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ABSTRACT

Visual Sensor Networks consist of several camera nodes that
perform analysis tasks, such as object recognition. In many
cases camera nodes have overlapping fields of view. Such
overlap is typically leveraged in two different ways: (i) to
improve the accuracy/quality of the visual analysis task by
exploiting multi-view information or (ii) to reduce the con-
sumed energy by applying temporal scheduling techniques
among the multiple cameras. In this work, we propose
a game theoretic framework based Nash Bargaining Solu-
tion to bridge the gap between the two aforementioned ap-
proaches. The key tenet of the proposed framework is for
cameras to reduce the consumed energy in the analysis pro-
cess by exploiting the redundancy in the reciprocal fields
of view. Experimental results confirm that the proposed
scheme is able to improve the network lifetime, with a neg-
ligible loss in terms of visual analysis accuracy.

Categories and Subject Descriptors

[Computer systems organization]: Embedded and cyber-
physical systems—Sensor networks

Keywords

Visual Sensor Networks, Game Theory, Nash Bargaining So-
lution, Multi-view Object Recognition

1. INTRODUCTION

In recent years, several research efforts have flourished to
enable classical Wireless Sensor Networks (WSNs) with vi-
sion capabilities, giving rise to the so-called Visual Sensor
Networks (VSNs). VSNs bear the very same characteris-
tics and constraints of wireless sensor networks, including
the limitations in terms of transmission bandwidth, pro-
cessing power and energy budget. Differently from classi-
cal WSNs, in VSNs some nodes are geared with cameras,
to support advanced tasks such as surveillance and envi-
ronmental monitoring [2]. Such apparently small difference
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induces novel challenges in the design process of VSNs, since
acquisition, processing and transmission of multimedia flows
are resource-eager operations which are at odds with the
resource-constrained environment typical of WSNs.

The traditional system design for VSNs follows a compress-
then-analyze (CTA) paradigm, where images (or videos) are
acquired and compressed locally at the camera nodes, and
then transmitted to one or multiple information sinks which
perform the specific analysis tasks (video surveillance, face
detection, object recognition, etc...). Recently, a paradigm
shift has emerged: according to the analyze-then-compress
(ATC) paradigm, the visual content is processed locally at
the camera nodes, to extract a concise representation consti-
tuted by local visual features. In a nutshell, salient keypoints
are detected in the acquired image. Then, for each keypoint
a visual feature is computed by properly summarizing the
photometric properties of the patch of pixels around the key-
point. Such features are then compressed and transmitted
to the sink for further analysis. Since the features-based
representation is usally more compact than the pixel-based
one, the ATC approach is particularly attractive for those
scenarios in which bandwidth is scarce, like VSNs [9].

Here we consider a reference scenario where a VSN is de-
ployed to perform object recognition according to the ATC
paradigm. In this scenario, each camera extracts visual fea-
tures from the detected objects and transmits them to a
central controller. There, the received features are matched
with a database of labeled features from known objects to
find the most similar one. We focus on the case of cameras
with overlapping fields of view (FoVs): such a case may be
encountered when cameras are densely deployed, as it hap-
pens in many surveillance applications [12].

Regardless of the specific application, the availability of
multiple cameras capturing overlapping views of a scene is
generally induced and/or exploited to improve the perfor-
mance of the specific visual task. As an example, for the
case of object recognition, multiple views of the same scene
can provide obvious walk-arounds to occlusions. However,
such performance improvement requires the cameras to be
active (acquiring and processing) concurrently with addi-
tional costs in terms of network infrastructure and overall
energy consumption.

This work analyses the accuracy/energy consumption trade-
off involved in object recognition tasks performed by multi-
ple cameras with partially overlapping FoVs. To this extent,
we propose a game theoretic framework to model the coop-
erative visual feature extraction process, and we resort to
the Nash Bargaining Solution (NBS) to steer the coopera-



tive processing. The key tenet of the proposed framework
is to reduce the energy consumption for feature extraction
by exploiting the redundancy in the reciprocal FoVs. The
proposed scheme is then applied to different multi-view im-
age datasets to assess its performance. Experimental results
confirm that the proposed coordination scheme reduces the
energy consumption with respect to the case in which multi-
ple cameras process the whole input image, with a negligible
loss in the achieved quality.

