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a b s t r a c t

Anti-Gauss quadrature formulae associatedwith four classical Chebyshevweight functions
are considered. Complex-variable methods are used to obtain expansions of the error in
anti-Gaussian quadrature formulae over the interval [−1, 1]. The kernel of the remainder
term in anti-Gaussian quadrature formulae is analyzed. The location on the elliptic contours
where the modulus of the kernel attains its maximum value is investigated. This leads
to effective L∞-error bounds of anti-Gauss quadratures. Moreover, the effective L1-error
estimates are also derived. The results obtained here are an analogue of some results
of Gautschi and Varga (1983) [11], Gautschi et al. (1990) [9] and Hunter (1995) [10]
concerning Gaussian quadratures.
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1. Introduction

Let w be a given nonnegative and integrable weight function on the interval [−1, 1]. Let us denote by pk the monic
polynomial of degree k, which is orthogonal to Pk−1 (Pk denotes the set of polynomials of degree at most k) with respect to
w, i.e.  1

−1
xjpk(x)w(x)dx = 0, j = 0, 1, . . . , k − 1,

and let us recall that (pk) satisfies a three-term recurrence relation of the form
pk+1(x) = (x − ak)pk(x) − bkpk−1(x), k = 0, 1, . . . , (1.1)

where p−1(x) = 0, p0(x) = 1 and the bk’s have the property of being positive.
The unique interpolatory quadrature formula with n nodes and the highest possible degree of exactness 2n − 1 is the

Gaussian formula with respect to the weight w, 1

−1
f (x)w(x)dx = Gn[f ] + En(f ), Gn[f ] =

n
j=1

λG
j f

xGj


(n ∈ N). (1.2)

In [1], Laurie introduced quadrature rules that he referred to as anti-Gauss associated with the weight w, 1

−1
f (x)w(x)dx = An+1[f ] + Rn+1(f ), An+1[f ] =

n+1
j=1

λA
j f

xAj


(n ∈ N). (1.3)
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This is an (n + 1)-point interpolatory formula of degree 2n − 1 which integrates polynomials of degree up to 2n + 1 with
an error equal in magnitude but opposite sign to that of the n-point Gaussian formula (1.2). Its intended application is to
estimate the error incurred in Gaussian integration by halving the difference between the results obtained from the two
formulae. Concerning with this and related problematic there appeared several papers in the last time, see [2–8]. Laurie [1]
showed that an anti-Gaussian quadrature formula has positive weights and that its nodes are in the integration interval
(except that for someweight functions, at most two of the nodes may be outside the integration interval) and are interlaced
by those of the corresponding Gaussian formula. The anti-Gaussian formula is as easy to compute as the (n + 1)-point
Gaussian formula. Finally, the anti-Gaussian quadrature formula (1.3) is based on the zeros of polynomial

πn+1 = pn+1 − bnpn−1, (1.4)

which is orthogonal subject to the linear functional 2

[·]w(x)dx − Gn[·].

In this paper w represents one of four classical Chebyshev weight functions:

w1(t) =
1

√
1 − t2

, w2(t) =


1 − t2, w3(t) =


1 + t
1 − t

, w4(t) =


1 − t
1 + t

.

In these cases all nodes of the anti-Gauss quadrature formula (1.3), i.e., all zeros of the corresponding polynomial πn+1,
belong to the interval [−1, 1]. They are, in the same time, the Kronrod nodes (see [1]).

2. On the remainder term of anti-Gauss quadrature formulae for analytic functions

LetΓ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and letD be its interior. If integrand
f is analytic on D and continuous on D, and if all nodes of anti-Gauss quadrature formula belong to the interval [−1, 1], then
the remainder term Rn+1(f ) in (1.3) admits the contour integral representation

Rn+1(f ) =
1

2π i


Γ

Kn+1(z)f (z)dz. (2.1)

The kernel is given by

Kn+1(z) =
ϱn+1(z)
πn+1(z)

, z ∉ [−1, 1], (2.2)

where

ϱn+1(z) =

 1

−1

πn+1(x)
z − x

w(x)dx.

The modulus of the kernel is symmetric with respect to the real axis, i.e., |Kn+1(z)| = |Kn+(z)|. If the weight function w is
even, the modulus of the kernel is symmetric with respect to both axes, i.e., |Kn+1(−z)| = |Kn+1(z)| (see [9]).

In many papers error bounds of |En(f )|, i.e., of the modulus of the remainder term in Gauss quadrature formula (1.2),
where f is an analytic function, are considered. Two choices of the contour Γ have been widely used:

• a circle Cr with a center at the origin and a radius r (> 1), i.e., Cr = {z | |z| = r}, r > 1, and
• an ellipse Eρ with foci at the points ∓1 and a sum of semi-axes ρ > 1,

Eρ =


z ∈ C | z =

1
2


ξ + ξ−1 , ξ = ρ eiθ , 0 ≤ θ ≤ 2π


. (2.3)

When ρ → 1 the ellipse shrinks to the interval [−1, 1], while with increasing ρ it becomes more and more circle-like. The
advantage of the elliptical contours, compared to the circular ones, is that such a choice needs the analyticity of f in a smaller
region of the complex plane, especially when ρ is near 1. In this paper we take Γ to be the ellipse Eρ .

