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An analytical solution for the non-isothermal 2-D compressible gas flow in a 
slider microbearing with different temperatures of walls is presented in this pa-
per. The slip flow is defined by the continuity, Navier-Stokes and energy conti-
nuum equations, along with the velocity slip and the temperature jump first order 
boundary conditions. Knudsen number is in the range of 10

–3
-10

–1
, which corres-

ponds to the slip flow. The ratio between the exit microbearing height and the mi-
crobearing length is taken to be a small parameter. Moreover, it is assumed that 
the microbearing cross-section varies slowly, which implies that all physical 
quantities vary slowly in x-direction. The model solution is treated by developing 
a perturbation scheme. The first approximation corresponds to the continuum 
flow conditions, while the second one involves the influence of rarefaction effect. 
The analytical solutions of the pressure, velocity, and temperature for moderately 
high Reynolds numbers are presented here. For these flow conditions the inertia, 
convection, dissipation, and rate at which work is done in compressing the ele-
ment of fluid are presented in the second approximation, also. 

Key words: microbearing, non-isothermal, slip flow, different walls‘  
                   temperatures, analytical solution 

Introduction 

Microbearing gas flow is encountered in various micro-electro-mechanical systems 

(MEMS) such as microbearings, micropumps, microvalves or magnetic disk storages [1]. The 

hard disc industry demands nanometer distances between sliders with read/write heads and 

rotating recording disks. The gas slider bearing flow in the continuum regime is traditionally 

modelled with the Reynolds lubrication equation which is derived from the Navier-Stokes and 

continuity equations under the no-slip boundary conditions. The thickness of the lubricating 

film in microdevices is of the order of the mean free path of gas molecules and the continuum 

theory is not applicable yet. A wide range of Knudsen numbers is possible in microdevice 

flows, but the slip flow regime with 10
–3

 < Kn < 0.1 is the most frequent. Therefore, solutions 

for such flow conditions in microbearings are desirable. 

Analytical and numerical analyses of the slip gas flow in microbearings have been 

performed so far by a number of authors. Burgdorfer [2] made the Reynolds equation 
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correction by including the Maxwells first order slip conditions at the wall. Mitsuya [3] set up 

a 1.5-order slip model for ultra thin gas lubrication. Hsia et al. [4] developed a second order 

model by incorporating their second order boundary condition in the Reynolds lubrication 

equation. They also carried out experiments with different gases in microbearings, and 

compared the obtained load carrying capacity with the analytical results. Sun et al. [5] 

incorporated an expression for the effective viscosity in the Navier-Stokes equation and 

obtained a modified Reynolds equation. Bahukudumbi et al. [6] developed a semi-analytical 

model for gas lubricated microbearings. They remarked that the viscosity coefficient depends 

on the Knudsen number. Since the proposed relation is not general, the rarefaction correction 

parameter had been introduced in this relation. The values of the rarefaction correction 

parameter had been defined for certain Knudsen number and surface accommodation 

parameter values by comparing the flow rate results with the numerical solutions of the 

Boltzmann equation under the same conditions obtained by Fukui et al. [7, 8]. Finally, the 

derived function of the viscosity coefficient had been introduced in the model, and the new 

modified Reynolds equation was obtained. Liu et al. [9] analyzed the posture effects of a 

slider air bearing and the influence of the lower plate velocity on the pressure distribution and 

velocity field with a direct simulation Monte Carlo method. All these solutions are obtained 

for the isothermal flow condition, while there have been no solutions yet for the non-isother-

mal flow conditions in the microbearing. 

The model developed in this paper is referred to the non-isothermal microbearing 

gas flow with different temperatures of the walls. It is based on already verified results for an 

isothermal pressure-driven gas flow in a microchannel with slowly varying cross section [10] 

and an isothermal gas flow in a microbearing [11, 12]. The small parameter is defined as the 

ratio between the exit microbearing height and the microbearing length eh l  . Moreover, it 

is assumed that the channel cross-section varies slowly, which also implies that all physical 

quantities vary slowly in the flow direction. The gas flow is subsonic and the ratio between 