The paper is organized as follows: Section 2 overviews
the related work; Section 3 provides some background no-
tions on the reference object recognition pipeline and intro-
duces the reference VSN topology. Section 4 describes the
game theoretic-framework for cooperative object recognition
in VSNs and Section 5 contains the performance evaluation
of the proposed scheme in different network/dataset condi-
tions. Concluding remarks are given in Section 6.

2. BACKGROUND AND RELATED WORK

In the last few years, an increasing number of works have
faced the problem of managing VSNs featuring cameras with
overlapping FOVs. The main focus has been given to cover-
age problems, which are critical in monitoring applications.
In [1] the authors propose solutions to maximize the visual
coverage with the minimum number of sensor, assuming to
have cameras with tunable orientations. Wang and Gao
in [12] propose a novel model called full-view coverage, ob-
serving that the viewing direction of a camera willing to rec-
ognize an object should be sufficiently close to the facing di-
rection of that object. The same concept is leveraged in [13]
where the authors present a method to select camera sensors
from a random deployment to form a virtual barrier made of
cameras for monitoring tasks. As a result, many redundant
cameras (i.e., cameras with overlapping FoVs) might be se-
lected. Since VSNs are battery operated, it is imperative to
optimize their operation, thus maximizing their lifetime. In
most of the works that deal with coverage, lifetime is defined
as the amount of time during which the network can satisfy
its coverage objective. With this definition, the approach
traditionally used is to leverage the redundancy resulting
from random deployment and organize redundant cameras
in clusters. Then, coordination can be applied among clus-
ter members, by putting to sleep some nodes while others
sense the environment [3]. On the contrary, fusing informa-
tion from multiple views of the same object, can improve the
performance of visual analysis tasks. As an example, bar-
rier coverage applications benefit from having multiple views
from distinct active cameras. Similarly, Naikal et al. [7]
propose a distributed object recognition system for VSNs
where visual features extracted from multiple views of the
same objects are leveraged to improve the efficiency of object
recognition. Summarizing, there exists a dichotomy between
the need of extending lifetime (which calls for de-activating
camera nodes) and the need of improving the accuracy of
the specific visual task (which requires many cameras to be
active at the same time). To our knowledge, the available
literature tends to focus on one of these two contrasting
objectives; differently, we aim at gauging a more thorough
analysis of the quality/lifetime tradeoff in VSNs by relying
on a game theoretic framework. Game theory has recently
been applied to VSNs for solving camera assignments prob-
lems [6] and for resource management optimization [8].

Figure 1: The two cameras C; and C2 detect objects
in their fields of view, and identify a BBx for each
detected object. After exchanging the top-left and
bottom-right pixel coordinates of each BBx, 7; ; and
T>,1 are identified as corresponding image portions.

3. REFERENCE SCENARIO

We consider a scenario where N wireless camera nodes
with fully or partially overlapping FoVs are able to commu-
nicate with each other, i.e., they are in direct transmission
range. Figure 1 shows a descriptive example for N = 2: each
camera acquires an image from the environment and has to
perform local visual features extraction.

3.1 Non-cooperative visual sensor networks

In the case of non-coordinated networks, each camera in-
dependently performs the following steps:

e Object detection: the acquired image is pre-processed with
foreground detection/background subtraction techniques
to detect possible objects in the field of view. Typically,
a bounding box (BBx) is drawn around each detected ob-
jects. Note that multiple objects may be detected in one
image, as it is the case of camera C in Figure 1. There-
fore, we denote as Z; ; the portion of image contained in
the j-th of the i-th camera, i € 1... N. Each BBx Z; ; is
determined by its top-left and bottom right coordinates,
namely p%’ ; and pgj, and the number of pixels contained
in a BBx is denoted as P; ;

e Features extraction: the pixels corresponding to each BBx
are processed by means of a local features extraction al-
gorithm. Such step encodes the photometric properties
of each detected object in a representation which is: (i)
generally more concise than the pixel-domain one and (ii)
robust to several image transformations (scale, rotation,
illumination changes) and thus ideal for being used for
recognition tasks.

e Features transmission: the local features extracted from
each BBx are transmitted to a remote controller, where
they are matched against a database of labelled features
and object recognition is performed.