The integral representation (2.1), for the remainder term in the anti-Gauss quadrature formula (1.3), leads to a general
error estimate, by using Hölder’s inequality,

|Rn+1(f )| =
1
2π




Eρ

Kn+1(z)f (z)dz


≤

1
2π


Eρ

|Kn+1(z)|r |dz|

1/r 
Eρ

|f (z)|r
′

|dz|

1/r ′

,

i.e.,

|Rn+1(f )| ≤
1
2π

∥Kn+1∥r∥f ∥r ′ ,
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where 1 ≤ r ≤ +∞, 1/r + 1/r ′
= 1, and

∥f ∥r :=




Eρ

|f (z)|r |dz|

1/r

, 1 ≤ r < +∞,

max
z∈Eρ

|f (z)|, r = +∞.

The case r = +∞ (r ′
= 1) gives

|Rn+1(f )| ≤
1
2π


max
z∈Eρ

|Kn+1(z)|


∥f ∥1,

i.e.

|Rn+1(f )| ≤
ℓ

Eρ


2π


max
z∈Eρ

|Kn+1(z)|


max
z∈Eρ

|f (z)|


, (2.4)

where ℓ

Eρ


is the length of the ellipse Eρ , whereas for r = 1 (r ′

= +∞) we have

|Rn+1(f )| ≤
1
2π


Eρ

|Kn+1(z)||dz|


∥f ∥∞. (2.5)

When w is one of the 4 classical Chebyshev weight functions, the bounds of |En(f )|, i.e., of the modulus of the remainder
term in the Gauss quadrature formula (1.2), of the type (2.5) have been considered in detail in [10]. In that paper and some
other error bounds, based on the an expansion En(f ) in series, are considered. These error estimates of |Rn+1(f )| for the anti-
Gauss quadrature formula (1.3) are considered in Section 3, whereas the error estimates of the type (2.5) are considered in
Section 4.

When w is one of the 4 classical Chebyshev weight functions, the bounds of |En(f )|, i.e., of the modulus of the remainder
term in the Gauss quadrature formula (1.2), of the type (2.4) have considered in detail in [11,9]. The error estimates of
|Rn+1(f )| of the type (2.4) for the anti-Gauss quadrature formula (1.3) are considered in Section 5.

3. Error estimates of |Rn+1(f )| based on the expansion Rn+1(f ) in series

Following [10], for z ∉ [−1, 1] and πn+1(z) =
n+1

j=1


z − xAj


in (1.4), we first have


z − xAj

−1
= 2

∞
k=0

Uk

xAj

ξ−k−1, j = 1, 2, . . . , n + 1,

where Uk is a Chebyshev polynomial of the second kind (cf. [11, Section 5]), ξ is defined in (2.3), and then, on multiplying
these expansions for j = 1, 2, . . . , n + 1, we get

1
πn+1(z)

=

∞
k=0

βkξ
−n−1−k,

with

βk = 2n+1

(ℓ)

n+1
j=1

Uℓj

xAj

,

the summation being over all (n+1)-tuples (ℓ) = (l1, l2, . . . , ln+1) of non-negative integers forwhich l1+l2+· · ·+ln+1 = k.
βk is a homogeneous symmetric function of degree k in xA1, x

A
2, . . . , x

A
n+1. If w is an even function, these points are

symmetrically distributed about 0. So βk = 0 if k is odd.
Further,

ϱn+1(z) =

 1

−1

πn+1(x)
z − x

w(x)dx

= 2ξ−1
 1

−1

∞
k=0

w(x)πn+1(x)Uk(x)ξ−kdx

=

∞
k=0

γkξ
−n−k,
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where

γk = 2
 1

−1
w(x)πn+1(x)Uk+n−1(x)dx, k = 0, 1, 2, . . . .

If w is an even function and k is odd, then γk = 0.
Now,

ϱn+1(z)
πn+1(z)

=


∞
k=0

βkξ
−n−1−k


∞
j=0

γjξ
−n−j


=

∞
k=0

ωkξ
−k−2n−1,

where

ωk =

k
j=0

βjγk−j.

As f is analytic in the interior of Eρ , then it has the expansion

f (z) =

∞
k=0

′αkTk(z),

where

αk =
1
π

 1

−1
(1 − x2)−1/2f (x)Tk(x)dx,

which converges for all z in the interior of Eρ . Here, Tk is a Chebyshev polynomial of the first kind, which is given by the
equation Tk(z) =

1
2 (ξ

k
+ ξ−k). The prime on the summation indicates that the first term is halved.