Mach and Reynolds number Ma
2
/Re is taken to be of the order of the small parameter. All 

these assumptions together with the defined relations of Reynolds, Mach, and Knudsen 

numbers to the small parameter e, enable a precise estimation of each term in the 

dimensionless governing equations, as well as in the boundary conditions. The problem is 

solved by the continuum governing equations (continuity, Navier-Stokes, and energy), 

accompanied by the Maxwell-Smoluchowski first-order velocity slip and temperature jump 

boundary conditions. In the solving procedure, the pressure, velocity, and temperature are 

expressed as the perturbation series of Knudsen number. The system of non-linear second 

order differential equations is obtained, and it is solved numerically. Whereas no solutions of 

non-isothermal gas flow in the microbearing exist in the open literature yet, the results are 

compared with Fukui et al. [7, 8] numerical solution of the Boltzman equation for isothermal 

microbearing gas flow. The obtained results appear to be in good agreement with numerical 

solution of the Boltzman equation for the flow conditions with no temperature differences 

between walls, which is a good verification of the presented solution. 

Problem description 

A 2-D and compressible gas flow in microbearing with constant but different 

temperatures of the walls is considered (fig. 1). Differently from an isothermal flow which is 

defined with the continuum, momentum, equation of state, and slip boundary conditions at the 

wall, now for the non-isothermal flow condition the energy equation and temperature jump 



Mili}ev, S. S., et al.: A Microbearing Gas Flow with Different Walls Temperatures 
THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 119-132 121 
 

boundary condition have to be involved too. 

These equations are transformed into the 

non-dimensional form by the introduction of 

the following scales: the exit microbearing 

height eh  for crosswise co-ordinate y  and 

microbearing height, the microbearing length 

l  for stream-wise co-ordinate x , the wall 

velocity wu  for velocities, the average 

temperature of the lower and the upper plate 

aT  for the temperature, while the pressure is 

scaled by the pressure at the microbearing 

outlet cross-section rp  and the density by 

r rp  / aRT , where R is the gas constant. 

Furthermore, all non-dimensional parameters 

are denoted without a bar, i. e. the pressure as p, the stream-wise velocity component as u, etc. 

The small parameter is defined as the ratio between the exit microbearing height and 

the microbearing length: 

 eh

l
   (1) 

The low Mach number flow conditions enable an assumption that the ratio between 

the square of the Mach number and the Reynolds number is of the order of the small 

parameter: 
 

 
2
r

r
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
  (2) 

 
where g = O(1),  is the ratio of specific heats, and Mar – the referent Mach number value 

defined as: 
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and Rer is the referent Reynolds number: 
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The dynamic viscosity ~  is assumed to be constant, i. e. 1 . 

The assumption of the slowly varying channel cross-section implies that the 

crosswise velocity component v~  is much smaller than the stream-wise component ,u  which 

leads to the following relation: v = eV, V = O(1). 

The continuity equation, the Navier-Stokes equations for the stream-wise and 

crosswise directions, the energy equation, and the equation of state in the dimensionless form 

are: 

 
( ) ( )

0
u V

x y

  
 

 
 (5) 

 
Figure 1. Slider microbearing geometry 
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 p T  (9) 

 
The same as the dynamic viscosity, the thermal conductivity k is treated as constant. 

Therefore, the Prandtl number Pr /pc k   is constant, where cp is the specific heat at  

constant pressure. In accordance with the well-known Maxwell-Smoluchowski first-order slip 

boundary conditions, the gas velocity and the temperature at the wall in the dimensionless 

form are, respectively: 
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where q = (Tw1 – Tw2)/2, v and T are the momentum and the thermal accommodation 

coefficients, and Knr is the reference Knudsen number defined as r r eKn h . Since the 

molecular mean-free path is defined as 1/2( R 2) /T p    [6], the relation between the local 

eKn h  and the reference Knudsen number rKn  is Kn = (T
1/2

/p)Knr. Furthermore, the 

relation between Knr, Mar, and Rer is: 
 

 r
r

r
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The presumption of an extremely subsonic flow in the slip regime enables the 

relation  between  the  Mach and Knudsen numbers and the small parameter  e: 2
rMa  = be

m
, 

b = O(1) and Knr = he
n
, h = O(1). Due to this correlation and the relation (14) between the 

Reynolds, Mach, and Knudsen numbers, follows an exact expression for the Reynolds 

number and  the  relations  between the introduced parameters m and n, as well as b
 
and h: 
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Rer = (b/g)e
m–1

, b = g
2
p/2h

2
, and 2n + m = 2. The supposition of the low Mach and Knudsen 

number flow constrains m and n to the positive domain, which together with the relation 2n + 

+ m = 2 gives that these parameters must be in the following ranges: 0 < m < 2 and 0 < n < 1. 