Clearly, all the aforementioned steps require non negligi-
ble energy to be performed. Since in VSNs camera nodes
are battery-operated, it is imperative to optimize the pro-
cess of feature extraction and transmission to limit the cor-
responding energy consumption. In this work, we leverage
the fact that cameras have overlapping FoVs to set up a
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Figure 2: The BBx detected on the images acquired
by C: and C3, referring to the scenario in Fig. 1.
Only for the corresponding BBx (the ones contain-
ing the car), an image sub-portion is selected from
each camera for features extraction (red solid cir-
cles). Features near the splitting border (yellow
dashed circles) are correctly detected, but can’t be
computed unless an offset region is added to the
BBx.

cooperative framework that enables to save energy without
sacrificing the visual analysis performance. In particular,
we posit that features extracted from different views of the
same object share a high degree of similarity. Therefore,
different cameras may agree to share the features extraction
task by processing only sub-portions of the detected object:
since the energy needed to perform features extraction de-
pends primarily on the number of processed pixels [4], such
a cooperative approach is expected to provide notable en-
ergy savings with respect to the non-cooperative case, i.e.,
when each camera processes the entire bounding box.

3.2 Cooperative visual sensor networks

One main condition that must hold in order to enable the
cooperative framework is that the cameras willing to coop-
erate are indeed looking at the same object. This check may
be easily accomplished if the cameras are calibrated. In this
case, the geometrical relationship between the two cameras
is algebraically represented by the so-called fundamental ma-
trix F, available to both cameras and allowing to check if a
point p (in pixel coordinates) in the first view corresponds
to a point p’ in the second view (see Figure 1), through the
well known fundamental matrix equation:

p"Fp=0. (1)

Therefore we propose the following additional steps to set
up the cooperative framework:

o Geometric consistency: After object detection, calibrated
cameras exchange the top-left and bottom-right pixel co-
ordinates of the detected BBx in their respective fields of
view. Then, they use equation (1) to check if they are
looking at the same object. Note that this process is not
limited to pairs of cameras, but may be easily extended to
networks of multiple camera nodes with overlapping FoVs
by relying on transitivity.

e Bounding box splitting: having identified a common ob-
ject in their FoVs, the cameras may select a sub-portion
of their own BBx instead of processing them entirely. As
illustrated in Figure 2, for the case of two cameras, we
assume that the leftmost camera selects from the leftmost
region of its BBx up to x1, while the rightmost camera
processes from x2 to the right end, where ;1 and z2 can
be expressed as proportions of the BBx area that are pro-
cessed by the first and the second camera, respectively..

That is, z; is in the range from 0 (when the i-th cam-
era does not perform any processing) to 1 (when the i-th
camera processes its entire BBx). Note that, without loss
of generality, splitting may be applied in the vertical di-
rection as well. In the following section, we propose a
game theoretic approach for determining the proportion
of the BBx to be processed on each camera, i.e., the val-
ues of x;, « = 1...N. Once such values are computed,
each camera may extract features from the reduced BBx
and transmit them to the central controller. A reasonable
constraint for the variables x; is that they sum up to 1,
i.e., visual features are extracted from the entire object,
although in different views. However, it is important to
note that image splitting may negatively affect the fea-
tures extraction process. As illustrated in Figure 2, this
is due to the fact that the extraction of one visual feature
requires the processing of a patch of pixels around the
corresponding keypoint. If the keypoint is detected close
to the splitting line, there may not be enough pixels to
perform the feature extraction. In the case of a very dis-
criminative feature being close to the splitting line, such
approach may negatively affect the performance of object
recognition. To overcome this issue, an offset is added to
the variables x;. In the following, we denote by o such re-
quired offset, normalized with respect to the total image
size.

