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Abstract 

The machine tool industry is facing the need to increase the sensorization of production systems to meet evolving market demands. This leads to 
the increasing interest for in-process monitoring tools that allow a fast detection of faults and unnatural process behaviours during the process 
itself. Nevertheless, the analysis of sensor signals implies several challenges. One major challenge consists of the complexity of signal patterns, 
which often exhibit a multiscale content, i.e., a superimposition of both stationary and non-stationary fluctuations on different time-frequency 
levels. Among time-frequency techniques, Empirical Mode Decomposition (EMD) is a powerful method to decompose any signal into its 
embedded oscillatory modes in a fully data-driven way, without any ex-ante basis selection. Because of this, it might be used effectively for 
automated monitoring and diagnosis of manufacturing processes. Unfortunately, it usually yields an over-decomposition, with single oscillation 
modes that can be split into more than one scale (this effect is also known as “mode mixing”). The literature lacks effective strategies to 
automatically synthetize the decomposition into a minimal number of physically relevant and interpretable components. This paper proposes a 
novel approach to achieve a synthetic decomposition of complex signals through the EMD procedure. A new criterion is proposed to group 
together multiple components associated to a common time-frequency pattern, aimed at summarizing the information content into a minimal 
number of modes, which may be easier to interpret. A real case study in waterjet cutting is presented, to demonstrate the benefits and the critical 
issues of the proposed approach.  
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 

 Keywords: Monitoring; Quality Assurance; Waterjet Machining  

1. Introduction 

Continuous advances of sensor technology and real-time 
computation capabilities provide increasing opportunities for 
the development of smart factories characterized by data-rich 
environments. In-process analysis and monitoring of discrete 
manufacturing processes represents a key issue to determine 
how a process is performing during the process itself, by means 
of in-process analysis of sensor signals. One goal consists of 
achieving a fast detection of faults and unnatural process 
behaviours without waiting for post-process inspections on the 
manufactured part. Another goal consists of exploiting as much 
as possible the information acquired during the production of 
the current part, without the need for a training phase that 
involve the collection of data for a number of analogous parts 
in the same lot. Nevertheless, the analysis of in-process signals 

implies several challenges, due to the complexity of signal 
patterns, the superimposition of stationary and non-stationary 
behaviours, and the presence of features belonging to different 
time-frequency scales. Those kinds of signals are referred to as 
“multiscale”, and they are quite common in industrial 
applications. Different authors [1, 2] showed that a proper 
multi-resolution characterization of multiscale signal patterns 
could enhance the profile monitoring performances, because 
different faults may have different effects on distinct scales. An 
example of multiscale signal acquired during a cutting process 
is shown in Fig. 1: it is the water pressure signal acquired during 
a waterjet cutting process by using a single-acting ultra high 
pressure (UHP) pump with three parallel plungers. The signal, 
acquired at 2 kHz and then synchronously resampled, refers to 
a complete pumping cycle that includes the three consecutive 
acting strokes (for details about the plant and process, the 
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Fig. 1. Example of pressure profile in waterjet cutting (top panel) and details 

of high frequency transients (bottom panels) 
 

interested reader may refer to [3, 4]). The pressure signal 
exhibits a superimposition of a noise component, some high-
frequency transients that are localized in time (Fig. 1 – bottom 
panels), and a low frequency oscillation. 

The low frequency pressure ripples are due to the plunger 
kinematics, whereas the high frequency transients correspond 
to transitions between the end of a plunger active stroke and the 
beginning of the next one. When a piston reaches the top dead 
centre, a valve commutation occurs, with a consequent oil flow-
rate reduction in the next cylinder, resulting in a dynamic 
pressure discontinuity. Minor transients are present too, in 
correspondence of points in time where each plunger completes 
its suction step. They are caused by a flow-rate modification 
when the piston reaches the bottom dead centre. Refer to [3, 4] 
for further details.  