This way, two characteristic problems could be analyzed: Rer < 1, when 1< m <2 and 0 < n < 

< 1/2, and Rer > 1, when 0 < m < 1 and 1/2 < n <1. In this paper, the solution for Rer > 1 is 

presented. The values of the parameters m and n are chosen to enable the attendance of the 

inertia in the second approximation of the momentum equation, as well as the convection, 

dissipation and rate at which work is done in compressing the element of fluid in the second 

approximation of the energy equation, together with the rarefaction: m = n = 2/3. The 

relations for the dimensionless numbers are: Rer = (b/g)e
–1/3

, kMar
2
 = be

2/3
, and Knr = he

2/3
. 

All dependant variables from eqs. (5)-(9), i. e. pressure, temperature, and velocity 

components, are presented in the form of perturbation series: 
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where f0 is the solution for the flow with no-slip boundary conditions, and f1 comprises the 

corrections for the slip and temperature jump on the wall. The systems of equations for two 

approximations, along with the corresponding boundary conditions are obtained by a 

substitution of the perturbation series for the pressure, velocities, and temperature in the 

continuity eq. (5), momentum conservation eq. (6), energy eq. (8), equation of state (9), and 

the boundary conditions (10)-(13). In order to capture the slip effect already in the second 

approximation, the power for the small parameter in the second term on the r. h. s. of eq. (15) 
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). As the inertia in equation (6) is of the order 
2 2 3
rMa  , for the perturbation series in eq. (15), the inertia effect is included also in the 

second approximation. Also, the terms for the dissipation, convection, and rate at which work 

is done in compressing the elements of fluids in the energy eq. (8) are of the order 
322

rMa   and hence come out in the second approximation. The terms of the order O(1) 

and O(e
2/3

) are extracted, and the following sets of equations are obtained: 
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 for O(e
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The solution procedure for each system of these equations is the same. First, the 

approximation of the temperature is derived from the corresponding energy equation (18) and 

(25) along with the temperature boundary conditions (21), (22), (28), and (29). Then, the 

approximation of the velocity is derived from the corresponding momentum eqs. (17) and 

(24) and the velocity boundary conditions (19), (20), (26), and 27). The pressure approx-

imation follows from the continuity equations (16) and (23). The systems are solved 

successively, and the temperature, velocity and pressure analytical solutions, for the 

moderately high Reynolds numbers gas flow in the microbearings with different temperatures 

of the walls, are: 
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where  a  prime  denotes  d/dx, while h is the channel cross-section law defined as: h(x) = hi – 

– x(hi – 1), where hi is the dimensionless parameter defined as the ratio of the inlet and outlet 

microbearing heights hi = i e/ .h h  Based on the coefficient g that is defined from eqs. (1)-(4) as 

g = 2
w e e/l p h and the bearing number L = 2

w e e6 u l p h , is evident the relation g = L/6. 

The system of the two second order differential eqs. (33) and (36) that enables the 

prediction of the pressure along the microbearing, demands four boundary conditions at the 

channel inlet – p0, p1, 0p , and 1p . However, the first derivate of the pressure is unknown. 

This problem is overcome by using the known pressure at the channel outlet instead of the 

first pressure derivate at the inlet, which imposes the application of the shooting method for 

the solving of the system of equations. The boundary conditions for the pressure, prescribed at 

the inlet and outlet are: x = 0, p = p0 = 1, p1 = 0, and x = 1, p = p0 = 1, p1 = 0. 

Results and discussion 

The results for the pressure, velocity, and temperature field for different temperature 

walls microbearing gas flows are presented in this section. The problem is defined by five 

dimensionless parameters. Here, the following five have been selected: the reference Knudsen 

and Mach number, half of the dimensionless temperature difference between the lower and 

upper wall θ, the bearing number L, and the ratio between the inlet and exit microbearing 

heights h1. All results are obtained for v = 1, T = 1, and for a monoatomic gas, thus  = 5/3 

and Pr = 2/3. 

