
1 INTRODUCTION 
Large infrastructure networks, such as gas or water 
pipeline systems, undergo preventive maintenance 
programmes that are a significant part of network op-
erating costs (Zhao, 1998), (Zhao & Rajani, 2002). 
Maintenance optimization is fundamental to the ef-
fective management of these complex assets. Infor-
mation about the current condition of assets is needed 
for maintenance optimization; but there is a challenge 
in that typically only rough estimates about the actual 
pipe deterioration profiles is available, particularly in 
the case of large and buried infrastructure networks 
which are costly to inspect.  
In this situation, maintenance planning can be framed 
as a process which involves sub-problems:  
i) Identification of an optimal set (portfolio) of pipe 
inspections for which the subsequent renovation ac-
tions (if necessary) can be expected to improve the 
network operability most while also enabling the larg-
est cost saving.  
ii) Once the degradation states of the selected pipes 
have been assessed through inspections, identify an 
optimal plan for maintenance actions on the whole 
network.  
In this paper, we propose a novel risk-based method-
ology for selecting the most critical pipes of a net-

work, which is fundamental for addressing sub-prob-
lem i). The identification of optimal portfolios of in-
spections and maintenance actions upon inspections 
will be tackled in future research.   
Our risk-based methodology has been developed in 
collaboration with the Department of Civil and Envi-
ronmental Engineering at Aalto University. It makes 
it possible to accommodate imprecise statements that 
experts provide about the risk associated with net-
work pipes. The methodology is generic in that it can 
be applied to different types of network (gas, water, 
wastewater, etc.). We illustrate it with a real applica-
tion to the analysis of a large sewerage network in Es-
poo, Finland. 

2 NETWORK ANALYSIS 

In Helsinki region, water and wastewater services are 
provided by the Helsinki Region Environmental Ser-
vices Authority (HSY) which serves about one mil-
lion customers.  
In order to manage the network effectively, HSY has 
built a database which contains following information 
about every pipe:  
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 Pipe features: The ID code, installation year, lo-
cation (in terms of xyz-coordinates for both end-
points), diameter, depth, type (gravitational or 
pressure sewer), possible renovation year (in case 
the pipe has been renovated), and material. The 
most common pipe material is concrete, but some 
pipes are made of cast iron, polyethylene, PVC or 
renovated by felt socks.  

 Inspection results: The possible inspection year 
and outcome. For each inspected pipe, the inspec-
tion result is stored in the database, together with 
the location and type of each individual fault that 
has been detected during inspections (e.g. slump, 
hole, tree roots, pile-up). 

 Maintenance history: The number of blockages 
and flushing events is collected in the DB. 

 Pipe external context: Other significant infor-
mation related to the surrounding environment in 
which the pipe is located (i.e., buildings, traffic 
load, groundwater areas, and soil type). Most 
pipes are in clayish soil, but some are located in 
moraine, bedrock, organic, coarse silt or sandy 
soils.  

The case study considered in this paper is based on 
a subset of J=6103 pipes of the sewerage network in 
Espoo, Finland. This network is made up of more than 
33000 pipes, and has a total length of about 900 km. 

3 METHODOLOGY SNAPSHOT 
An accurate risk analysis is the basis of the risk-

based maintenance approach (Modarres, 2006). In 
this respect, although there exist several definitions of 
risk (e.g., see Aven & Renn, 2009 and Aven, 2012 for 
reviews and comparisons), in maintenance engineer-
ing risk has always been viewed as a combination of 
two failure attributes: likelihood (i.e., description of 
the uncertainty with which the failure is expected to 
occur) and severity (i.e., a quantification of the impact 
of failure on dimensions such as environment, safety, 
production) (Kaplan, 1981). 

In the case of large underground networks, the risk 
of the pipe failures cannot usually be precisely as-
sessed, because there is merely imprecise knowledge 
and/or uncertain information about i) the condition of 
the pipes (which are costly to inspect) and ii) the im-
pact of pipe failures on concerns such as the built en-
vironment and safety, among others. 

