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On the Properties of the Concave 
Antiprisms of Second Sort 
 
The paper examines geometrical, static and dynamic properties of the 
polyhedral structures obtained by folding and creasing the two-rowed 
segment of equilateral triangular net. Bases of these concave polyhedra 
are regular, identical polygons in parallel planes, connected by the 
alternating series of triangles, as in the case of convex antiprisms. There 
are two ways of folding such a net, and therefore the two types of concave 
antiprisms of second sort. The paper discusses the methods of obtaining 
the accurate position of the vertices and other linear parameters of these 
polyhedra, with the use of mathematical algorithm. Structural analysis of a 
representative of these polyhedra is presented using the SolidWorks 
program applications. 
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1. INTRODUCTION  
 

Concave antiprism of the second sort is a polyhedron 
consisting of two regular polygonal bases in parallel 
planes and deltahedral lateral surface. The lateral 
surface consists of two-row strip of equilateral triangles, 
arranged so to form spatial hexahedral elements, by 
whose polar arrangement around the axis that connects 
bases’ centroids, the polyhedron is created. The process 
of generating these polyhedra is similar to the formation 
of concave cupolae of second sort [6], [7], as well as 
polygrammatic antiprisms [1], [2] or pseudo-cylinders 
[4]. It is also akin to origami technique [6], since the 
folding of planar net by the assigned edges produces 3D 
structures.  

In this paper, we deal with the problem of defining 
geometric properties of these polyhedral structures in 
order to analyze their behavior on static and dynamic 
effects, which will show whether these structures are 
suitable for applications in engineering. In this sense, 
we should firstly define accurate vertex positions for the 
observed base, i.e. for the assigned number n of its 
sides. 

 
2. FORMATION OF THE CONCAVE ANTIPRISMS OF 

SECOND SORT 
 

The lateral surface net of the concave antiprism of 
second sort (CA II, also in the further text) is a segment 
of an equilateral triangular plane tessellation, as shown 
in Fig. 1.a and Fig. 1.b. 

 By folding and joining the corresponding edges of 
the net, the closed ring is obtained, which is a fragment 
of a polyhedral surface. Number of the unit cells – 
spatial hexahedral elements – is determined by the 
number of the base sides. Knowing that it is impossible 
to form a convex polyhedral vertex figure with the six 
equilateral triangles arranged around the common 

vertex, we conclude that the formed fragment of 
polyhedral surface must be concave.  

There are two ways of folding the net, with the 
internal and with the external vertex G of the spatial 
hexahedral element, depending of which there will 

 

 
Figure 1. The two methods of forming plane net of the 
concave antiprism of second sort. a) Linear two-row strip 
of hexagonal elements joined by the vertices. b) Continual 
hexahedral elements joined by the sides 

appear two types of each concave antiprism of second 
sort which differ in their heights. 
Hence, with the same polygonal base, there will appear 
two variations of concave antiprism of second sort: a) 
CA II-M having the internal vertex G of the spatial 
hexahedral element ABCDEFG, with the major height, 
b) CA II-m having the external vertex G of the spatial 
hexahedral element ABCDEFG, with the minor height 
(as shown in Fig. 2 a and b), which is similar to the 
formation of concave cupola of the second sort [1]. 
The basis which form a concave antiprism of second 
sort can be any regular polygon, starting from n=3 (n=5 
for the variant “m”), and ending with n=∞, when the 
series of linearly arranged spatial hexahedral elements 
will be formed. 
Note: If we comply with the terms of eliminating cases 
with self-intersecting faces, for the variant CA II-m, the 
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basis from which it is possible to form the concave 
antiprism of second sort will be n=5, because n=3 leads 
to self intersecting faces, while for n=4, the solid we 
obtain will be known non-convex uniform polyhedron 
Octahemioctahedron [6].  

In Fig. 2, we show the examples of the two 
variations of forming the lateral surface of the concave 
antiprisms with hexadecagonal basis in two orthogonal 
projections: the top view and the front view.  

In Fig. 3-a and Fig 3-b, the axonometric view on the 
same lateral surfaces’ rings are shown. 

Unlike some previous researches on the similar topic 
[5,7-11] these polyhedra are not pseudo cylindrical, 
because the vertex disposition of the concave antiprisms 
of second sort does not follow the cylindrical form, i.e. 
the cylinder could not be circumscribed around the 
vertices of these structures, but rather the 
spherical/elliptical rings, the segments of elliptical or 
toroidal surface (Fig 3-c). 