In general, the Chebyshev coefficients αk are unknown. However, Elliott [12] describes a number of ways of estimating
or bounding them. In particular, under our assumptions,

|αk| ≤

2

max
z∈Eρ

|f (z)|


ρk
. (3.1)

Finally, (2.1) is reduced to

Rn+1(f ) =
1

2π i

∞
k=0

∞′
j=0

αjωk


Eρ

Tj(z)ξ−2n−k−1dz,

i.e., by applying [10, Lemma 5],

Rn+1(f ) =

∞
k=0

α2n+kεk, (3.2)

where

ε0 =
1
4
ω0

ε1 =
1
4
ω1

εk =
1
4
(ωk − ωk−2), k ≥ 2.

If w is an even function and k is odd it follows that ωk = 0 and hence εk = 0.
The quantities εk can be determined and by

εk = Rn+1(T2n+k) = σ2n+k −

n+1
j=1

λA
j T2n+k


xAj

,

where

σk =

 1

−1
w(x)Tk(x)dx, k = 0, 1, 2, . . . .

Putting k = 0, 1 in the last formula, on the basis [1, Eq. (5)], it follows εk = −εk (k = 0, 1), and therefore ωk = −ωk (k =

0, 1), where εk, ωk (k = 0, 1) are the corresponding values for the Gauss quadrature formula (1.2).
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3.1. The case w(x) = w1(x) = (1 − x2)−1/2

Here in fact,πn+1(z) = (Tn+1(z)−Tn−1(z))/2n, where Tn(z) =
1
2 (ξ

n
+ξ−n). From here on, we takeπn+1 := κnπn+1 (κn >

0), where κn is a suitable chosen coefficient, in order to simplify our computation, since the obtained results performed above
remain the same (cf. (2.2)). Definitely, we take πn+1(z) = Tn+1(z) − Tn−1(z).

First, we have

1
πn+1(z)

=
1

Tn+1(z) − Tn−1(z)
=

2
(ξ n − ξ−n)(ξ − ξ−1)

=
2

ξ n+1

1
1 − ξ−2n

1
1 − ξ−2

=
2

ξ n+1

∞
k=0

∞
j=0

1
ξ 2(nk+j)

,

from which we conclude

β2j = 2(k + 1), nk ≤ j ≤ n(k + 1) − 1, k = 0, 1, 2, . . . ,
β2j+1 = 0, j = 0, 1, 2, . . . .

Using (see [13, Eq. 3.613.1], or [11, p. 1176]) 1

−1

Tn(x)
z − x

(1 − x2)−1/2dx =
2π

ξ n(ξ − ξ−1)
,

we have

ϱn+1(z) =

 1

−1

Tn+1(x) − Tn−1(x)
z − x

dx
√
1 − x2

=
2π

ξ n+1(ξ − ξ−1)
−

2π
ξ n−1(ξ − ξ−1)

= −2πξ−n.

Therefore,

γk =


−2π, if k = 0,
0, otherwise.

The kernel in this case is given by

K (1)
n+1(z) =

−4π
ξ n(ξ − ξ−1)(ξ n − ξ−n)

. (3.3)

Further, ω2j = −2πβ2j, and

ε0 = ε2j = −π (j = ln, l = 1, 2, . . .).

Now, (3.2) obtains the form

Rn+1(f ) = −π

∞
k=0

α2n(k+1),

from which, on the basis of (3.1), we obtain the error bound

|Rn+1(f )| ≤

∞
k=0

2

max
z∈Eρ

|f (z)|


ρ2nk+2n
,

i.e.,

|Rn+1(f )| ≤

2π

max
z∈Eρ

|f (z)|


ρ2n − 1
,

which is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2) (cf. [10, Eq. (4.4)]).

3.2. The case w(x) = w2(x) = (1 − x2)1/2

Here πn+1(z) = Un+1(z) − Un−1(z), where Un(z) = (ξ n+1
− ξ−n−1)/(ξ − ξ−1).
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First, we have
1

πn+1(z)
=

1
Un+1(z) − Un−1(z)

=
1

ξn+2−ξ−n−2

ξ−ξ−1 −
ξn−ξ−n

ξ−ξ−1

=
2

ξ n+1(1 + ξ−2n−2)
=

∞
k=0

(−1)kξ−(2k+1)(n+1),

from which we conclude

βk =


(−1)j, if k = 2j(n + 1),
0, otherwise.

Using (see [13, Eq. 3.613.3], or [11, p. 1177]) 1

−1

Un(x)
z − x

(1 − x2)1/2dx =
π

ξ n+1
,

we have

ϱn+1(z) =

 1

−1

Un+1(x) − Un−1(x)
z − x


1 − x2dx =

π

ξ n+2
−

π

ξ n
.

Therefore,

γk =


−π, if k = 0,
π, if k = 2,
0, otherwise.

The kernel in this case is given by

K (2)
n+1(z) =

−π(ξ − ξ−1)

ξ n+1(ξ n+1 + ξ−(n+1))
. (3.4)

Further, in the case n ≥ 2, i.e., n + 1 ≥ 3, we obtain

ω2j(n+1) = (−1)j+1π, ω2j(n+1)+2 = (−1)jπ (j = 0, 1, 2, . . .),

and

ε2j(n+1) = ε2j(n+1)+4 =
(−1)j+1π

4
, ε2j(n+1)+2 =

(−1)jπ
2

(j = 0, 1, 2, . . .).