In fig. 2, the pressure distribution for a 

microbearing with constant and equal 

temperatures of the walls (q = 0) with and 

without the second order effects (inertia, 

convection, dissipation, and rate at which 

work is done in compressing the element of 

fluid) are presented. Those are compared 

with a numerical solution of the Boltzmann 

equation (Fukui et al. [7, 8]) and an 

analytical solution with two approximations 

(Stevanovic [11]) which are obtained for an 

isothermal microbearing gas flow without 

inertia effects. Excellent agreement is 

achieved. For Kn = 0.1, a deviation from the 

numerical solution exists, which is a 

consequence of only two approximations in 

the presented model, while good agreement is 

attained for lower Knudsen numbers. 

The walls’ temperature influence on the 

pressure distribution along the microbearing 

is presented in fig. 3. The temperature 

difference between the walls for two 

analyzed regimes is the same, but the 

position of the warmer wall is different. The 

upper location of the warmer wall (q = –0.5) leads to a higher pressure i. e. a higher 

microbearing load carrying capacity than for the lower location of the warmer wall (q = 0.5) 

 
 

Figure 2. Comparison of the presented results 
for the pressure distribution in microbearing 

with equal temperatures of the walls with those 
of Fukui et al. [7, 8] and of Stevanović [11] for 
the flow condition hi = 2, L = 1, Mar = 0.3, and 

Knudsen numbers: Knr = 0, Knr = 0.05, and 
Knr = 0.1 
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case. Also, the influence of the second order effects that come out from the momentum and 

energy equations on the pressure distribution along the microbearing are presented in fig. 3. 

These effects (inertia, convection, dissipation, and rate at which work is done in compressing 

the element of fluid), without the second order effects that come out from the boundary 

conditions (slip and temperature jump), would be marked in all figures in this paper as “the 

second order effects.” It is evident that “the second order effects” lead to pressure increase in 

the microbearing, as well as to a higher load carrying capacity. 

In order to analyze the influence of the slip and temperature jump at the wall on 

pressure distribution in microbearing, beside the results for Kn = 0.1, the results obtained for 

the continuum flow condition (Kn = 0) are presented in fig. 3 as well. It is obvious that these 

second order effects that appear in the boundary conditions at the wall lead to a lower 

pressure in the microbearing. The influence of the warmer wall position on the pressure 

distribution is the same for the continuum as for the slip flow conditions. When the wormer 

wall is above, the pressure is higher than when the wormer wall position is underneath. 
 

 
Figure 3. The walls’ temperatures influence on 
the pressure distribution along the microbearing 
for: hi = 2, L = 1, Mar = 0.3, Knr = 0.1 and three 

temperature boundary conditions: q = 0.5, q = 0, 
and q = –0.5 

 
Figure 4. The walls’ temperature influence on the 

velocity field in the microbearing for hi = 2, L = 1, 
Mar = 0.3, Knr = 0.1 and three temperature 
boundary conditions: q = 0.5, q = 0, and q = –0.5 

 

In fig. 4, the influence of the temperature boundary conditions on the velocity 

profiles for the flow condition defined with Knr = 0.1, hi = 2, L = 1, Mar = 0.3 are presented. 

The full lines refer to the upper location of the warmer wall (q = –0.5), the dash-dotted lines 

to the equal wall temperature (q = 0), while the dashed lines refer to the lower position of the 

warmer wall (q = 0.5). In any case, the slip at the lower wall decreases from the inlet to the 

exit, while at the upper wall the slip is increasing. For both presented temperature boundary 

conditions, the velocity becomes higher from the microbearing inlet to its exit. 

The influence of the second order effects, as well as the rarefaction effect on the 

velocity in the microbearing is presented in fig. 5. The inertia, convection, dissipation, and 

rate at which work is done in compressing the element of fluid lead to lower velocity values 

for the flow conditions defined with Knr = 0.1, hi = 2, L = 1, Mar = 0.3, and q = 0.5, but have 

no influence on the slip velocity at the walls. This could be also concluded from the boundary 
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conditions (26) and (27), and the solution 

for u0 (31) that does not depend on the 

second order effects. The results for Kn = 

= 0 are also presented in fig. 5 with 

dotted lines. These results are the first 

order solution u0 (31) which excludes the 

rarefaction as well as the second order 

effects from the momentum and energy 

equations. The difference between the 

velocity profiles obtained by omitting all 

second order effects (u0), obtained by 

excluding only the second order effects 

from the momentum and energy equa-

tions – b = 0 in eqs. (24) and (25), i. e. in 

solutions (34) and (35) – and obtained 

with the rarefaction as well as the second 

order effects from the momentum and 

energy equations – b ¹ 0 in eqs. (24) and 

(25), i. e. in solutions (34) and (35) – is 

evident.  