In Fig. 4 (a and b) we show only one fragment of 
each type of concave antiprism of second sort’s net, a 
spatial hexahedral element ABCDEFG. It consists of six 
equilateral triangles formed around a common vertex G. 

 Prior to defining the parameters of these solids, it is 
necessary to set the initial conditions for this spatial 
hexahedron, which it must meet in order to form a 
closed geometric unit - the lateral surface of the concave 
antiprism of second sort - by radial arranging the 
identical cells around the axis k: 

- α is a vertical symmetric plane of the polygonal 
sides (polyhedral edges) AB and DE, whereat the vertex 
G belongs to the plane α, 

- Vertical plane β is determined by the axis k and the 
vertices B, C and D, 

- The edges AB and DE are horizontal, and the 
vertices A and E, as well as B and D are in the same 
vertical planes, respectively, 

- The edges CG and FG belong to the horizontal 
plane γ, which is set at the half height of the spatial 
hexahedral element ABCDEFG 

 

 
Figure 2. Ther lateral surface of the concave antiprism of 
second sort: a) with the internal vertex G of the spatial 
hexahedral element ABCDEFG, b) with the external vertex 
G of the spatial hexahedral element ABCDEFG 

In order to determine the parameters of this 
structure, we can use: 

a) Methods of descriptive geometry 
b) iterative algebraic methods 
c) using the mechanical model. 

 

 

 
Figure 3. axonometric view of the two variations of the 
lateral surface formation: a) Lateral surface with internal 
vertex G b) Lateral surface with external vertex G c) 
Toroidal surface that envelopes these polyhedral 
structures 

 

a) 

 

b) 

Figure 4. a) The unit hexahedral element ABCDEFG with 
the internal vertex G b) Figure 4.b The unit hexahedral 
element ABCDEFG with the external vertex G 
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2.1 Descriptive geometric interpretation 
 

From the descriptive geometry’s point of view, we will 
analyze a spatial interpretation of the vertices position 
of one cell in the lateral surface of CA II, the spatial 
hexahedral element ABCDEFG. This element is rested 
by its edge AB on the side of the base polygon, which 
we adopted to lie in the horizontal plane (x-y). As the 
upper basis of this concave polyhedron is parallel to the 
lower, the top edge DE of the spatial hexahedral 
element, will also be horizontal and will be located at 
twice the height of the central vertex G, because the 
element itself is symmetrical in relation to the plane α 
and also in the relation to the horizontal plane γ at the 
level of the vertex G. Vertices C and F will be in the 
same plane γ as the vertex G. Vertices B, C and D are 
located in the plane β. If we determine the position of 
any of the vertices G, C or F, we have solved the 
problem of the position of all the other vertices. 

Suppose that the point C of the spatial hexahedral 
element ABCDEFG is located on the sphere L with 
radius r=a (side of the equilateral triangle) centered at 
the vertex B. The point G and A belong to the same 
sphere. The vertex G is set on the circle of the radius 

R1= 3
2

a
 in the plane α, which represent the circular 

trajectory of rotation for the vertex G (as a vertex of the 
equilateral triangle would rotate around one of its sides, 
AB, by the circle of the radius equal to the triangle’s 
altitude). If we assume that G is the center of a 
horizontal circle c of radius R2=a, on which the vertices 
C and F lie, the movement of the vertex G by the 
trajectory R1, from the position G0 to Gn, all associated 
circles c0-cn will form a circular quartic surface B - 
Bohemian dome (Fig. 5). By the intersection of the 
quartic surface B and the sphere L, we obtain the curve 
of eighth order (Fig. 6), which will represent the 
trajectory of the vertex C during the mechanical 
movement of spatial hexahedron ABCDEFG. Having 
the double tangential plane in the common tacnode 
point A, as well as the two more simple tangential 
planes, this curve will degenerate into the sixth order 
curve t and the circle. For our consideration, in the 
interpretation of the vertex C trajectory and finding the 
position of the point C, only the sixth order curve will 
be of the interest, while the circle will not participate in 
the solution. The curve t is the geometrical locus of the 
vertices c0-cn positions for the initial position of the 
vertex G. 

The paper [12] gives a constructive-geometric 
procedure for finding the position of the vertex C, based 
on the above. 

