localization errors is derived as a benchmark. 
Simulation results show that the proposed hybrid GA-NM method achieves a significant performance improvement 
compared to existing methods 

Key words: receiver, localization, optimization, genetic algorithm, hybrid method. 

 

                                                           
1)  University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11020 Belgrade 35, SERBIA 
2)  University of Belgrade, School of Electrical Engineering, Bulevar kralja Aleksandra 73, 11000 Belgrade, SERBIA 
    Correspondence to: Maja Rosić; e-mail: mrosic@mas.bg.ac.rs 

Introduction 
HE problem of finding the unknown location of a target 
based on TOA measurements from a set of receivers 

whose positions are known is a fundamental problem in many 
applications such as  military target tracking, environmental 
monitoring, telecommunications, security systems and many 
others [1-2]. 

The localization algorithms use various techniques such as 
TOA, time difference of arrival (TDOA), received signal 
strength (RSS), or angle of arrival (AOA). The focus of the 
present paper is a target localization problem based on the 
TOA measurements due to its simplicity and efficiency. 

The target location can be estimated based on the least 
squares (LS) and the maximum likelihood (ML) estimation 
techniques, as powerful methods which can be employed 
successfully in practical applications. Hence, the localization 
problem can be formulated as an optimization problem known 
as least squares that minimizes the sum of squared errors 
between the estimated and the measured distances. 

In general, the LS problems can be divided into two 
categories: linear least squares (LLS) and nonlinear least 
squares (NLS).  In this work, the NLS is applied to solve 
target localization problem based on the noisy TOA 
measurements. However, the objective function of the NLS 
estimation for the considered localization problem is a highly 
nonlinear and multimodal. Thus, obtaining the global optimal 
solution of NLS problem with classical optimization methods 
is a difficult task, as the convergence of these algorithms 
heavily depends on the selection of initial points and may not 
always converge to the global optimal solution. In order to 
overcome these difficulties and to provide highly accurate 
optimal solution, a new hybrid optimization procedure, which 
combines the Genetic Algorithm (GA) with a local direct 
search Nelder-Mead (NM) method is presented in this paper, 

due to their robustness and efficiency. The proposed hybrid 
GA-NM method is divided in two phases in the process of 
finding the optimal solution. During the first phase, the GA 
explores the search space in order to find promising regions in 
which the global optimal solution may lie and provide good 
initial solution for local direct search method. In the second 
phase, the solution from the first phase is used as a starting 
point for the local direct search NM method, which is able to 
simultaneously improve the solution quality and convergence 
speed of the algorithm. 

The WLS technique is presented in this paper to estimate 
the target location due to its computational efficiency and 
closed-form solution [3]. This technique linearizes the 
nonlinear TOA measurement equations by introducing an 
additional variable in order to minimize the weighted sum of 
squared residual errors. 

To compare the localization accuracy, the corresponding 
CRLB is derived, which provides a lower bound on the 
variance of any unbiased estimator [4]. 

The paper is organized as follows. The target localization 
problem based on the noisy TOA measurements from a set of 
receivers whose positions are known is reviewed in Section 2. 
Section 3 describes target localization problem which is 
modelled as a least squares estimation problem with NLS and 
WLS approaches. In Section 4, the hybrid GA-NM method is 
presented. The CRLB is given in Section 5. Section 6 gives 
the simulation results of the proposed hybrid GA-NM method 
against the WLS and the GA approaches. Finally, conclusions 
are drawn in Section 7.  

Problem formulation 
In this section, the two-dimensional (2-D) target 

localization model using noisy TOA measurements under the 

T 
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line-of-sight (LOS) environment is presented. In order to 
estimate the true location of the unknown target [ ], ,Tx y=x  
at least three receivers, 3,N ≥  have to be placed on the 

known positions [ ], ,x T
l l lx y=  { }1,2,..., ,l N∀ ∈ where 

[ ]T⋅ denotes matrix transpose, as shown in Fig.1. 

