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Summary: In this paper sufficient conditions for both practical and finite time 
stability of linear singular continuous time delay systems were introduced. The singular and 
singular time delay systems can be mathematically described as    E t A tx x  and 

     0 1E t A t A t   x x x , respectively. Analyzing finite time stability, the new delay 

independent and delay dependent conditions were derived using the approaches based on 
Lyapunov-like functions and their properties on the subspace of consistent initial conditi-
ons. These functions do not need to be positive on the whole state space and to have negati-
ve derivatives along the system trajectories. When the practical stability was analyzed, the 
approach was combined with classical Lyapunov technique to guarantee the attractivity 
property of the system behavior. Furthermore, an LMI approach was applied to obtain less 
conservative stability conditions. The proposed methodology was applied and tested on a 
medical robotic system. The system was designed for different insertion tasks playing 
important roles in automatic drug delivery, biopsy or radioactive seeds delivery. In this 
paper we have summarized different techniques for adequate modeling, control and 
stability analysis of the medical robots. The model of the robotic system, with the tasks 
described above, the entire system can be decomposed to the robotic subsystem and the 
environment subsystem. Modeling of the system by the method mentioned has been proved 
to be suitable when the force appears as a result of the interaction of the two subsystems. 
The mathematical model of the system has a singular characteristic. The singular system 
theory could be applied to the case described. It is well known that all mechanical systems 
have some delay. In that case a theory of singular systems with delayed states may be 
applied, as well. For the second phase in which there is no interaction, the dynamic behavi-
or can be analyzed by the classic theory. 

Keywords: time delay systems, singular systems, robotics in medicine. 
 
 
 
1. INTRODUCTION 
 
 It was noticed that the characteristics of the 

dynamic and static state should be considered at the 
same time for some systems. Singular systems (also 
referred to as degenerate, descriptor, generalized, 
differential-algebraic or semi-state systems) are 
systems whose dynamic is governed by the 
complexity of algebraic and differential equations. 
Recently, many researchers have paid much atten-

tion to singular systems and they have accomplished 
numerous valuable conclusions.  

The complex nature of singular systems gene-
rates many difficulties in the analytical and numeri-
cal solution of such systems, particularly during the 
control tasks.  

Recently, the singular systems have been one 
of the major research fields of control theory.  

During the past three decades singular 
systems have attracted significant attention due to 
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the comprehensive applications in economics, as the 
Leontief dynamic model, in electrical applications 
using the theory described in [1], in mechanical 
models as in [2], etc. Singular systems in control 
theory have been initially discussed in [3] and [4]. 
The investigation of time delay systems has been 
carried out over many years. Time delay is very 
often encountered in various technical systems, such 
as electric, pneumatic and hydraulic networks, che-
mical processes, long transmission lines, etc.  

It has been observed that a variety of singular 
systems is characterized by the phenomena of time 
delay. Such systems are called singular differential 
systems with time delay. These systems have many 
special characteristics. In order to mathematically 
describe those systems in more accurate manner, and 
to control them more effectively, this specific class 
of the singular systems was investigated in details. 
In this article, a new approach to the stability of the 
singular time delay systems is presented.  

 
 
2. SYSTEM MODELING 

In this section a procedure for the system 
modeling is described. A mathematical model of the 
presented medical robotic system was used to vali-
date the main results and stability investigation.  

The mathematical equations of the system 
were analyzed further and new delay-independent 
and delay-dependent conditions were implemented 
in practical stability analysis.  

 
2.1. System description 
 
The surgery module consists of 2 degree-of-

freedom (DOF) ultrasound probe driver and 5DOF 
needling module, Figure 1.  

The ultrasound (US) module can be translated 
and rotate independently by two DC servomotors 
fitted with high-resolution optical encoders and 
gearboxes.  

In this study, we analyzed 5DOF needling 
module which consists of a gantry and needle driver.  

Gantry connects the needle-driving module to 
the positioning platform.  

The gantry has two translation motions and 
one rotational motion (pitching). Needle driver 
subsystem consists of a hollow needle (cannula) and 
solid needle (stylet) driven separately by two DC 
servomotors.  

The cannula rotates continuously or partially 
using another tiny DC motor. The main task of these 
parts is to deliver the exactly prescribed dose of 
radioactive seeds into human prostate with high 
precision level.  