Now, (3.2) obtains the form

Rn+1(f ) =

∞
k=0

α2n+kεk,

=

∞
k=0


α2n+2j(n+1)ε2j(n+1) + α2n+2j(n+1)+2ε2j(n+1)+2 + α2n+2j(n+1)+4ε2j(n+1)+4


,

from which, on the basis of (3.1), we obtain the error bound

|Rn+1(f )| ≤

π


max
z∈Eρ

|f (z)|


2

∞
j=0


1

ρ2n+2j(n+1)
+

2
ρ2n+2j(n+1)+2

+
1

ρ2n+2j(n+1)+4


,

i.e.,

|Rn+1(f )| ≤

π


max
z∈Eρ

|f (z)|


(ρ + ρ−1)2

2(ρ2n+2 − 1)
, (3.5)

which is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2) (cf. [10, Eq. (4.8)]).
In the case n = 1, i.e., n + 1 = 2, the obtained results

εk =


−

π

4
, if k = 0,

(−1)j
π

2
, if k = 2j + 2 (0, 1, 2, . . .),

0, otherwise,

leadto the error bound (3.5) for n = 1.
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3.3. The case w(x) = w3(x) =
√

(1 + x)/(1 − x)

Let

A = An =
n2

+ n
n2 − 1/4

. (3.6)

Here πn+1(z) = Anpn+1(z) − pn−1(z), where (see [11, p. 1178]) pn(z) = (ξ n+1
+ ξ−n)/(ξ + 1).

Since An → 1, when n → ∞, we shall in this and Section 4 consider error estimates by putting A = An = 1 which are
useful for larger values of n. In the general case (3.6) these two kinds of error bounds are very complicated to perform.

First, we have
1

πn+1(z)
∼=

1
pn+1(z) − pn−1(z)

=
1

ξn+2+ξ−n−1

ξ+1 −
ξn+ξ−n+1

ξ+1

=
1

(ξ 1/2 + ξ−1/2)(ξ n+1/2 − ξ−n−1/2)

=


1

ξ n+1
+

1
ξ n+1


·

1
1 − ξ−2

·
1

1 − ξ−2n−1
,

from which, by expanding the last express, we conclude

βj = k + 1, k(2n + 1) ≤ j ≤ (k + 1)(2n + 1) − 1 (k = 0, 1, 2, . . .).

Using ([11, p. 1178]) 1

−1

pn(x)
z − x


1 + x
1 − x

dx =
2π(ξ + 1)

ξ n+1(ξ − ξ−1)
,

we have

ϱn+1(z) ∼=

 1

−1

pn+1(x) − pn−1(x)
z − x


1 + x
1 − x

dx

=
2π(ξ + 1)

ξ n+2(ξ − ξ−1)
−

2π(ξ + 1)
ξ n(ξ − ξ−1)

= −2π(ξ + 1)ξ−n−1.

Therefore,

γk =


−2π, if k = 0, 1,
0, otherwise.

The kernel in this case (A = 1) is given by

K
(3)
n+1(z) =

−2π(ξ + 1)2

ξ n+1(ξ n+1 − ξ−n)(ξ − ξ−1)


∼= K (3)

n+1(z), for large n


, (3.7)

whereas in the general case (3.6) the kernel is given by

K (3)
n+1(z) =

2π(ξ + 1)2(Aξ−1
− ξ)

ξ n+1(ξ − ξ−1)

ξ n+1(Aξ − ξ−1) + ξ−n(Aξ−1 − ξ)


=

2π(ξ 1/2
+ ξ−1/2)

ξ n(ξ 1/2 − ξ−1/2)
·

Aξ−1
− ξ

ξ n+1(Aξ − ξ−1) + ξ−n(Aξ−1 − ξ)
. (3.8)

Further,

ωk(2n+1) = −2π(2k + 1)π,

ωj = −4π(k + 1), (2n + 1)k < j ≤ (k + 1)(2n + 1) − 1,

for k = 0, 1, 2, . . . , and

εj(2n+1) = εj(2n+1)+2 = −
π

2
, εj(2n+1)+1 = −π (j = 0, 1, 2, . . .).

Now, on the basis of (3.2), we obtain the error estimate

|Rn+1(f )| ∼=

 ∞
k=0

α2n+kεk


≤ π


max
z∈Eρ

|f (z)|
 ∞

j=0


1

ρ2n+j(2n+1)
+

2
ρ2n+j(2n+1)+1

+
1

ρ2n+j(2n+1)+2


,
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i.e.,

|Rn+1(f )| ∼=

 ∞
k=0

α2n+kεk

 ≤ π


max
z∈Eρ

|f (z)|


(ρ1/2
+ ρ−1/2)2

ρ2n+1 − 1
,

which is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2) (cf. [10, Eq. (4.13)]).

4. Error estimates of the type (2.5)

From here on, we use the usual notation (see for example [11])

aj =
1
2
(ρ j

+ ρ−j), j ∈ N.