 
Figure 1. Illustration of the geometrical model based on the noisy TOA 
measurements 

In the absence of measurement errors, the true coordinates 
of the target location at point [ ], Tx y=x are obtained at the 

intersection of  set circles, with radii { }ld  and centres 

[ ], ,x T
l l lx y= { }1,2,..., ,l N∀ ∈  created around each receiver, 

as depicted in Fig.1. 
It is assumed that the distance measurement errors { }ln  are 

independent Gaussian random variables with zero mean and 
known variance 2

lσ , i.e., ( )20, lσN . In the presence of the 
measurement errors, three or more than three circles do not 
intersect at the same point, and they form the region inside of 
which the estimated target location can be found. Then, the 
distances { } ,lr  between the target x  and each receiver lx , 

based on the noisy TOA measurements { }lt , are expressed as 
follows: 

 

( ) ( ) { }2 2 , 1,2,...,

l l

l l

l l l

r c t
d n

x x y y n l N

= ⋅
= +

= − + − + ∀ ∈

 (1) 

where c  is the propagation speed and ld  is distance between 
the true target location and lth receiver.  

Thus, the Eq. (1) can be written in a vector form as:  

 ( ) ,= +r d x n  (2) 

where ( ) [ ]1,...,d x = T
Nd d  is the vector of true distances and 

[ ]1,..., T
Nn nn =  is a measurement noise vector.  

Least squares methods 
In this section, LS methods for a target localization based 

on the noisy TOA measurements are presented. This method 
is based on the minimization of the NLS objective function 

( ) ,NLSJ x  which is defined as the sum of squared residuals 
between the estimated and the measured TOA values, i.e.: 

 ( ) ( )
2 2

2

R R 1

min min ,
N

NLS l
l

J R
∈ ∈ =

= ∑x x
x x  (3) 

where residual ( )xlR is given by: 

 ( ) ( ) ( )2 2 .l l l lR r x x y y= − − + −x  (4) 

Therefore, the problem defined in Eq. (3) is an 
unconstrained nonlinear optimization problem, where the 
optimal target location can be obtained as a minimum of the 
objective function NLSJ , that is: 

 ( )
2

ˆ argmin .NLS
R

J
∈x

x = x  (5) 

The nonlinear equations can be transformed into a set of 
linear equations through the following process. 

Squaring the both sides of Eq. (1) yields: 

 
( ) ( )
( ) ( ) { }

2 22 2

2 22 , 1,..., .
l l l l

l l l

r x x y y n

n x x y y l N

= − + − +

+ − + − ∀ ∈
 (6) 

Introducing the additional variables: 

 2 2 ,R x y= +  (7) 

and 

 ( ) ( )2 22 2 .l l l l lm n n x x y y= + − + −  (8) 

then substituting Eqs. (7)-(8) into Eq. (9), yields: 

 

( ) ( )

{ }

2 22

2 2 2 2 2

2 2 2

,
2 2

2 2 ,
1, 2...,

l l l l

l l l l l l

l l l l l l

r x x y y m
r x x x x y y y y m

x x y y R m r x y
N

= − + − +
⇔ = − ⋅ + + − ⋅ + +
⇔ − ⋅ − ⋅ + + = − −

∀∈

 (9) 

Hence, Eq. (9) can be expressed in linear matrix form as 
follows: 

 ,+ =Aθ m b  (10) 

where  

 
1 1

2 2

2 2 1
2 2 1 ,

2 2 1N N

x y
x y

x y

− −⎡ ⎤
⎢ ⎥− −= ⎢ ⎥
⎢ ⎥
− −⎣ ⎦

A  (11) 

 [ ] ,Tx y R=θ  (12) 

 [ ]1 2 ,TNm m m=m  (13) 

 

2 2 2
1 1 1
2 2 2

2 2 2

2 2 2

.