The Fig. 7 shows the spatial trajectory t obtained as 
the extracted intersection curve of the sphere L and the 
Bohemian Dome B. The trajectory t of the vertex C is 
given in axonometric view. It can be constructively 
generated by an iterative graphical method, starting 
from the initial height h=0 (C0=A) to maximum height 
(GmaxCmax). We can see that the plane β intersect the 
trajectory t in the four points: two above and two below 
the plane x-y in which the lower base of CA II is settled. 
This corresponds to the above insight, that for the same 
basis we obtain two variations of CA II: one with the 

internal and one with the external vertex G. Hence, the 
observed base polygon can be adopted for the upper, as 
well as for the lower basis. When the vertex G is 
internal point of the hexahedral element, the vertex C is 
external, and vice versa.  

Since we have determined the height of the vertex C, 
we have found the heights of all the vertices, knowing 
that hc=hf=hg, and hd=he=2hc, i.e. that any hexahedral 
element  of CA II is plane symmetrical, in relation to the 
plane γ of the vertex G. 

 
Figure 5. Bohemian dome 

 
Figure 6. Bohemian Dome (B) and  sphere (L) intersection –
the trajectory (t) of the vertex C 

 
Figure 7. The spatial model of the vertex C trajectory 

 
2.2 Iterative Numerical Method and Setting the 

Algorithm 
 
The problem of getting the height of CA II is hence 
reduced to the intersection of the plane β and space 
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curve t of the sixth order. A problem of sixth order is 
not exactly geometrically solvable by the classical 
accessories, compasses and straightedge, and a set of 
analytical equations would require a complex algebraic 
notation, quite challenging from the mathematical point 
of view, but unnecessary for engineering purposes. On 
the other hand, by the application of iterative numerical 
methods and by setting the appropriate algorithms, the 
values of the required parameters are obtained with a 
satisfactorily negligible error (for the iteration, the 
authors applied Microsoft Excel). The existing error 
appears eventually in the seventh decimal place for the 
assumed edge size a= 100. 

The Algorithm (given in the Table 1) set according 
to Fig. 8 for finding the parameters of CA II-M differs 
from the algorithm for the CA II-m only in formulas 
(10) and (13).  For the input data a and n, and the output 
H, the algorithm gives the tabulated results of the 
parameters, when the condition Δ(H)=0 is fulfilled. 

 
Figure 8. The parameters and metric relations in the spatial 
hexahedral element ABCDEFG 

In the Table 1, the examples of the calculated 
measurements are given for CA II-M-16, and CA II-m-
16, CA II-m-32 and CA II-m-132, in order to compare 
them. The above Algorithm will show that for the 
variant CA II-M with the internal vertex G, the heights 
slightly decreases with increasing the number of basic 
polygon’s sides, from n=3 to n=∞, and for the variant 
CA II-m the height increases, from n=5 to the final 
height of basis n = ∞ which will be equal to: 
hn∞=1,632663a  

This will be the same height hn∞ for both the 
variants CA II-M and CA II-m, since in this case, both 
the variants reduces to the same model, only viewed 
from the opposite sides, as shown in Fig. 9 and Fig. 11. 

 
Figure 9. Concave antiprism of second  sort (CA-II) with 
n=∞ 

 
Figure 10. Top  view  on the trajectory curve 

 
Figure 11. Concave antiprism of second sort (CA-II) with 
n=∞, axonometric view 

 
2.3 The Method of mechanical model 
 

The spatial hexahedral element ABCDEFG acts as a 
mechanism [13], which characteristics we present in this 
section of the paper. We need to define the movement 
of this mechanism, with respect to the above conditions.  

The geometrical principles exposed in this paper can 
be interpreted mechanically and realized by one 
particularly synthesized mechanism. Top and oblique 
projection of that mechanism are shown in Fig.12 [12]. 

As explained before, the trajectory of the vertex C is 
the spatial sextic curve. In the top view, because of its 
plane symmetry, it is projected as the cubic curve [12], 
and the vertical plane β is projected as a line. The 
problem is reduced to the intersection of the line and the 
projected curve t', which will be used in the seting the 
appropriate mechanism. 