4.1. The case w(x) = w1(x) = (1 − x2)−1/2

Using

|ξ k
∓ ξ−k

| =
√
2(a2k ∓ cos 2nθ) (k ∈ R)

and (2.2), we obtainK (1)
n+1(z)

 =
2π

ρn(a2 − cos 2θ)1/2(a2n − cos 2nθ)1/2
. (4.1)

By using this formula and |dz| = 2
√
a2 − cos 2θdθ , (2.5) obtains the form

|Rn+1(f )| ≤
1
4
ρ−n

 2π

0

dθ
(a2n − cos 2nθ)1/2

,

i.e.

|Rn+1(f )| ≤
4

ρ2n + 1
K(a−1

n ), (4.2)

where

K(κ) =

 π/2

0
(1 − κ2 sin2 θ)−1/2dθ (|κ| < 1)

is the complete elliptic integral of the first kind.
The error bound (4.2) is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2)

(cf. [10, Eq. (5.7)]).

4.2. The case w(x) = w2(x) = (1 − x2)1/2

We haveK (2)
n+1(z)

 =
π

ρn+1

(a2 − cos 2θ)1/2

(a2n+2 + cos 2(n + 1)θ)1/2
. (4.3)

(2.5) obtains the form

|Rn+1(f )| ≤
1
8
ρ−n−1a2

 2π

0

1
(a2n+1 − sin2(n + 1)θ)1/2

dθ −
1
8
ρ−n−1

 2π

0

cos 2θ
(a2n+1 − sin2(n + 1)θ)1/2

dθ,

i.e., since the second integral is equal to zero (see below),

|Rn+1(f )| ≤
2a2

ρ2n+2 + 1
K(a−1

n+1). (4.4)

The error bound (4.4) is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2)
(cf. [10, Eq. (5.8)]).

We finish this subsection by proving that 2π

0

cos 2θ
(a2n+1 − sin2(n + 1)θ)1/2

dθ = 0.
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The last integral is equal to a2n+1I , where

I =

 2π

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ =

 π

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ +

 2π

π

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ,

withm = n + 1 (≥ 2) and κ = 2/an+1. Substituting θ := π + θ in the last integral, we obtain I = 2I1, where

I1 =

 π

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ =

 π/2

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ +

 π

π/2

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ.

In a similar way, we have I1 = 2I2, where

I2 =

 π/2

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ =

 π/2

0

cos 2θ
(1 − κ2(1 − cos 2mθ)/2)1/2

dθ.

Substituting θ := π/2 − θ in the last integral, we obtain

I2 = −

 π/2

0

cos 2θ
(1 − κ2 sin2 mθ)1/2

dθ =

 π/2

0

cos 2θ
(1 − κ2(1 − (−1)m cos 2mθ)/2)1/2

dθ.

Ifm is even, then I2 = −I2, i.e., I2 = 0, whereas ifm is odd, then (cf. [10, p. 78])

I2 = −

 π/2

0

cos 2θ
(1 − κ2 cos2 mθ)1/2

dθ = −
1
2

 π

0

cos 2θ
(1 − κ2 cos2 mθ)1/2

dθ = 0.

The assertion follows.

4.3. The case w(x) = w3(x) =
√

(1 + x)/(1 − x)

On the basis of (3.7), we haveK (3)
n+1(z)

 =
2π

ρn+1/2(a2 − cos 2θ)1/2(a2n+1 − cos(2n + 1)θ)1/2
, (4.5)

whereas on the basis of (3.8), we haveK (3)
n+1(z)

 =
2π
ρn

·
(a1 + cos θ)1/2

(a1 − cos θ)1/2
· (A2ρ−2

+ ρ2
− 2A cos 2θ)1/2

× [A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n) cos 2θ

+ 2A2ρ cos(2n + 3)θ + 2ρ cos(2n − 1)θ − 2A(ρ3
+ ρ−1) cos(2n + 1)θ ]

−1/2. (4.6)

Let

Rn+1(f ) =
1

2π i


Γ

K
(3)
n+1(z)f (z)dz,

then (2.5) obtains the form

|Rn+1(f )| ∼=
Rn+1(f )

 ≤
1
16

ρ−n−1/2a1

 2π

0

1
(a2n+1/2 − cos2(n + 1/2)θ)1/2

dθ,

+
1
16

ρ−n−1
 2π

0

cos θ

(a2n+1/2 − cos2(n + 1/2)θ)1/2
dθ,

i.e., since the second integral is equal to zero (it can be proved in a similar way as in the previous subsection),

|Rn+1(f )| ∼=
Rn+1(f )

 ≤
4a1

ρ2n+1 + 1
K(a−1

n+1/2). (4.7)

The error estimate (4.7) is the same as the error bound of this type for the corresponding Gauss quadrature formula (1.2)
(cf. [10, Eq. (5.9)]).