N N N

r x y
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⎡ ⎤− −
⎢ ⎥− −⎢ ⎥=
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⎢ ⎥− −⎣ ⎦

b  (14) 
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From Eqs. (10)-(14) respectively, the WLS objective 
function is defined as follows: 

 ( ) ( ) ( ) ,T
WLSJ =θ Aθ - b W Aθ - b  (15) 

where { }( ) 1TE
−

W = mm is the weighting matrix. Thus, the 
unconstrained optimization problem can be formulated as 
follows: 

 ( )
2

min .WLS
R

J
∈x

θ  (16) 

Hence, the goal is to find the linear closed-form solution 
ˆ ,xWLS  which minimizes the objective function ( )WLSJ θ . It can 

be shown that ˆWLSx  can be obtained from (16) as follows: 

 ( ) 1ˆ T T
WLS

−
=x A WA A Wb.  (17) 

The WLS method is usually chosen in practice due to its 
easy implementation and higher computational efficiency. 

Hybrid GA - NM method 

In this section, a new hybrid genetic algorithm is presented, 
which combines the GA, with powerful global-search 
abilities, with well-known direct local search NM method. 
The proposed hybridization is performed with the aim to 
simultaneously improve the convergence speed and the 
accuracy of the obtained solutions. In this way, the procedure 
of the corresponding GA and local search NM method are 
presented in the following subsections. 

Genetic algorithm 
The GA is one of the most powerful optimization methods 

based on the mechanics of natural evolution [5], which can be 
successfully applied to solve the NLS minimization problems. 
The minimization problem in Eq. (3) can be modified by 
introduction of bound-constraints, which can be written as: 

 ( )min ,
l h

NLSJ
≤ ≤x x x

x  (18) 

in which x  is a vector of decision variables, lx  and hx  are 
the lower and upper bounds of x , respectively. 

GA evolves a population of individuals where each 
individual represents a candidate solution for a given 
optimization problem. Each solution is usually coded as a 
binary string called a chromosome. Main operations applied 
to chromosomes of the population are selection, crossover, 
and mutation. 

Roulette wheel selection is one of the traditional selection 
techniques in GA. In this technique, all the individuals in the 
population are placed on the roulette wheel according to their 
objective function ( )NLSJ x , in which individuals with the 
smaller objective function in the current generation are 
reproduced to the next generation. The selection probability 

iP  of the ith chromosome is computed as follows: 

 { }
1

, 1,..., ,
p
i

i pN
j

j

FP i N
F

=

∈=

∑
 (19) 

where pN  is population size and ( )NLSiF J= x  is the 

corresponding fitness value. The cumulative probability iC  of 

the ith chromosome is obtained as follows: 

 
1

.
pN

i j
j

C F
=

=∑  (20) 

Based on a randomly generated nonzero floating-point 
number [ ]0 1r∈  for each individual, the chromosome is 

selected if { }1 1,2, ,,i i pr CC i N
−

≤< ∈ …  and 0 0.C =  
The crossover operator is applied in order to create new 

chromosomes for the next generation. Two random crossover 
points, 1c  and 2c , are chosen along the chromosomes. Then, 
the chromosome parts between crossover points are 
exchanged and two new chromosomes are created as shown in 
Fig.2. 

 
Figure 2. Two point crossover 

Finally, the mutation process selects a random variable of a 
random individual and negates the bit in order to introduce 
new unexplored solutions into the search space and to 
overcome trapping in local minima. 

The process of selection, crossover and mutation continues 
for a fixed number of generations or until the fitness of the 
best and average individual becomes close to the global 
optimum. 

Nelder-Mead method 
The Nelder-Mead simplex method is one of the most 

widely used local direct search methods for finding a local 
minimum without using the gradient information of the 
objective function [6]. 

In the NM simplex method, a simplex is a geometrical 
figure consisting of 1n+  points { }:1 1i i n≤ ≤ +x  as vertices 

in .n  The main concepts of the NM method include 
operations on the initial simplex { }1 2 3S: , ,= x x x  in 2 , which 
are illustrated in Fig.3. 