4. GAME-THEORETIC MODELS

The reference scenario described in Section 3 can be mod-
eled as a game among N cameras which have to decide the
portion of the common bounding box they need to process.
Let x = (x1,22,...2n) be an outcome of the game, being
z; the portion of the BBx which is assigned for processing
to camera i, with z; > 0 and ZiV:I x; = 1. Let X be the
set of all possible outcomes of the game. Let us further de-
fine an utility function w;(x) which represents the preference
for camera ¢ on the outcome x. The set of possible payoff
vectors is defined as U = {u1(x), u2(x),...,un(x)}.

In the reference scenario, it is reasonable to bind the utility
function u;(x) to the energy consumed in the feature extrac-
tion process. The energy consumed for extracting features
increases linearly with the number of processed pixels [4].
Thus, we model the energy consumption as a linear func-
tion of the number of pixel processed defined as:

Ei(z:) = Pi(aiz; + by), (2)

where the parameters a; and b; depend on the particular
processor available on the i-th camera, and P; is the size in
pixels of the bounding box currently under processing. We
define the utility function for camera 7 as:

N

ui(x) = Eq( Z Tk) 3)

k=1,k#i

Intuitively, the utility function for the i-th camera is the
amount of energy that camera i saves through cooperative
processing. The scenario under consideration can be mod-
eled as a bargaining problem with two main ingredients:

o Feasibility set: the convex set 7 C R" including all
the possible payoff vectors u = (u1,us,...,un) defined
by Eq. (3);



e Disagreement point: the value of the utility function
the players are expected to receive if the negotiation breaks
down d = (di,...,dn); in our case, if negotiation breaks
down, each camera has to process the entire BBx, thus its
utility (e.g., spared energy) at the disagreement point is
null, d; =0,2=1...N.

The Feature Extraction Bargaining Problem (FEBP) can
be defined as the tuple (F,d). A solution concept which
can be applied to such game theoretic scenario is the gen-
eralized Nash Bargaining Solution (NBS) which provides an
axiomatic solution to the bargaining, further providing an
operative method to derive it. Formally, the NBS defines an
agreement point (bargaining outcome) xnps which verifies
the following four axioms:

1. Rationality: u;(xxgs) > di, @ = 1... N, i.e., no player
would accept a payoff that is lower than the one guaran-
teed to him under disagreement;

2. Pareto optimality: under the optimality conditions,
the payoff of each player cannot be further improved with-
out hurting other players’ ones;

3. Symmetry: if the players are undistinguishable, the
agreement should not discriminate between them:;

4. Independence of irrelevant alternatives: the solu-
tion of a bargaining problem does not change as the set
of feasible outcomes is reduced, as long as the disagree-
ment point remains the same, and the original solution
feasible.

Since X is compact and convex and the utility functions
u;(X) are concave and upper bounded, the generalised NBS
for the bargaining problem is the unique solution of the fol-
lowing optimization problem [11]:

N
maximize H(uz(l'z) —di)™

=1

N
=1

z; >0 Vi

The exponents «; represent the bargaining power of each
camera, and are chosen such that Zfil a; = 1. A natural
choice for the bargaining powers «; is to relate them to the
residual energy of each camera F;. In particular, a desirable
condition is that a camera bargaining power increases as
its residual energy decreases (i.e., cameras close to deplete
their energy are eagerer to cooperate). Thus, we define the
bargaining powers as:

Et
= 7]\] k2 —
Zi:l Ez !

5. PERFORMANCE EVALUATION

We are interested in assessing the performance of the co-
operative framework in terms of object recognition accuracy
and energy efficiency. To this extent, we have implemented
the full pipeline of a typical object recognition task based
on BRISK [5] visual features: camera nodes acquire a query
image, extract visual features from it, and transmit the fea-
tures to a sink node where object recognition is performed.