5. Error bounds of the type (2.4)

The location on the elliptic contours where the modulus of the kernel attains its maximum value is investigated. This
leads to effective error bounds of the corresponding anti-Gauss quadratures.
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The derivation of adequate bounds for |Rn+1(f )| on the basis of (2.4) is possible only if good estimates for maxz∈Eρ

|Kn+1(z)| are available, especially if we know the location of the extremal point η ∈ Eρ at which |Kn+1| attains its maximum.
In such a case, instead of looking for upper bounds for maxz∈Eρ |Kn+1(z)| one can simply try to calculate |Kn+1(η, w)|. In
general, this may not be an easy task, but in the case of the Gauss-type quadrature formula (1.2) there exist effective
algorithms for calculation of the kernel at any point z outside [−1, 1] (see [11]).

So far, this approach (cf. (2.4)) was discussed for Gaussian quadrature rules (1.2) with respect to the Chebyshev weight
functions wi, i = 1, 2, 3, 4 (see [11,9]), and later has been extended by Schira to symmetric weight functions under
restriction of monotonicity type (either w(t)

√
1 − t2 is increasing on (0, 1) or w(t)/

√
1 − t2 is decreasing on (0, 1)),

including certain Gegenbauer weight functions (see [14]).

5.1. The case w(x) = w1(x) = (1 − x2)−1/2

Theorem 5.1. For the anti-Gauss quadrature formula (1.3), n ∈ N, with the weight function w1(x) on (−1, 1), the modulus of
the kernel

K (1)
n+1(z)

 attains its maximum value on the real axis (θ = 0), i.e.,

max
z∈Eρ

K (1)
n+1(z)

 = −K (1)
n+1


1
2
(ρ + ρ−1)


.

Proof. The modulus of the kernel
K (1)

n+1(z)
 is given by (4.1). It is obvious that

1
(a2 − cos 2θ)(a2n − cos 2nθ)

≤
1

(a2 − 1)(a2n − 1)
,

for all θ ∈ [0, π/2] (w1 is even weight), all n, with equality holding when θ = 0. With z =
1
2 (ρe

iθ
+ ρ−1e−iθ ) ∈ Eρ , this

gives the desired result. �

5.2. The case w(x) = w2(x) = (1 − x2)1/2

Theorem 5.2. For the anti-Gauss quadrature formula (1.3), n ∈ N, n is even, with the weight function w2(x) on (−1, 1), the
modulus of the kernel

K (2)
n+1(z)

 attains its maximum value on the imaginary axis (θ = π/2), i.e.,

max
z∈Eρ

K (2)
n+1(z)

 =

K (2)
n+1


i
2
(ρ − ρ−1)

 .
Proof. The modulus of the kernel

K (2)
n+1(z)

 is given by (4.3). It is obvious that

a2 − cos 2θ
a2n+2 + cos(2n + 2)θ

≤
a2 + 1

a2n+2 − 1
,

for all θ ∈ [0, π/2] (w2 is even weight), all n, with equality holding when θ = π/2. With z =
1
2 (ρe

iθ
+ ρ−1e−iθ ) ∈ Eρ , this

gives the desired result. �

The value on the right-hand side of the sign in the last inequality represents and the maximum of the modulus of the
kernel of n-point (n is odd) Gauss quadrature formula (1.2) with respect to the weight w2 (see [11, Th. 5.2]).

Theorem 5.3. For each positive integer k (≥ 2) let ρk > 1 be the unique root of

a1(ρ)

ak(ρ)
=

1
k

(ρ > 1). (5.1)

Then, if n ≥ 1 is odd, we have

max
z∈Eρ

K (2)
n+1(z)

 =

K (2)
n+1


i
2
(ρ − ρ−1)

 if ρ ≥ ρn+1, (5.2)

i.e., the maximum of
K (2)

n+1(z)
, for z ∈ Eρ and ρ ≥ ρn+1, is attained on the imaginary axis. If 1 < ρ < ρn+1, then the maximum

in (5.2) is attained at some z = z∗
=

1
2 (ρe

iθ∗

+ ρ−1e−iθ∗

) ∈ Eρ with (nπ)/(2(n + 1)) < θ∗ < π/2.

The proof can be performed by using the same arguments as in [9, Th. 1], having in mind that here n is odd, and κn(θ) =

(a2 − cos 2θ)/(a2n+2 + cos(2n+2)θ), θ ∈ [0, π/2]. The roots ρk > 1 of (5.1) satisfy (2k)1/k < ρk < µk, for all k ≥ 2, where
µk (> 1) is the unique root of µk+1

− k(µ2
+ 1) = 0.
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Fig. 5.1. The function θ → |K (3)
4 (z)|, z ∈ Eρ , when ρ = 1.3 (left) and ρ = 3.3 (right).

Table 5.1 (cf. [9, p. 220]) displays the roots ρk > 1 of (5.1), and now every second value in it definitely obtains the
meaning. Therefore, ρ2 = 2.2966302629 represents the corresponding value of the anti-Gauss quadrature formula (1.3)
with two nodes, whereas ρ3 = 1.9318516526 is the corresponding value of the Gauss quadrature formula (1.2) with two
nodes, etc.

5.3. The case w(x) = w3(x) =
√

(1 + x)/(1 − x)

We consider the general case, where A = An is given by (3.6) and
K (3)

n+1(z)
 by (4.6).