 

Figure 3. Operations of Nelder-Mead method for an optimization in 2  

As shown in Fig.3, the initial simplex is bounded by a solid 
line and its worst vertex is denoted by 3,x  where ,rx  ,ex  cx  
and ccx  are the vertices of reflection, expansion, outside and 
inside contraction, respectively. In order to define the vertices 
of the simplex for the next iteration, the centroid x  of the line 
segment connecting the two best vertices 1x  and 2x  is also 
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illustrated in Fig.3. The result of each iteration is a new 
vertex, which replaces the current worst vertex 3x , or a set of  
n  new points (if a shrinkage is performed), which together 
with 1x  form a new simplex for the next iteration. With these 
operations, the simplex is successfully improved at the end of 
each iteration step. In this way, the initial simplex moves 
away from the worst vertex towards the local optimum, for 
which the objective function value at the vertices becomes 
smaller as the iteration progresses. 

A single iteration of the NM local direct search method is 
described in following steps: 

Step 1. Initialization. Starting from the initial vertex 1x  
found by GA algorithm, the NM method determines the 
remaining n  vertices { }1 :1i i n+ ≤ ≤x  in the search space as 
follows: 

 1 1: , ,, 1i i n,iλ+ = + = …x x e  (21) 

where ie  is the unit vector of the ith coordinate axis and 
∈λ  is initial step size commonly used as 1.λ =  
Step 2. Sorting. Evaluate the objective function value at 

each vertex and sort the 1n+  vertices in ascending order, 
such that: 

 ( ) ( ) ( )2 11 .nff f +≤ ≤…≤x xx  (22) 

Step 3. Simplex generation. For the corresponding vertices 
{ }:1 1i i n≤ ≤ +x  the new simplex is formed using four 
possible geometric operations such as: 

a) Reflection. The reflection point rx  is generated by 
reflecting the vertex 1,n+x  with the highest objective function 
value as follows: 

 ( )1 ,:r nα += + −x x x x  (24) 

where x  is the centroid of the n  best vertices defined as: 

 
1

1: .
n

i
i

n
=

= ∑x x  (25) 

If ( ) ( )1 ,rf f<x x  the reflected point rx  is accepted and 
the method proceeds with the expansion; otherwise 
if ( ) ( ) ( )1 ,r nf ff ≤ <x xx  replace 1n+x  with rx  and 
terminate the iteration. 

b) Expansion. Expansion point is calculated in the direction 
of the reflection point as follows: 

 ( ).re β= + −x xx x  (26) 

If ( ) ( ),e rf f<x x  a correct direction is found for 
minimization, replace the vertex 1n+x  by ex  and terminate 
iteration; otherwise replace 1n+x  with rx  and terminate 
iteration. 

c) Contraction. After reflection, there are two possible 
contractions that are performed if ( ) ( ).r nf f≥x x  

If ( ) ( ) ( )1 ,rn nf ff +<≤ x xx  an outside contraction point 

cx  is determined as follows: 

 ( ).:x x x xrc = + −γ  (27) 

1. If ( ) ( ) ,rcf f≤x x  replace 1n+x  by cx  and terminate 
iteration; otherwise, perform shrinkage.  
2. If ( ) ( )1 ,r nf f +≥x x  an inside contraction point ccx  is 
obtained as follows: 

 ( )1: .ncc γ +− −=x x xx  (28) 

If ( ) ( )1 ,cc nf f +<x x  replace 1n+x  by ccx  and terminate 
the iteration; otherwise, perform shrinkage. 

d) Shrinkage. The shrinkage is performed on vertices 
{ }: 2 1i i n≤ ≤ +x to generate the simplex for the next iteration 
as follows: 

 ( )11: .ii δ −= +v x xx  (29) 

For the NM method in 2,  where the simplex is a triangle, 
,α  ,β  γ  and δ  are real parameters that control reflection, 

contraction, expansion and shrinkage, respectively and these 
parameters are chosen as follows: : 1,α =  : 2,β =  : 0.5,γ =  
and : 0.5δ =  [6]. 