The temperature profiles for the 

microbearing gas flow between the walls 

at different temperatures are depicted in fig. 6. The results are given for the Knudsen number 

Knr = 0.1, Mach number Mar = 0.3, bearing number L = 1, the ratio of the inlet and outlet 

microbearing heights hi = 2, and for two
 
different temperature boundary conditions. For both 

presented cases, the temperature difference is the same, but in fig. 6(a) the lower wall is 

warmer (q = 0.5), while in fig. 6(b) it is colder (q = –0.5). The complete temperature solution 

 

 
Figure 5. The rarefaction influence and the second 
order effects influence on the velocity field in the 

microbearing for hi = 2, L = 1, Mar = 0.3, Knr = 0.1, 
and q = 0.5 

 
Figure 6. The temperature profiles for the microbearing gas flow for hi = 2, L = 1, Mar = 0.3,  

Knr = 0.1 and two temperature boundary conditions: (a) q = 0.5 and (b) q = –0.5 
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obtained by eq. (35) is illustrated as well as the solution without the second order momentum 

and energy effects – obtained by putting b = 0 in eq. (35) – and the deviation between them is 

negligible. The temperature jump is the same for both solutions and it is larger at the warmer 

wall than at the colder in one cross-section. It always increases from the inlet to the exit. The 

gas temperature always decreases from the wormer towards the colder plate and is different 

from the linear temperature distribution. Also, the first approximation, i. e. the solution for the 

continuum, eq. (30), which excludes any second order effect, are presented in fig. 6. In that 

case, the temperature profile is the same in any cross-section. The rarefaction influence on the 

temperature profile decreases the temperature differences in the microbearing cross-section.  

Conclusions 

The presented perturbation method enables obtaining a non-isothermal analytical 

solution for a microbearing gas flow, which had not been presented in literature before. The 

pressure, velocity, and temperature fields for the moderately high Reynolds number flow 

conditions and different walls temperatures have been analyzed. The small parameter has 

been defined by eq. (1) and Mach, Knudsen, and Reynolds numbers have been expressed with 

it. Furthermore, the exact relation between these numbers has been used for a precise 

estimation of the contribution of each term in the momentum and energy equations, as well as 

in the boundary conditions. The pressure, velocity, and temperature have been described with 

perturbation series. The first approximation corresponds to the continuum flow conditions, 

while the second approximation represents the contribution of the rarefaction effect. In 

addition, for the moderately high Reynolds numbers, from the second approximation the 

inertia, convection, dissipation, and rate at which work is done in compressing the element of 

fluid have been included.  

The rarefaction influence, as well as the influence of the second order effects from 

the momentum and energy equations on the pressure, velocity, and temperature fields has 

been analysed. The rarefaction causes a lower pressure in the microbearing, while the second 

order effects from the momentum and energy equations increase the pressure in the 

microbearing. The temperatures of the walls also influence the pressure. For the same 

temperature difference between the walls but the opposite positions of the warmer wall, the 

pressure is higher when the warmer wall is above.  

The rarefaction has influence also on the velocity and temperature fields. The 

velocity slip and the temperature jump are always present in the solution. For the solution 

with two approximations, they are equal, regardless of whether the second order effects are 

incorporated or not. However, the second order effects have influence on the velocity and 

temperature profiles.  

The first approximation is the solution for the continuum flow conditions without 

the second order effects. It is applicable for a non-isothermal gas flow in classic bearings with 

different temperature of the walls. In that case, the temperature profile does not change along 

the bearing, while the velocity does. 

As the solution for a non-isothermal gas flow in microbearings does not exist in the 

open literature yet, our non-isothermal solution for the temperature boundary conditions 

defined as equal temperatures of the walls has been compared with the numerical solution of 

the Boltzmann equation (Fukui et al. [7, 8]) and the analytical solution with two 

approximations (Stevanovic [11]), obtained for an isothermal microbearing gas flow. 

Excellent agreement has been achieved.  
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