The mechanism comprises the revolute joints R and 
M, prismatic joints P and S, spherical joint G, arm p, 
lever GC and crank k. The mobility (degree(s) of 
freedom) of this linkage system is 1. Prismatic joint P 
can slide along the groove of the arm p, and arm p can 
rotate about the axis of the revolute joint R. Prismatic 
joint P holds the spherical joint G, in which the lever 
GC is attached. Crank k is always held in horizontal 
position by the revolute joint M and lever GC is 
connected with the crank k under the right angle by the 
prismatic joint S in such a way that geometrical center 
of joint S is mid point of the lever GC. Thus, lever GC 
is also held in horizontal position by its joints and crank 
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k. The complete mechanism is driven by a rotary motor 
in the point B which rotates the crank k about the 
vertical axis of the revolute joint M. During the 
mechanism motion, center of the spherical joint G 
remains in vertical plane  and the point C generates the 
plane curve. The mechanism motion lasts until the lever 
GC touches the surface of the vertical panel . This 
contact point is the intersection point between trajectory 
t of the point C and plane  and represents the required 
solution of the geometrical problem modeled by this 
mechanism. 

 

 
Figure 12. The mechanism that describes planar cubic 
curve, the plane projection of the trajectory curve from the 
Fig. 10. 

3D model of this mechanism is accomplished by the 
using of Solid Works application. 
 
3. BEHAVIOR OF CA II ON THE STATIC AND 

DYNAMIC EFFECTS 
 
In order to investigate the potential application of these 
polyhedral structures in engineering, testing was 
performed on the static and dynamic effects for one 
representative of the observed family of polyhedra: 
concave antiprism of second sort, with the base polygon 

having n=16 sides: CA II-M-16. We investigated the 
rigidity of the structure and compared its behavior with 
the regulations for our seismic areas.  

CA II-M-16 is realized in this analysis by the system 
of pipes, 1010 N/mm2, density: 2800 kg/m3, yield 
strength: 75,829 MPa). The adopted pipe length is 7,2m, 
made of  2024 aluminum alloy (elasticity modulus: 7,3 
the diameter is 200 mm and the pipe wall thickness is 
10 mm). All the pipes are connected by the spherical 
joints. 

It is important to indicate that the entire structure 
must have fixed bases - hexadecagons, as it guarantees 
the geometric determination of the structure. 

The framework has fixtures at the sixteen bottom 
spherical joints, so the complete structure is exclusively 
subjected to the force of gravity, i.e. to the framework 
self weight. Structural static analysis has been 
accomplished by using SolidWoks 2012 application and 
the following results have been obtained: 

Stress (Fig. 13-a); max. stress: 5,6 MPa 
Displacement (Fig. 13-b); max. displace-ment: 2,357 

mm. 
Strain (Fig. 13-c); max. strain: 5,587 10-5. 

By using the same application subroutines, first three 
mode shapes of oscillations and corresponding resonant 
frequencies have been determined for the same 
framework structure. The results of this dynamic 
analysis are particularly significant since they can 
disclose and clarify the structure vulnerability to the 
impact of seismic waves. The first five mode shapes of 
oscillations are shown in Fig. 13-d to Fig. 13-h, and the 
corresponding resonant frequencies are: 9,2247Hz, 
9,339Hz, 9,3794Hz, 9,4124Hz, 9,4125Hz, respectively. 

Regarding the static analysis, the following 
conclusions can be drawn: 

The maximal structural stress generated by the 
framework self weight is over 13 times less than the 
material yield strength - the framework structure has 
significant strength.  

From the fact that the maximal displacement and 
strain of the structure are extremely small it can be 
concluded that the structure possesses great stiffness.  

Dynamic analysis also offers some important 
conclusions: 

Since the frequencies of the first and the all the other 
oscilation modes are significantly higher than the 
frequency of the maximal acceleration frequencies 
(0,3Hz - 5Hz) of the typical regional and local seismic 
motions, the risk of structure seismic resonance is 
completely avoided. 

The relatively high mode shapes eigenvalues of 
oscillations of this huge framework confirm the already 
emphasized fact that this structure possesses high 
stiffness, achieved by the specific geometrical form of 
the hexadecagonal concave antiprism of the second sort.   

 All these considerations and conclusions prove that 
constructions based on the hexadecagonal concave 
antiprism of the second sort are highly convenient 
for,engineering purposes, thanks to its geometrical 
properties.  
 Note: All the diagrams presented above, show 
multiply increased deformation, so that they could be 
visible. 
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Figure 13.a Static Node Stress 1 

 
Figure 13.b Static Displacement 

 
Figure 13.c Static Strain  

 
Figure 13.d Frequency Displacement 1 

 
Figure 13.e Frequency Displacement 2 

 
Figure 13.f Frequency Displacement 3 

 
Figure 13.g Frequency Displacement 4 

 
Figure 13.h Frequency Displacement 5 

Behaviour of CA II-16-M on the static and dynamic 
effects is given in Figures 13a to 13h. 
 