 

 
 

 
Figure 1. Video-guided robotic system for insertion tasks.  The proposed methodology was tested on this system. 

Surgery module: consists of 2DOF ultrasound probe driver and 5DOF needling module.  Needling module consists of 
gantry and needle driver.  Mathematical model of the system was singular system as in equations (3-4) 

       
 

Needle driver 

US probe
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Seeds are delivered through cannula.  
During the operation, stylet is pushing the 

seeds through cannula according to control algo-
rithm and the prescribed surgery plan. Also, the 
system is designed to take ultrasound images during 
the operation, to update the real-time radiation dose 
distribution, seed position and number of needles to 
be inserted into prostate, depending of surgery plan.  

Dedicated software for 3D imaging and con-
trol is developed to support surgery procedure, [5-6].   

 
 2.2. Mathematical modeling 

 
The following notation has been used: 

   Real vector space 
   Complex vector space 
I  Identity matrix 

  n n
ijF f    Real matrix 

FT  Transpose of matrix F 
F > 0  Positive definite matrix 
F  0  Positive semi definite matrix 
(F)      Eigenvalue of matrix F 

 max T
maxF A A   Euclidean matrix norm of F 

As suggested [7], the most accurate mathema-
tical model for the medical robots should include 
dynamics of the system due to interaction between 
the robot and the surface.  

General guidelines for mathematical modeling 
together with the basic equations are presented.  

The model of the manipulator with its constra-
ints is shown in Figure 2.  

Generally speaking, open kinematic chain 
with n joints is analyzed.  

The generalized coordinates vector, denoted 

by  tq , has property   nt q , the contact force 

vector is denoted by  tf .  

 

 
 

 

Figure 2. Model of the constrained robotic system: a) fixed base, b) manipulator c) contact surface, T – contact point, f 
– contact force 

 
 

Force   nt f  appears when end-effector 

touches constraint surface c.  
The differential equation which describes the 

influence on the contact force to the system is 

                , T
tt t t t t tM J   qq q g q q τ f  .  

 (1) 
   n ntM q  denotes inertia matrix fun-

ction and     , nt t g q q  is vector function 

which describes Coriolis, centrifugal and gravitatio-

nal effects.  tτ  is torque vector of the joints, 

  nt τ . 

    n nT
tJ 

q  is defined as Jacobian matrix 

function and  D  is a gradient of constrained fun-

ction. 
The general dynamic equations for the robotic 

system in contact with environment is, as in [8]:  

    
 

            
  

0

0 0

, TT
t Dt t tt t

t

JM 

 

     
          

q h qq
h q

g q qq



  (2) 
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Equation (2) consisted of n differential 

equations and one algebraic equation with  1n   

unknown value, n generalized coordinates and scalar 
multiplier  t .  

   h q  is an equation of contact surface, 

and  h  is a vector function.  

Now it is possible to present the equation of 
the robotic system (1) which is in contact with the 

working environment in its state space form (3) with 
state vector  tx and vector  td  as a disturbance  

       E t A t B t t  x x u d ,                       (3) 

where corresponding matrices have been defined as 
in [7]. 

 Corresponding matrices are given by 
equation (4).  

 For the purpose of further analysis, we consi-
dered disturbance vector d=0. 

 

            0 0 0

0

0 0
0 0 0 0

0 0 , | 0 | , , ,

0 0 0 0 0
| 0 0

T T T T

I
I

E M A J D t J D B I t t t t

DJ

 

 
      

                              
 

q g u τ d τ
q

   (4) 

 

When time delay of moving system parts was 
taken into the account, the system (3) was represen-
ted as  

           0 1E t A t A t B t t    x x x u d . (5)     

System (5) represents the dynamics of the 
medical robot in Figure 1 with time delay in working 
regime. Further analysis was performed in free 
working regime, i.e. when all inputs have zero valu-
es.  

 
 
3. STABILITY CONCEPTS 
    
As far as practical problems are concerned, a 

matter of interest is not only the system stability 
(e.g. in the sense of Lyapunov), but also the bounds 
of system trajectories. A system could be stable but 
completely useless because it possesses undesirable 
transient performances. Thus, it may be useful to 
consider the stability of the systems with respect to 
certain subsets of state-space, which are a priori 
defined for a given problem.  