The RBM methodology proposed in this paper 
builds on the Multi Attribute Value Theory (MAVT, 
e.g., French, 1988 and Keeney & Raiffa, 1976) to de-
fine the risk associated to the pipes, based on qualita-
tive statements provided by experts. In short, MAVT 
is a systematic approach for tackling decision prob-
lems which involve multiple objectives.   

Within the proposed MAVT-based framework, the 
problem of assigning risk priorities to the pipes of the 
network has two main objectives: 

1. Identify pipes which are most likely to fail.   

2. Identify pipes whose failure has the most se-

vere consequences. 

For each objective, a team of experts analyzes which 
available indicators affect, according to the experi-
ence of these experts, failure likelihood and severity, 
respectively. These indicators are structured as a hi-
erarchy which provides decision support by decom-
posing the overall objective appropriately into more 
controllable factors (Keeney & Raiffa, 1976), (Saaty, 
1990). In particular, the hierarchy provides the DM 
with an overall view of the complex relationships in-
herent in the decision problem, and helps him/her as-
sess whether the objectives or criteria at each level are 
of the same order of magnitude so that they can be 
meaningfully compared with each other.  
For example, to meet the objective of identifying 
pipes with the highest failure likelihoods, the decision 
maker estimates which sub-indicators (such as pipe 
age and material) matter most (Figure 1). The decom-
position proceeds until no further refinements are 
needed. The sub-indicators at the lowest level of the 
hierarchy are called leaves, and for every leaf we need 
to specify appropriate values that the alternatives can 
attain on these sub-indicators. For example, the indi-
cator “Material” (where the objective is to find pipes 
with the weakest material) can assume one out of the 
following values ‘PVC’, ‘cast iron’, ‘concrete’, ‘pol-
yethylene’, ‘renovated by felt socks’. 
If the leaf indicators are mutually preferentially inde-
pendent (Keeney & Raiffa, 1976), an additive func-
tion can be used to calculate the overall value j of any 
alternative (i.e., pipe) 𝑥𝑗 , 𝑗 = 1, … , 𝐽 

 
𝑉(𝑥𝑗) = ∑ 𝑤𝑖 ∙ 𝑣𝑖(𝑥𝑖

𝑗
)𝑛

𝑖=1   
 
where 𝑛 is the number of leaf indicators, 𝑤𝑖 is the im-
portance of the 𝑖-th leaf indicator with respect to the 
others, 𝑥𝑖

𝑗 is the value (or consequence) of indicator 𝑖 
for alternative 𝑥𝑗 , and 𝑣𝑖 (𝑥𝑖

𝑗
) represents its rating. 

More specifically, at every level 𝑙ℎ in the hierarchical 
structure, the experts express preferences to establish 
the relative impact of the sub-indicators (at level 𝑙ℎ+1) 
on the corresponding indicator at the higher level 𝑙ℎ. 
These preference statements are translated into possi-
bly uncertain values of indicator weights at level 𝑙ℎ+1. 
Then, the weights at every hierarchical level are prop-
agated through the tree to yield the weights 𝑤𝑖 of the 
leaf attributes (Keeney & Raiffa, 1976), (Punkka & 
Salo, 2013), (Saaty, 1990), (Salo & Hämäläinen, 
1995). In our approach, the DM’s preferences are 
elicited by applying the extension (Salo & Hämä-
läinen, 1995) of the PAIRS method (Salo & Hämä-
läinen, 1992), which makes it possible to admit im-
precise preference statements such as ‘objective 𝑖 is 
more important than objective 𝑖 + 1’. 