()

Qi

There, the received features are matched against features
extracted from a database of images. Matching consists in
pair-wise comparisons of features extracted from, respec-
tively, the query and database image. The Hamming dis-
tance is adopted to measure the similarity between BRISK
visual features extracted from the image and the one con-
tained in the database. Two features are labeled as matching
if their distance is below a pre-defined threshold. Addition-
ally, a geometric consistency check step based on RANSAC
is applied to filter out outliers. Hence, the images in the
database can be ranked according to the number of matches
with the query image.

5.1 Accuracy Evaluation

Average Precision (AP) is commonly adopted to assess the
performance of object recognition/image retrieval. Given a
query ¢, AP is defined as:

_ 2221 Py(k)rq(k)

AP,
q Rq )

(6)
where Py(k) is the precision (i.e., the fraction of relevant
documents retrieved) considering the top-k results in the
ranked list; r4(k) is an indicator function which is equal to
1 if the item at rank k is relevant for the query, and zero
otherwise; R, is the total number of relevant documents for
the query ¢ and n is the total number of documents in the
list. The Mean Average Precision (MAP) for a set of Q
queries is the arithmetic mean of the APs across different
queries:

g AP

MAP =
Q

(7)

5.2 Energy Evaluation

Energy efficiency is captured by estimating the lifetime
L of the system, that is the number of consecutive queries
(images) which can be processed until one of the camera
nodes depletes its energy. That is:

budget
L=min ———— (8)
Q b
% Zq:l Eiq
where Efudg“ is the energy budget of the i-th camera and

E; 4 is the energy required for processing the g-th query
on the i-th camera. To characterize the per-query energy
consumption of a camera, we rely on the following energy
model:

Boq = B4 P[4 05 6057 4+ B0, (9)

being E*°Y the energy required for acquiring one image,
P°P" the power consumption of the CPU of each camera
and tll-’,27 t?flt and t?zsc the times taken by the i-th camera to
identify the bounding boxes, detect keypoints and extract
features for the ¢g-th query, respectively. The energy cost of
transmitting the extracted features is captured by the last
term of (9), where E™ is the energy cost of transmitting one
bit, r is the dimension in bit of each visual feature, and M;
is the number of features detected by the i-th camera. The
values used for the energy costs are based on a Visual Sensor
Node platform based on a BeagleBone linux computer [10]
and are reported in Table 1.



Table 1: Parameters used for the energy evaluation

Name Symbol Value

CPU power pert 1.75 W

Energy budget Ebudset 20 KJ
Acquisition cost Eed 1072 J/frame
Transmission cost E™ 2.2x1077 J/bit

Feature size r 512 bit

5.3 Experimental Methodology

The evaluation has been carried out on several VSN topolo-
gies, each one consisting of a pair of camera nodes character-
ized by a different geometrical relationship, and by relying
on different image datasets. From each dataset, we selected
one common set of images as the reference database for the
object recognition task and several set of images as query
datasets. The query datasets are selected so as to mimic
different camera geometries:

e COIL100": this image database contains 100 objects, each
captured at 72 different poses. Each pose of an object is
obtained by rotating the object by 5 degrees. For each
object, the reference database contains three images cor-
responding to the views at 0° and +10°. Five different
camera geometries are tested as query datasets, taking
for each object the couple of images at +5°, +£15°, +£20°
,£25° and £30°. We refer to such experiments with the
label COIL-X, where X is in the set {5,15,20,25,30}.

o ALOZI?: an image collection of one-thousand small objects.
Similarly to the COIL-100 dataset, each object is captured
at 72 different poses obtained by rotating the object by
5 degrees each time. The reference database and the test
sets are obtained in the same way as for the COIL-100
dataset (i.e., five different camera configurations, each one
with an increasing rotation). Again, we refer to such ex-
periments with the label ALOI-X, where X is in the set
{5,15,20,25,30}.

e ANTG66%: A novel image database containing 66 objects,
each one captured by two camera pairs with overlapping
FoVs. The reference database contains one image per ob-
ject and two camera geometries are available, which we
refer to as ANT-0 and ANT-15. In ANT-0, the inter-
camera geometry is a pure translation, while in ANT-15
the two cameras are translated and rotated by +15° and
—15° degrees with respect to the object’s main axis.