Besides that, it is of particular significance to 
consider the behavior of dynamical systems only 
over a finite time interval. These bound properties of 
system responses, i.e. solutions of system models, 
are important from the engineering point of view.  

Realizing this fact, numerous definitions of 
the so-called technical and practical stability have 
been introduced in literature. Generally speaking, 
the definitions were essentially based on the predefi-
ned boundaries for the perturbation of initial condi-
tions, and the allowable perturbation of the system 
response. In the engineering applications of control 

systems, this fact becomes important and sometimes 
crucial for the purpose of quantitative characterizing 
of the systems. In that case, the possible deviations 
of the system response need to be investigated in 
details. Thus, the analysis of these particular bound 
properties of the solutions presents an important 
step, which precedes the design of control signals, 
with finite time or practical stability taken into acco-
unt. In this article time continuous systems have 
been considered.  

The various notations of stability over a finite 
time interval for continuous time systems and con-
stant set trajectory bounds were introduced in 
[9−11]. Another approach is based on a classical 
theory mostly used in deriving sufficient delay inde-
pendent conditions of the finite time stability 
systems.  

In the former case a new definition has been 
introduced based on the attractivity properties of the 
system solution which can be treated as analogous to 
the quasi-contractive stability as in [12−14].  

In the following section, we have presented a 
novel approach to the stability of singular time delay 
systems.   

The results have been directly expressed in 
terms of matrices E, A0 and A1 naturally occurring in 
the system model, equation (5).  

In this approach there is no need to introduce 
any canonical form in the statement of the theorems.  

The geometric theory of consistency leads to 
the natural class of positive definite quadratic forms 
on the subspace containing all solutions [15]. This 
fact makes the construction of the Lyapunov and 
non- Lyapunov stability theory possible even for the 
linear continuous singular time-delay systems 
(LCSTDS). 
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Moreover, the attractive property is equivalent 

to the existence of symmetric positive definite solu-
tions in a weak form of the Lyapunov matrix 
equation [15], incorporating conditions which refer 
to the solutions boundedness.  

 
3.1. Preliminaries  

 
The general expression of singular control 

systems with time delay can be written in its diffe-
rential form as: 

          
   

, , , , 0

, 0

E t t t t t t t

t t t





  

   

x f x x u

x φ


,            (6) 

where   nt x   is a state vector,   mt u   is a con-

trol vector,   n nE t  is a singular matrix, 

 [ ,0], n  φ   is an admissible initial state fun-

ctional,  [ ,0], n    is the Banach space of con-

tinuous functions mapping the interval  [-, 0] into 
n  with topology of uniform convergence.  

The vector function satisfies:                  

  : n n m n    f     ,                                   (7) 

and it is assumed to be smooth enough to assure the 
existence and uniqueness of solutions over a time 
interval:   

  0 0,t t T       ,                                         (8) 

as well as the continuous dependence of the soluti-
ons denoted by  0 0, ,t tx x  with respect to t  and the 

initial data.   
Quantity T may be either a positive real number or 
the symbol  , so that the finite time stability and 
practical stability can be treated simultaneously, 
respectively.  

In general, it is not required that  

 , ,t f 0 0 0 , for an autonomous system, which 

means that the origin of the state space is not 
necessarily required to be an equilibrium state.  

Let n  denote the state space of a system 

given by (6) and    the Euclidean norm.  

Let : n nV    , be the tentative aggrega-

te function, so that   ,V t tx  is bounded and for 

which  tx  is also bounded.  

Define the Eulerian derivative of   ,V t tx

along the trajectory of the system (6), with: 

          
,

, , .
TV t t

V t t grad V t t
t


     

x
x x f  (9) 

where matrix , [16],  is solution of the following 
matrix equation: 

     , ,
T T

grad V t t grad V t t E       x x ,   (10) 

 Obtaining this solution may be a tedious task 
since matrices in (10) are functional, [16]. 

For time-invariant sets it is assumed:  S  is a 

bounded open set.  
The closure and boundary of  S  are denoted 

by  S  and  S , respectively, so:      \ S S S .  