Ratings in the range [0,100] are assigned to 𝑥𝑖
𝑗, 𝑖 =

1, . . , 𝑛, 𝑗 = 1, … , 𝐽 through the SWING procedure 
(Von Winterfeldt & Edwards, 1986). Finally, com-
bining these ratings with the weights of the sub-indi-
cators gives a full ranking for the alternatives.  
Note that the procedure of associating the correspond-
ing rate vector with each pipe can be easily auto-
mated, because the measurement values of the leaf in-
dicators are pipe characteristics such as material and 
age, characteristics of the location of the pipe. These 
are stored in the databases maintained by the network 
utilities so that a vector of leaf measurement values 
can be automatically assigned to every pipe. The cor-
responding rates come from the SWING procedure, 
which is performed once for every leaf sub-indicator 
(except updating).  
The above procedure assigns two overall values to 
each pipe: the likelihood value and the severity value. 
On this basis, the pipes can be compared with each 
other to identify those that are characterized by the 
highest failure likelihood and the highest failure se-
verity. In this respect, given the uncertainty in both 
the likelihood and severity values, the pairwise dom-
inance concept (Salo & Hämäläinen, 1995) is utilized 
to select the non-dominated pipes (i.e., the Pareto op-
timal set) in the two-dimensional space defined by 
failure likelihood and failure severity. 

4 LIKELIHOOD AND SEVERITY 

4.1 Likelihood 

Figure 1 shows the hierarchical structure of failure 
likelihood that was identified based on expert inter-
views. The sub-indicators at level 𝑙2 are: 
• Pipe features: In order to identify the pipes with the 
highest failure likelihood, one can evaluate the im-
portance of pipe-specific characteristics such as the 
pipe construction material, age since last renovation 
and diameter. Note that we are not considering the 
pipe installation year attribute, because in our dataset 
this is strongly correlated with (and thus captured by) 
the pipe material type. 
• Past events: The larger the number of past block-
ages and flushing, the larger the probability of disrup-
tions in the near future. 
• Local circumstances: The elements of the sur-
rounding environment can contribute significantly to 
the failure likelihood. According to the experts’ opin-
ion, the most important factors are the soil and the 
traffic load. 
The weights were elicited with the PAIRS method 
(Salo & Hämäläinen, 1992). That is, for every indica-
tor at the second level, 𝑙2, of the hierarchical tree, the 
sub-indicators are ranked based on their importance 
by maximizing the failure likelihood. In our case 
study, the increase in the harshness of local surround-

ings was judged to be the least important sub-indica-
tor from the perspective of maximizing the failure 
likelihood, with no preference between pipe features 
and past events. These statements correspond to the 
following inequalities 

 
𝑤𝑝𝑖𝑝𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ≥ 𝑤𝑙𝑜𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
𝑤𝑝𝑎𝑠𝑡 𝑒𝑣𝑒𝑛𝑡𝑠 ≥ 𝑤𝑙𝑜𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

 
which, together with the constraint that the weights 
have to sum to 1, define the region where the actual, 
but unknown, triplet of weights is located. 

 

 
Figure 1: The hierarchy of indicators for failure likelihood.  

 
With regard to the importance of the indicators at 
level 𝑙3 of the tree with respect to those at level 𝑙2, the 
experts stated that: 
• Pipe diameter is the most important sub-indicator 
among those of the pipe features–the smaller the di-
ameter, the higher the failure likelihood.  
• The number of past blockages is more important 
than the number of past flushing.  
• Soil is equally important as traffic load. 

4.2 Severity of Consequences 

The consequence tree is a hierarchical representa-
tion of the attributes which define how severe impacts 
pipe failures have on properties, environment, and 
safety and how possible network malfunctions affect 
water consumers. The methodology for assigning a 
likelihood value to the pipes could also have been 
adopted to evaluate the severity values. However, in 
this study, we use recent results from the Department 
of Civil and Environmental Engineering at Aalto Uni-
versity in which consequences have been evaluated 
by mainly taking account of pipe location and sur-
roundings, and the pipe specific flow (Laakso et al., 
2015).  

A severity value can be assigned to each pipe 
based on the criteria in Table 1. Namely, the pipe be-
longs to Class 1 only if it meets at least one of the 
criteria 1-8. Otherwise, one checks if the pipe meets 
one out of the criteria 9-19 for being of Class 2. The 
other pipes are assigned to the third criticality class. 

Finally, note that if the analysis were to be based 
on the severity tree only, then inspections would fo-
cus on the pipes whose position is more hazardous, 
independently on their expected current degradation 
state. This highlights the added value of prioritizing 
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Material Pipe Age Diameter

Past Events
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Local 
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the inspections by taking account of both failure like-
lihood and severity. 