For each one of the twelve different camera topologies, the
NBS-based cooperative framework is evaluated as follows:

1. For each of the two cameras, load a query image ¢ from
the current test set.

2. Find the image splitting x1 and x2 by solving the features
extraction bargaining problem through the generalized
NBS according to equation (4).

3. Extract BRISK features from the sub-portions defined
by x1 + o and z2 — 0. Compute the per-camera energy

1
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://aloi.science.uva.nl/

http://www.greeneyesproject.eu/

consumption E; and Es as in (9), and the average preci-
sion AP, as in (6). To compute the AP, the feature sets
from the two camera views are independently matched
against the reference dataset, and geometrically verified
through RANSAC. The number of matches for the ¢-th
query couple is then computed by summing the matches
from the two independent views.

4. Update residual energies for the two cameras, Ey and Es.

5. Repeat steps 1-4 until (i) one of the two cameras deplete
its energy or (ii) all queries in the datasets have been
processed. Compute the MAP as in (7) and the system
lifetime as in (8).

The entire process is repeated for increasing values of the
offset 0. For each camera topology, we also compared the
NBS-based cooperative framework against the following two
baseline scenarios:

e Temporal Scheduling (TS): at each query, only one camera
among the ones with overlapping FoVs acquires the im-
age and performs object recognition [3]. We select which
camera should operate according to the maximum resid-
ual energy.

o Multi View object recognition (MV): following the approach
in [7], at each query all cameras acquire an image, extract
the corresponding features and transmit them to the sink
node. Similarly to the NBS, features matching is per-
formed by using the features extracted from the two cam-
era views.

5.4 Experimental Results

Figure 3 illustrates the energy/accuracy trade-offs obtained
by running the aforementioned experiments on the three ref-
erence datasets. Each figure reports: (i) the performance of
the NBS cooperative framework for different values of the
overlap o (solid line), (ii) the performance of the tempo-
ral scheduling approach (colored cross) and (iii) the perfor-
mance of the multi-view approach (colored circle), for the
different camera topologies.

Expectedly, using the MV approach leads to higher MAP
than applying temporal scheduling at the expense of a no-
tably higher overall energy consumption in all the considered
topologies. Referring to Figure 3(a), it can be observed that
the NBS-based solution allows to efficiently trade-off MAP
for energy, that is, it allows to reduce the consumed en-
ergy by a factor of 2 approximately (with respect to the MV
approach) with a limited MAP loss (around 5%). As the
reference topologies become more challenging, that is, with
increasing angle of displacement between the two cameras,
the trade off between the MAP and system lifetime becomes
less favorable, and the energy savings diminishes for a given
MAP loss. Figure 3(b) and 3(c) report the same analysis for
the COIL100 and the ANT66 datasets, respectively. Figure
4 summarizes the numerical analysis by reporting, for all
the considered data sets, the gain in the system lifetime for
a given tolerable MAP loss, always with respect to the MV
scenario (two cameras always active). For a given dataset
configuration, the lifetime gain increases as the tolerated
level of MAP loss also increases. In general, for a given
tolerated MAP loss the achievable lifetime gain tends to de-
crease as the camera geometry becomes more challenging.
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6. CONCLUSIONS

We have presented a cooperative framework for object
recognition through features extraction in VSNs, when cam-
eras have overlapping FoVs. By relying on the generalized
NBS, we were able to trade off system lifetime for task accu-
racy, improving the network lifetime with a negligible loss in
the achieved visual analysis accuracy. Future works include
the evaluation of the proposed method when using N > 2
cameras and for analysis tasks beyond object recognition.
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