Let S  be a given set of all allowable states 

of the system t  .  
Set S ,  S S  denotes the set of all 

allowable initial states. 
Sets S , S  are connected and a priori 

known.   ( ) denotes the eigenvalues of matrix ( ).  

max and min  are the maximum and mini-

mum eigenvalues, respectively.  
For the further analysis we consider a linear 

continuous singular system with state delay, descri-
bed by: 

     0 1E t A t A t   x x x ,                               (11) 

with a known compatible vector valued function of  
the initial conditions 

    , 0t t t   x φ ,                                   (12) 

where 0A  and 1A are the constant matrices of appro-

priate dimensions.  
Moreover, we shall assume that rank E r n  . 

 
3.3. Basic definitions  

 
Definition 1. Matrix pair  0,E A  is said to be 

regular if  0det sE A  is not identically zero,  [17]. 

Definition 2. The matrix pair  0,E A  is said 

to be impulsive free if  0detdegree sE A rank E  , 

[17]. 
The linear continuous singular time delay 

system (6) may have an impulsive solution. 
However, the regularity and the absence of impulses 
of the matrix pair  0,E A   ensure the existence and 

uniqueness of an impulse-free solution of the 
system.  

The existence of the solutions is defined in the 
following Lemma. 
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Lemma 1. Suppose that the matrix pair 

 0,E A  is regular and impulsive free, then the solu-

tion to (11) exists and is impulse-free and unique on 
 0,  , [17]. 

As a necessity for the system stability investi-
gation there is a need to establish a proper stability 
definition.  

Therefore, the following definition can be 
written. 

Definition 3. (a) LCSTDS (11-12) is said to 
be regular and impulsive free, if the matrix pair 
 0,E A  is regular and impulsive free. (b) LCSTDS 

(11-12) is said to be stable, if for any 0   there 
exists a scalar   0    such that, for any compatible 

initial conditions  tφ ,    
0

sup
t

t


 
  

φ  the solu-

tion  tx  of system (6) satisfies   , 0t t  x .  

Moreover, if  lim 0
t

t


x , the system is 

said to be asymptotically stable, [17]. 
 
 
4. MAIN RESULTS 
 
Definition 4. Singular time delayed  

system (11-12) is a finite time stable with  
respect to  , , , ,R     ,  and 0R  ,  

if  
 

   
, 0

sup T T

t
t E R E t




 
φ φ  implies 

    ,T Tt E R E t t  x x < . 

Finally, by using matrix inequalities, we can 
derive the sufficient condition under which the 
system (11-12) will be regular, impulse free and 
finite time stable. 

Theorem 1. Singular time delayed system 
(11−12) is impulse free and finite time stable with 

respect to 
  2

, , , ,R    
 if, letting 

1 1
2 2TPE E R R E  , there exist a positive scalar 

 and two positive definite matrices 

, 0,n n T      , and 
n nQ  , such that the 

following conditions hold: 

0T TPE E P  ,                                                  (13) 

 

 0 0 1

1

0
T T

T T

A P PA Q EP PA

A P Q

   
      ,          (14) 

and: 

 
 

 
 

max max

min min
,tQ

e t
  
  

 
        .           (15) 

Proof. Let us consider the following 
Lyapunov-like, aggregation function: 

 
          

t
T T

t

V t t PE t Q d


  


  x x x x x
,       (16) 

Denoting by 
  V tx

 time derivative of 

  V tx
 along the trajectory of system (11-12), it 

can be written: 

              

    

       

       

   

0 0

1 1

t
T T T

t

T T T

T T T T

T T

T T

d
V t t PE t t PE t Q d

dt

t A P PA t

t PA t t A P t

t Q t t Q t

t t



  

 

 



  

 

   

   

 

x x x x x x x

x x

x x x x

x x x x

ζ ζ

  

             (17) 
where: 

       0 0 1

1

,
T T

T T T

T T

A P PA Q PA
t t t

A P Q


  
        

ζ x x

.                      (18) 
From (13) and (16) it can be derived: 

      

   

       

       

           

       

  

0

0 0

0

0 0

T

T

T T

T T

t
T T T

t

t
T T

t

V t t t

PE
t t

PE
t t t t

t t t PE t

t PE t t PE t Q d

t PE t Q d

V t





  

  





 

   
    

  
 

    
 

  

  

 
  

 






x ζ ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ x x

x x x x x x

x x x x

x



             (19) 

 since     0T t t ζ ζ
.  