 
Table 1: Criteria used for defining the pipe-specific criticality 
classification for sewer pipes. 

 Class 1  

1 Sewer mains of crucial functional importance for 
the whole network  

2 Main tunnels 

3 Sewer mains and pressure sewers that are within 
significant groundwater areas 

4 Sewers close to primary or secondary raw water re-
sources  

5 Pipes under railways 

6 Pipes under significant roads 

7 Undoubled pressure pipes from critical pump sta-
tions  

8 Very high pipe-specific flow 

 Class 2  

9 Main sewer not included in Class 1 

10 Sewers in protected areas / nature conservation ar-
eas 

11 Pipes crossing main water tunnels 

12 Pipes going under a water body (river, lake, sea) 

13 Pipes under buildings 

14 Pipes close to protected ditches 

15 Pipes close to swimming beaches 

16 Pipes other than sewer mains which are within sig-
nificant groundwater areas 

17 Sewer mains within groundwater areas of less sig-
nificance 

18 Sewers close to critical underground structures 
(e.g. subway) 

19 High pipe-specific flow  

 Class 3 

20 Every remaining pipe 

 

5 RATING ELICITATION 

As mentioned above, the SWING approach (Von 
Winterfeldt & Edwards, 1986) was applied to assign 
the ratings to the indicator values of each leaf. 
Namely, for each indicator the value that increases the 
failure likelihood or severity the most, was assigned 
the rate 100 and, with a similar procedure, the indica-
tor with the lowest impact on failure likelihood or se-
verity was assigned the rate 0. For example, when 
considering the leaf attribute ‘material quality’ in the 
failure likelihood tree, the least reliable material is 
PVC, while the most reliable is concrete. These were 
thefore assigned ratings 100 and 0, respectively. 
In the next elicitation questions, the respondents were 
asked to state their ordinal preferences for quality dif-
ferences. Specifically, the decision maker was asked 
which ‘swing’ in the indicator value to the best one 
would result in the largest, the second largest, etc., 

improvement. Again with reference to the material 
quality attribute, the answers to these questions have 
led to the following ranking in ascending order: ‘con-
crete’, ‘polyethylene’, ‘cast iron’, ‘renovated by felt 
socks’ and ‘PVC’. 
Finally, the intermediate quality classes were evalu-
ated with respect to the extreme values and, for vali-
dation, with respect to each other. For example, one 
of the questions for the material attribute was the fol-
lowing: “Is the quality difference between cast iron 
and concrete pipes more or less significant than that 
between PVC and cast iron pipes?”. Criticality of cast 
iron pipes is closer to concrete than PVC pipes; there-
fore, its uncertain score is closer to 0 (concrete criti-
cality score) than 100 (PVC criticality score). 
This way, experts were able to assign interval scores 
to each class according to the proximity to one of 
these conditions and the other elicited interval scores. 
The responses were recorded into an Excel tool, and 
they were visually adjusted and validated as well.  
By this procedure, experts assigned an interval cardi-
nal score in the range of 0-100 to each leaf indicator 
class of the failure likelihood tree.  
Failure severity was evaluated for each pipe accord-
ing to the criteria in Table 1; these criteria were first 
ordered according to their severity. For example, a 
pipe disruption close to a railway is a more severe sit-
uation than a pipe failure near a beach. For this rea-
son, the interval score of the former pipe is larger than 
that of the latter.  
These criteria were assigned uncertain ratings by ap-
plying the SWING procedure. Namely, score 0 was 
assigned to pipes of class 3, whereas 100 to the most 
critical circumstance in Class 1 (no. 8: “Very high 
specific flow”). The remaining 18 intermediate sever-
ity conditions were assessed by eliciting imprecise 
score intervals by comparing with the two extreme 
conditions and the other elicited ratings. This way, 
experts identified interval cardinal scores in the range 
of 0-100 for each intermediate circumstances based 
on their criticality level. Similarly to the principles 
applied in (Laakso et al., 2015), we assumed that if a 
pipe met more than one condition, then it had the 
highest score among those corresponding to the met 
conditions. 