Numerical results show that |K (3)
n+1(z)|, z ∈ Eρ , attains its maximum on the real axis for ρ enough large (n is fixed). The

graphs θ → |K (3)
n+1(z)|, z ∈ Eϱ , i.e., θ ∈ [0, π], for n = 3, ρ = 1.3 (left) and ρ = 3.3 (right), are displayed in Fig. 5.1.

Theorem 5.4. For the anti-Gauss quadrature formula (1.2), n ∈ N, with the weight function w3(x), there exists a ρ∗
∈

(1, +∞) (ρ∗
= ρ∗

n ) such that for each ρ ≥ ρ∗ the modulus of the kernel
K (3)

n+1(z)
 attains its maximum value on the real

axis (θ = 0), i.e.,

max
z∈Eρ

K (3)
n+1(z)

 =

K (3)
n+1


1
2
(ρ + ρ−1)

 .
Proof. Using (4.6), it is sufficient to prove the following inequality for θ ∈ [0, π]:

a1 + cos θ

a1 − cos θ
· (A2ρ−2

+ ρ2
− 2A cos 2θ)

× [A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n) cos 2θ

+ 2A2ρ cos(2n + 3)θ + 2ρ cos(2n − 1)θ − 2A(ρ3
+ ρ−1) cos(2n + 1)θ ]

−1

≤
a1 + 1
a1 − 1

· (ρ − Aρ−1)2[A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n) + 2A2ρ + 2ρ − 2A(ρ3

+ ρ−1)]−1.

This condition, by putting

α + α1 = a1 + cos θ,

β + β1 = a1 − cos θ,

N + N1 = A2ρ−2
+ ρ2

− 2A cos 2θ,

D + D1 = A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n) cos 2θ

+ 2A2ρ cos(2n + 3)θ + 2ρ cos(2n − 1)θ − 2A(ρ3
+ ρ−1) cos(2n + 1)θ,

where

α = a1 + 1 (> 0), α1 = −2 sin2 θ

2
,

β = a1 − 1 (> 0), β1 = 2 sin2 θ

2
,
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Fig. 5.2. Typical graph of the function F5(ρ) on the interval [1, 2.4].

N = (ρ − Aρ−1)2 (≥ 0), N1 = 4A sin2 θ,

D = A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n) + 2A2ρ + 2ρ − 2A(ρ3

+ ρ−1) (≥ 0),

D1 = 4A(ρ2n+2
+ ρ−2n) sin2 θ − 4A2ρ sin2 (2n + 3)θ

2
− 4ρ sin2 (2n − 1)θ

2
+ 4A(ρ3

+ ρ−1) sin2 (2n + 1)θ
2

,

has the form
(α + α1)(N + N1)

(β + β1)(D + D1)
≤

αN
βD

.

The last inequality holds, if

αN(β + β1)(D + D1) − βD(α + α1)(N + N1) ≥ 0,

i.e., if

αN(βD1 + β1D + β1D1) − βD(αN1 + α1N + α1N1) ≥ 0.

The last inequality holds for θ = 0.
Let θ ∈ (0, π]. The last inequality holds, after dividing it by 2 sin2(θ/2) and using the well-known inequality sin2

(ζ θ)/ sin2 θ ≤ ζ 2 (ζ ∈ R), if

Fn(ρ) ≥ 0, (5.3)

where

Fn(ρ) = [A2ρ2n+4
+ ρ2n

+ A2ρ−2n−2
+ ρ−2n+2

− 2A(ρ2n+2
+ ρ−2n)

+ 2A2ρ + 2ρ − 2A(ρ3
+ ρ−1)] ·


a1(ρ − Aρ−1)2 − 4A(a21 − 1)


− ρ(a1 + 1)(ρ − Aρ−1)2


2 + 2A2

+ (a1 − 1)

(2n − 1)2 + A2(2n + 3)2


,

i.e.

Fn(ρ) =
1
2
A2ρ2n+7

+ O(ρ2n+6) (ρ → ∞).

On the basis of the last equality, the assertion of the theorem follows. �

Typical graph of the function Fn(ρ) (here for n = 5 on the interval [1, 2.4]) is displayed on Fig. 5.2.
The proof of Theorem 5.4 is of practical importance. Namely, we can determine the intervals [ρ∗, +∞) on which the

modulus of the kernel K (3)
n+1 attains its maximum value on the positive real axis. For some values of n the values of ρ∗

n are
displayed in Table 5.1. Observe that the results become very satisfactory when n increases.

We end this subsection with an example.
Remainder terms for quadrature formulas are traditionally expressed in terms of some high-order derivative of the

involved function. This is a serious disadvantage, if such derivatives are not known, do not exist or are too complicated
to be handled.