The iteration process of the NM method is repeated until 
the convergence criterion is satisfied, i.e.: 

 ( ) ( )
21

1

1

,1
1

x x
n

k k
i i

in

+
+

=

−
+

≤∑ ε  (30) 

where ( )k
ix  and ( )1k

i
+x  are the vertices in iteration k  and 1k + , 

respectively and ε  is an arbitrarily small positive number. 

Cramer-Rao Lower Bounds 
In general, the CRLB provides the theoretical lower bound 

on the covariance matrix of any unbiased estimator [4]. The 
CRLB can be obtained using the inverse of the Fisher 
information matrix (FIM) ( )I x , which can be defined as: 

 
( ) ( )( ) ( )( )

( )( )2

ln ln

ln
,

T

T

f f
E

f
E

⎡ ⎤∂ ∂⎛ ⎞⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤∂
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

r x r x
I x x x

r x
x x

 (31) 

where is [ ]E ⋅  the expectation operator and ( )f r x  is a 
probability density function that has the following form: 

( )
( )

( )( )( ) ( )( )( )
/2 1/2

1

1
2

1 1exp - - ,2 2

N

T

f
π

−

=

⋅ − −

r x
C

r d x C r d x
 (32) 

where { }2 2
1diag ,.... Nσ σ=C  is  N  dimensional covariance 

matrix.  
Therefore, the elements of the Fisher information matrix: 

 1 1CRLB = ,I
I

yy xy

yx xx

I I
I I

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (33) 

can be obtained as follows: 
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= σ
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Then, the relationship between the CRLB and the variance 
can be expressed as: 

 ( ) ( ) ( ) ( ){ }1ˆ ˆ CRLB tr ,TE −⎡ ⎤− − ≥ =⎣ ⎦x x x x x I x  (37) 

where x̂  is estimated vector of x  and {}tr ⋅ is the trace 
operator. 

Simulation results 
In this section, the localization performance of the hybrid 

GA-NM method is evaluated and compared with the closed-
form WLS method, GA and CRLB. In the simulation 
environment, four receivers with known coordinates 
[ ]500, 500 T

− m, [ ]500,500 T m, [ ]500,500 T
− m, and 

[ ]500, 500 T
− − m are involved in the localization process. It is 

assumed that the target is located at [ ]100,100 T m. Then, the 
localization performance is evaluated through root mean 
square error (RMSE) defined as: 

 ( ) 2

2
1

1 ˆ ,x x
N

n
RMSE n

N =

= −∑  (38) 

where x  and ( )ˆ nx  are the true and estimated positions of the 
target, respectively, and 200N =  is a number of Monte Carlo 
simulation runs. 

The cumulative distribution functions (CDFs) of 
localization errors based on the hybrid GA-NM, GA and WLS 
methods are compared to evaluate the localization 
performance. Simulations are performed with different levels 
of SNR, SNR = 10dB and SNR = 40dB, respectively. 

The CDFs of localization errors using the considered 
algorithms are illustrated in Fig.4, for SNR level set to 10dB. 

 
Figure 4. CDFs of the localization error for SNR=10dB 

From the results presented in Fig.4, it can be concluded 
that the hybrid GA-NM method has a superior performance in 
comparison to the other considered algorithms. 

Fig.5 depicts CDFs of previously considered algorithms for 
the case when the SNR = 40dB.  

 
Figure 5. CDFs of the localization error for SNR=40dB 

From Fig.5, it is observed that in the case when the SNR is 
larger the CDFs of hybrid GA-NM method has outperform the 
both GA and WLS methods.  

Comparing the numerical results from Figures 4 and 5, 
respectively, it can be observed that hybrid GA-NM method 
has better localization accuracy then the both GA and WLS 
methods, especially in the high SNR levels. 

Finally, Fig.6 shows the RMSE as the function of the SNR 
for the hybrid GA-NM, GA and the WLS methods.  

 
Figure 6. Comparison of RMSE versus SNR levels 

From the results in Fig.6, it is observed that proposed 
hybrid GA-NM method reaches the CRLB for wide range of 
SNR, implicating the hybrid GA-NM as a robust method in 
different noisy measurement environments, outperforming 
both GA and WLS methods.  