Multiplying (19) by 
te , it is obtained: 

    0td
e V t

dt
 x

.                                         (20) 

Integrating (20) from 0 to t, with t , it 
follows: 

     0tV t e Vx x
.                                        (21) 

 Consequently: 

 

0
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0

0 0 0T TV PE Q d


  


  x x x x x
.    (22) 

Since: 
1 1
2 2T T TPE E P E R R E   ,                               (23) 

from (22) and first condition of  Definition 4,           
it follows: 

          

           

        

1 1
2 2

0

0

max max

0

max max max max

0 0 0

0 0

T T T

T T T

V E R R E Q d

E RE Q d

Q d Q







  

    

        







  

  

        







x x x x x

x x φ φ

                             (24) 

Furthermore, it can be calculated that: 

              

         
1 1
2 2

min

t
T T T

t

T T T T

V t t PE t Q d t PE t

t E R R E t t E RE t



  




  

   

x x x x x x x

x x x x

.                             (25) 

From (25) it is obvious: 

        
min

1T Tt E RE t V t





x x x
,                   (26) 

so combining (21), (24) and (26), leads to:  

            
 

max max

min min

1
0T T t t

Q
t E RE t e V e

  


 
    

 
 

x x x
.                                          (27) 

 

Condition (15) and inequality (27) imply: 

    ,T Tt E R E t t  x x .                         (28) 

Q.E.D.  

 
 
5. DYNAMIC ANALYSIS 

 
In this section, the dynamic analysis of the 

system (3) was performed.  

The finite time stability of the system with 
respect to Definition 4 was investigated.  

For the numerical stability analysis, Theorem 
1 was used.  

The numerical values of matrices AL0 and AL1 
are as follows:  

0

0 1 0 0 0 0 0 0 0 0

0 -3.9 6 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 -3.9 6 8.42 -26.92 -1.5 -4 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 -3.27 2.8 -2 -4.6 -0.24 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 -4.1 -2 0 4.4 -3 -2.9 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 -4.2

L

e

e e

A
e3 e e4

e e e5

e6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

1

0 1 0 0 0 0 0 0 0 0

0 -2.33 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 -2.3 8.42 -4.28 -1.5 -3 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 -3.3 0.18 -1 -4.6 -0.32 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 -0.44 -1 0 2.4 -2 -2.3 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 -3.2

L

e5

e3 e

A
e4 e e4

e e e4

e5

 
 
 
 
 
 
 
 
 
 
 
 
 

 




. 

 

System matrices AL0 and AL1 were calculated 
for the system with feedback, as in Fig.3.  

For this example it was adopted  = 0.8  
and  = 3.42.   

 

 

 

 

 

 

Figure 3. Block diagram of the system in contact with the environment and with appropriate feedback control signals  
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The singular matrix E was calculated from (4) 

using described modeling procedure.  

Using control low: 

   t K C t u x ,                                                (29) 

where K  is system gain matrix and C  system out-
put matrix.  

K  is diagonal matrix and their elements are 

position and velocity gains,  ,p vK diag K K .  

Gain values for each segment can be calcula-
ted using actuators characteristics. 

Detailed explanations for this procedure can 
be found in [18].  

Using the control law (29), (4) and (30), it is 
possible to calculate eigenvalues of the system (5). 

                         0
0 1 0 1

1
det detdet

N
s

L j L L L L
j

A A e CK sE A A CK sEA KC sE K s s 


                     (30) 

where  0 1L L LA A A .  

It is to be noted that the eigenvalues are not 
constant values, but they depend on the specific 
value of time delay. Simulating system for  = 200 
ms, one sets possible eigenvalues that guarantee 
system stability is  () = {8.3, 2.8e5, 7.2e5, 1.2, 
6.4e5, 1245, 12,4, 2.4e5, 4234, 4.1e6 }.  

Adopting the adequate matrices from the con-
ditions of Theorem 1, using equations (13), it is pos-
sible to calculate scalar  for which the system 
stability holds. It can be noticed that max () = 
4.4e7. In this case, it was derived that the stability 
holds for  > 0.5, and system is finite time stable 
for t  ] 0, 4s].  