Let us consider numerical calculation of the integral

I(f ) =

 1

−1
f (x)


1 + x
1 − x

dx, (5.4)
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Table 5.1
The values of ρ∗ for some n ∈ N.

n ρ∗ n ρ∗ n ρ∗

1 5.813 2 3.37 3 2.756
4 2.452 5 2.266 6 2.138
7 2.044 8 1.972 9 1.913

10 1.866 15 1.71 20 1.622
25 1.563 30 1.52 35 1.487
40 1.46 45 1.438 50 1.419
60 1.389 70 1.366 80 1.347

100 1.318 200 1.243 500 1.173

with

f (x) =
ee

x

(a + x)k(b + x)ℓ(c + x)m
,

where c ≤ b ≤ a < −1; k ∈ N, ℓ,m ∈ N0.
Under the assumption that f is analytic inside Eρmax , from (2.4) we obtain the error bound

|Rn+1(f )| ≤ r̃n+1(f ), (5.5)

where

r̃n+1(f ) = inf
ρ∗
n<ρ<ρmax


ℓ(Eρ)

2π


max
z∈Eρ

K (3)
n+1(z)

max
z∈Eρ

|f (z)|


,

and ρ∗
n is defined by Theorem 5.4. In the case under consideration |a| =

1
2 (ρmax + ρ−1

max).
The length of the ellipse Eρ can be estimated by (see [15, Eq. (2.2)])

ℓ(Eρ) ≤ 2πa1


1 −

1
4
a−2
1 −

3
64

a−4
1 −

5
256

a−6
1


,

where a1 = (ρ + ρ−1)/2.
It can be proved (see [16]) that

max
z∈Eρ

 ee
z

(a + z)k(b + z)ℓ(c + z)m

 =
ee

a1

|a + a1|k|b + a1|ℓ|c + a1|m
,

where the maximum is attained at θ = 0. Now, rn+1(f ) (≥ r̃n+1(f )) has the form

rn+1(f ) = inf
ρ∗
n<ρ<ρmax


2πa1


1 −

1
4
a−2
1 −

3
64

a−4
1 −

5
256

a−6
1


ee

a1

|a + a1|k |b + a1|ℓ|c + a1|m

×
1
ρn

(a1 + 1)1/2

(a1 − 1)1/2
· (ρ − Aρ−1)

×

A2ρ2n+4

+ ρ2n
+ A2ρ−2n−2

+ ρ−2n+2
− 2A(ρ2n+2

+ ρ−2n) + 2A2ρ + 2ρ − 2A(ρ3
+ ρ−1)

−1/2


.

Let c ≤ b ≤ a < −1. This condition means that the function f is analytic inside the elliptical contour Eρmax , where
ρmax = 1 +

√
2|a|. The classical error bound in this case is difficult to determine, since the derivatives of higher order

of the function f are too complicated to be handled. However, we can use the error bound (5.5) based on the results of
Theorem 5.4.

The error bound (5.5) is valid for integrands analytic on a neighborhood of the interval of integration and we compare it
with the same error bounds for the corresponding Gauss quadrature formulae (1.2), i.e., en(f ) (≥ẽn(f ) ≥ |En(f )|) intended
for the same class of integrands. Derivation of en(f ) can be done in a similar way, by using [11, Th. 5.3 with Eq. (5.11)].

Let the integrand f be specialized by k = 1, ℓ = 5,m = 10, and

a = −1.202083333333333(+01), b = −1.751428571428572(+01),
c = −2.301086956521739(+01),

which means that ρmax = 24.
We have calculated the values of rn+1(f ), en(f ) for the corresponding integral I(f ) given by (5.4). For some values of n,

the obtained results are displayed in Table 5.2. (Numbers in parentheses indicate decimal exponents.)
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Table 5.2
The values of en(f ), rn+1(f ) for some n.

n en(f ) rn+1(f ) n en(f ) rn+1(f )

1 2.395(−19) 3.478(−13) 20 3.636(−42) 3.448(−42)
2 5.371(−20) 7.601(−20) 30 4.573(−57) 4.415(−57)
3 8.02(−21) 5.31(−21) 40 9.546(−73) 9.3(−73)
5 9.11(−23) 7.232(−23) 50 5.67(−89) 5.554(−89)

10 1.395(−28) 1.25(−28) 60 1.293(−105) 1.271(−105)

Table 5.3
The values of en(f ), rn+1(f ) for some n.

n en(f ) rn+1(f ) n en(f ) rn+1(f )

1 5.112(+00) 2.095(+02) 10 9.256(−12) 8.338(−12)
2 5.044(−01) 2.897(−01) 20 2.04(−27) 1.937(−27)
3 3.599(−02) 2.509(−02) 30 3.936(−44) 3.801(−44)
5 1.068(−04) 8.642(−05) 40 1.741(−61) 1.697(−61)

At the end, let us consider numerical calculation of the integral (5.4), with

f (t) = f̄ (t) = ecos t .

The function f̄ (z) = ecos z is entire, and it is easy to see that

max
z∈Eρ

ecos z = ecosh(b1),

where b1 =
1
2 (ρ − ρ−1).

And for this case, we have calculated the values of rn+1(f ), en(f ) for the corresponding integral I(f ) given by (5.4). For
some values of n, the obtained results are displayed in Table 5.3.
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