4. CONCLUSIONS 
 
After completing the examinations of CA II from 
geometric, mathematical, mechanical and structural 
point of view, we draw the following conclusions: 

The polyhedral structures, concave antiprism of 
second sort (CA II) are geometrically wholly defined, 
and for each given n it is possible to determine 
accurately and uniquely all the necessary measures, 
linear and angular parameters, as well as the position 
and attitudes of all the vertices. 

Heights of these polyhedra are very slightly changed 
depending on the number of the base sides, ending with 
the final height of the CA II "strip" with the infinite 
number of base sides, as proven by the given algorithm. 

CA II are regular faced concave polyhedra, with all 
the edges equivalent, so they can be modeled by 
identical sticks. 

By its geometric distinctness, these structures are 
rigid and statically stable. 
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Because of its rigidity, these structures are resistant 
to external influences, pressure, tension, and the seismic 
effects, and can be used for various engineering 
purposes: the piston design, spatial grids, and (let us use 
some ideas from [3]) undersea observatory, submarine 
underwater base, as an orbiting space station, as a land-
based liquid storage vessel, and as an undersea nuclear 
reactor housing. 
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О ОСОБИНАМА КОНКАВНИХ АНТИПРИЗМИ 

ДРУГЕ ВРСТЕ 
 

Марија Обрадовић,  
Бранислав Попконстантиновић,  

Слободан Мишић 
 
Рад се бави испитивањем геометријских, статичких 
и динамичких особина једне полиедарске структуре 
настале набирањем дворедног сегмента  мреже 
једнакостраничних троуглова. Основе ових 
конкавних полиедара су правилни, идентични 
полигони у паралелним равнима, повезани низом 
наизменичних троуглова, као и у случају 
конвексних антипризми. Постоје две варијанте 
савијања овакве мреже, па самим тим и два типа 
конкавних антипризми друге врсте (KA II) за сваку 
посматрану основу од n=5, n=∞. У раду су 
размотрени начини добијања тачног положаја 
темена и других линеарних параметара ових 
полиедара, уз примену алгоритма за њихово 
математичко израчунавање. Структурална анализа 
једног представника ових полиедара дата је 
коришћењем апликација програма SolidWorks, како 
би се испитала могућност примене ових облика у 
инжењерству. 
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Table 1. Algorithm for finding the parameters of CA II, and numerical values of the parameters for some n 

 Algorithm: 
Input : a, n 
Output: H 

Values for  n, 
(variant M) 

Values for  n, 
(variant m) 

  

1 (n) number of the base polygon sides n=16 n=16 n=32 n=132 
2 (h)  CA II height                            166,0363692 159,7979133 161,6575103 162,9197086 
3 (a) side of the base polygon a=100      a=100      a=100      a=100      
4 

n

p
j=    

11 15'o    11 15'o    50 37’30’’ 10 21’49’’ 

5 
' ' ' '

2sin

a
K A K B r

j
= = =       

256,2915448  256,2915448  

510,1148619 

21,1043595 

6 ' ' cosK Q q r j= = ⋅             251,3669746  251,3669746   507,6585194 210,0448568 

7 
3

2

a
Q Ga a =    

86,6025404  86,6025404  86,6025404  86,6025404  

8 
 2 21

' ' 3
2

G Q b a h= = -      
24,6572713 33,4089318 31,091998 29,3988458 

9 
' ' 2 21

' ' 4
2

C B B G d a h= = = -          
55,7492693 60,1344887 58,8787936 58,0025184 

10 ' 'K C e r d= = +                  for the variation a)   312,0408141    

11 ' 'K C e r d= = -                  for the variation b)  196,1570561 451,2360682 2043,041076 

12 ' ' sinP C f e j= = ⋅            60,8761429 38,2683432   44,228869 48,6196736 

13 2 2' 'P Q p e f q= = - -   for the variation a)  
54,6780627    

14 2 2' 'P Q p q e f= = - -   for the variation b)  
 58,9790213 58,5952762 57,9860917 

15 
( )2 2

1' 'G C a p b f= = + +  
100,0000000 100,0000000 100,0000000 99,9999999 

16 
1a aD= -  Δ=0.0000000   Δ=0.0000000   Δ=0.0000000   Δ=0.0000000  

 