Figure 4. shows the representative system 
norms of both stabilized and non-stabilized systems, 
whereas Figure 5. represents the corresponding tra

jectories of the system related to the ones presented  
in Figure 4.   

It can be noticed that the system shows its 
finite time stability up to 4 s.  

It was observed that the non-stabilized system 
(open loop system) was finite time stable at the 
interval [0, 1.3 s] and at interval [1.3 4 s] with 
respect to  = 3.42 (Figure 4., magenta curve).  

Applying stabilization control law (29) resul-
ted both in the asymptotic stability and the finite 
time stability on the interval [0.0   4.0 s], for all 
points as it was requested as a synthesis goal. 

Finally, it was observed that when condition 
of Definition 4 and previously calculated conditions 
from Theorem 1 was not satisfied, the system 
showed instable behavior.  

Figure 6 represents the case of the system tra-
jectories for some ,  as in condition (28).  

 

 
 

 

Figure 4. The norms of the stabilized closed-loop system trajectories and non-stabilized system  
trajectories – a representative case -  

β=3.42 
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Figure 6. Representative system trajectories and norms 

 
         

For 1, the system is finite time unstable on 
t[0, 3], since the condition (28) does not hold for 
chosen t. 

If we choose new value 2, system is finite 
time stable for any choice of t, no matter if delay is 
present or not.  

Similarly, for some 3, analyzed in the sense 
of Theorem 1, it was observed that the system is 
stable on t[4, ∞[.  

 
 
6. CONCLUSION 

 
Generally, this paper extends some of the 

basic results in the area of the non - Lyapunov 
stability to the particular class of LCSTDS. Furt-
hermore, a part of this result is a geometric counter-
part of the algebraic theory in [1] supplemented with 
appropriate criteria to cover the need for system 
stability in the presence of actual time delay terms. 
A novel sufficient delay-dependent criterion for the 

finite time stability, based on LMIs approach, has 
been established. The theory was validated and 
implemented on the robotic system for automatic 
drug delivery. The mathematical modeling, control 
and stability of the system were tested using the 
proposed approach. 
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НЕЉАПУНОВСКА СТАБИЛНОСТ СИНГУЛАРНИХ СИСТЕМА: КЛАСИЧАН  

И МОДЕРАН ПРИЛАЗ СА ПРИМЕНОМ У АУТОМАТСКОЈ ИСПОРУЦИ ЛЕКОВА  
 

Сажетак: У овом раду изведени су довољни услови практичне стабилности и 
стабилности на коначном временском интервалу за класу линеарних временски 
непрекидних сингуларних система са чистим временским кашњењем. Сингуларни 
системи и сингуларни системи са чистим временским кашњењем могу бити матема-
тички описани једначинама типа: Ex(t) = Ax(t) и Ex(t) = A0x(t) – A1x(t - ), следстве-
но. Анализирајући стабилност на коначном временском интервалу изведени су нови 
услови, и то зависни и независни од временског кашњења.  

Предложени прилаз се заснива на употреби Љапуновљевих функција и њихо-
вим особинама на потпростору конзистентинх почетних функција или услова. Ове 
функције не морају бити позитивно одређене у целом простору стања, нити негатив-
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но одређене дуж трајекторија система. Када се разматра практична стабилност, овај 
прилаз се комбинује са класичном љапуновском техником која гарантује особину 
привлачења система. У циљу добијања мање конзервативних резултата, коришћена је 
и ЛМИ метода. Предложени метод примењен је и тестиран на једном медицинском 
роботском систему. Систем је дизајниран за различите намене, као што су аутоматска 
испорука медикамената, биопсија или испорука радиоактивних зрнаца унутар оболе-
лог ткива. За такав систем развијена је посебна техника моделирања, управљања и 
анализе стабилности описаног система. У сврху математичког моделирања, систем је 
декомпонован на механички део и на радну околину која пресудно утиче на дина-
мичко понашање. Овакав приступ се показао адекватним у случају када спољашње 
силе утичу на динамику система. Добијен математички модел се анализира као син-
гуларни систем аутоматског управљања. У случају када се утицај спољашњих сила 
може занемарити, динамичко понашање се анализира класичним методама теорије 
управљања. 

Кључне речи: системи са кашњењем, сингуларни системи, медицински робот. 
 

 