6 ALTERNATIVE OVERALL VALUE 

The recursive algorithm presented in Salo & Hämä-
läinen, 1992 was adopted to compute the overall score 
intervals of failure likelihood 𝑉𝐿 (𝑥𝑗) =
[𝑣𝐿 (𝑥𝑗  ), 𝑣̅𝐿 (𝑥𝑗  )] and failure severity 𝑉𝐶  (𝑥𝑗  ) =
[𝑣𝐶  (𝑥𝑗  ), 𝑣̅𝐶  (𝑥𝑗  )] for each pipe 𝑥𝑗 , where 𝑗 =
1, … , 𝐽. This algorithm makes it possible to propagate 
efficiently the uncertainty of the interval-valued rat-
ings of the leaf indicators and the imprecise weights 
of the sub-objectives through the different levels of 



the hierarchical trees onto the range of possible over-
all values at the topmost objectives. 

7 RISK ASSESSMENT 
 
In this Section, we consider the identification of the 
most critical pipes which belong to the Pareto optimal 
set in the two dimensional space of failure likelihood 
and failure severity. Generally speaking, a pipe be-
longs to the Pareto optimal set if it is not dominated; 
that is, if its failure likelihood cannot be increased 
without simultaneously decreasing the severity of the 
failure consequences and vice versa.  
However, this ‘traditional’ concept of dominance 
needs to be modified, since the overall values of both 
likelihood and severity are interval numbers (𝑉𝐿, and 
𝑉𝐶, respectively) instead of crisp numbers. Thus, with 
interval scores, pipe 𝑥𝑗  is said to dominate pipe 𝑥𝑡 
(𝑡 ≠ 𝑗) if and only if the intervals 𝑉𝐿 (𝑥𝑗) and 𝑉𝐶  (𝑥𝑗) 
both lie above 𝑉𝐿 (𝑥𝑡) and 𝑉𝐶  (𝑥𝑡), respectively: 

𝑥𝑗 ≻ 𝑥𝑡

↔ {
𝑣𝐿(𝑥𝑗) > 𝑣̅𝐿(𝑥𝑡)

𝑣𝐶(𝑥𝑗) ≥ 𝑣̅𝐶(𝑥𝑡)
} ⋁ {

𝑣𝐿(𝑥𝑗) ≥ 𝑣̅𝐿(𝑥𝑡)

𝑣𝐶(𝑥𝑗) > 𝑣̅𝐶(𝑥𝑡)
} 

This dominance definition allows us to identify the 
optimal Pareto set 𝐹1 (Keeney & Raiffa, 1976), which 
contains 𝐽1= 2079 non-dominated solutions (circle 
marker and solid line in Figure 2), out of the J=6103 
pipes of the network. Then, we remove these solu-
tions from the original pipe dataset and select the 𝐽2 
non-dominated solutions, 𝐹2, in the remaining set 
(cross marker and dashed line in Figure 2). This pro-
cedure continues until the set of remaining non-dom-
inated solutions is empty. In the case study of the Es-
poo sewerage system, three Pareto fronts have been 
identified, the third, 𝐹3, being marked by squares in 
Figure 2.  
The identification of different Pareto frontiers makes 
it possible to consider levels of decreasing criticality: 
pipes belonging to the first Pareto set are the most 
critical pipes, and the successive analyses will focus 
on such Pareto set. 

8 CONCLUSIONS 

In this paper, we have developed a risk-based inspec-
tion model for a large sewerage network in Espoo, 
Finland. The risk assessment, based on the two entries 
failure likelihood and failure severity, makes it possi-
ble to identify the most critical pipes from which the 
optimal portfolios for inspections can be found. 
Future research will focus on the development of a 

methodology to estimate the benefit of inspecting the 

pipes and, on this basis, the selection of optimal port-

folio of inspections taking into account uncertain cost 

estimates as well as possible synergies among the in-

spections (e.g., inspecting nearby pipes may cost less 

than inspecting pipes that are far apart).  

 
Figure 2: Overall values of failure likelihood and severity of the 
6103 pipes considered in the Espoo sewer system. 
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