Conclusion 
In this paper, the TOA localization problem based on the 

noisy measurements is formulated as the WLS and NLS 
estimation problem. To efficiently solve this localization 
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problem a novel hybrid algorithm, based on the GA and NM 
method is introduced in this paper. Simulation results show 
that the proposed hybrid GA-NM method outperforms the 
both GA and WLS methods and can achieve higher 
localization accuracy over a wide range of SNR values.  
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Hibridna optimizaciona metoda bazirana na genetskom algoritmu za 
tačno određivanje nepoznate lokacije predajnika 

U ovom radu, prikazan je TOA (Time of Arrival) model pozicioniranja radi određivanja nepoznate lokacije predajnika. 
Definisan je kriterijum optimalnosti – funkcija cilja, koja predstavlja sumu kvadrata greške pozicioniranja. Za rešavanje 
postavljenog optimizacionog modela primenjena je nova metoda GA-NM, koje je bazirana na hibridizaciji Genetskog 
algoritma i Nelder-Mead metode. Predložena hibridna metoda na efikasan način kombinuje globalnu i lokalnu pretragu datih 
algoritama kako bi se poboljšale optimizacione performanse i tačnost rešenja. Pored ovoga, u radu je izvedena i Kramer-Rao 
donja granica CRLB (Cramer-Rao Lower Bound) varijanse procene nepoznate lokacije predajnika za TOA metodu 
pozicioniranja. Rezultati simulacije pokazuju da predložena hibridna GA-NM metoda postiže značajano poboljšanje 
performansi u odnosu na postojeće metode. 

Ključne reči: predajnik, pozicioniranje, optimizacija, genetski algoritam, hibridna metoda. 

Гибридный метод оптимизации на основе генетического 
алгоритма для точного определения неизвестного 

местоположения передатчика 
В этой работе показана модель позиционирования МП (время прибытия) для определения неизвестного 
местоположения передатчика. Определён критерий оптимальности - целевая функция, которая представляет собой 
сумму квадрата ошибки позиционирования. Для решения модели оптимизации множеств был использован новый 
метод GA-NM, основанный на гибридизации Генетического алгоритма и метода Нелдера-Мида. Предложенный 
гибридный метод эффективно сочетает глобальный и локальный поиск с заданными алгоритмами для повышения 
производительности оптимизации и точности решения. В дополнение к этому, нижний предел Крамера-Рао 
дисперсии CRLB (нижняя граница Крамера-Рао) оценивается для неизвестного местоположения передатчика для 
метода определения позиционирования МП. Результаты моделирования показывают, что предложенный гибридный 
метод GA-NM достигает значительного улучшения производительности по сравнению со существующими методами. 

Ключевые слова: передатчик, позиционирование, оптимизация, генетический алгоритм, гибридный метод. 

Méthode hybride d’optimisation basée sur l’algorithme génétique 
pour la détermination précise de la location inconnue de l’émetteur  

Dans ce papier on a présenté le TOA ( Time of arrival) modèle de positionnement pour la détermination de la location 
inconnue de l’émetteur. On a défini le critère d’optimalité – fonction de but qui représente la somme des carrés de l’erreur de 
positionnement. Pour résoudre le modèle d’optimisation on a appliqué la nouvelle méthode GA-NM qui est basée sur la 
hybridation  de l’algorithme génétique et la méthode Nelder-Mead. La méthode hybride proposée combine efficacement la 
recherche globale et locale des algorithmes donnés pour améliorer les performances d’optimisation et l’exactitude de la 
solution. En outre on a dérivé aussi la basse limite de Cramer-Rao CRLB ( Cramer-Rao Lower Board ) de la variante 
d’estimation de la location inconnue de l’émetteur pour la méthode TOA de positionnement. Les résultats de simulation 
démontrent que la méthode hybride proposée GA-NM effectue une amélioration signifiante des performances par rapport 
aux méthodes existantes.  

Mots clés: émetteur, positionnement, optimisation, algorithme génétique, méthode hybride  