Different faults of the most critical components (e.g., 
components of the UHP pump or the cutting head) may 
differently affect the scale-dependent features of the signal. 
Thus, a proper decomposition of those features is expected to 
provide multiple benefits: (i) a better characterization of the 
natural pattern variability, (ii) enhanced signal monitoring 
performances provided by a faster detection of small shifts 
affecting a single scale or a sub-set of scales, and (iii) an 
enhanced diagnostic capability, thanks to a better 
interpretability of fault effects. 

The mainstream literature focuses on wavelet analysis for 
such a kind of signals [1-2; 5-6]. Nevertheless, the 
performances of wavelet-based methods rely on several 
problem-dependent and subjective choices, including the 
thresholding technique, the selected wavelet basis, the 
decomposition settings, the wavelet coefficient selection, etc. A 
more flexible alternative is represented by the Empirical Mode 
Decomposition (EMD) methodology [7], thanks to its data-
adaptive nature. It is a data-driven and adaptive method that 
allows decomposing any signal into a number of Intrinsic Mode 
Functions (IMFs), which represent its natural oscillatory 
modes. It requires neither any integral transform nor the 
definition of any basis function. The IMFs are determined by 
the signal itself and they work as basis functions. Moreover, the 
EMD may yield a finer time-frequency resolution, and hence a 
better multiscale variability characterization [8]. However, the 
EMD may yield an over-decomposition of the signal, and the 
extracted IMFs may be affected by the so called “mode mixing” 

issue [7]. An open issue in the reference literature consists of 
finding a way to automatically achieve a synthetic 
decomposition in terms of a minimal number of relevant modes. 
This paper briefly reviews a methodology to convert the 
original IMF decomposition into Combined Mode Functions 
(CMFs) and it proposes a novel way to automatically determine 
the optimal decomposition into a minimal number of CMFs. 
The proposed method consists of combining together adjacent 
IMFs characterized by high similarity degree. An increasing 
number of CMFs is iteratively evaluated and the algorithm is 
stopped when an optimality criterion is met. 

This paper extends the previous study of Grasso et al. [3], by 
comparing different indexes for the similarity estimation 
between IMFs and by introducing a novel algorithm for the 
automatic selection of the CMFs and its stopping criterion. 

The proposed method is demonstrated by means of a real 
case study, i.e., the multiscale pressure signals acquired during 
a waterjet cutting operation. 

Section 2 reviews the EMD and CMF methodologies; 
Section 3 presents the proposed approach; Section 4 discusses 
the performances of the method in a waterjet cutting case study; 
Section 5 concludes the paper. 
 
Nomenclature 

jY        jth profile pattern, j=1,2,…  

p         number of datapoints in each profile 

,i jh      ith difference between jY  and the envelope mean 

,i jm  ith envelope mean for the signal jY  

1, jc  ith IMF of the signal jY  

,jn jr  residue of the EMD decomposition of jY  

jn  number of IMFs for the signal jY  

,ks jc  kth CMF of the signal jY  

k number of CMFs  

,j iE  energy of the ith IMF of the signal jY  

,j iC  cross-corr. between jY  and its ith IMF  

,j iR  peak-to-peak range of the ith IMF of the signal jY  

,j iS  skewness of the ith IMF of the signal jY  

,j iK  kurtosis of the ith IMF of the signal jY  

,j iV  multivariate vector of indexes for the ith IMF of jY  

,l jD  dissimilarity between two adjacent IMFs 

,k jSSW sum of squares within the CMF 

2. The EMD and CMF methodology 

2.1. The EMD algorithm 

Let ,1 ,2 ,[ , ,..., ]T
j j j j pY Y YY  be a waveform, hereafter 

denoted by the term “profile”, that characterizes a repeating 
pattern, such that 1, 2,...j is the index of the repeating profile, 

and p is the number of datapoints in each profile. 
Then, the IMFs that capture intrinsic oscillation modes can 

be extracted by means of the “sifting” process, which consists 
of the following steps [7]:  
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1) All the local minima and maxima of the profile 

,1 ,2 ,[ , ,..., ]T
j j j j pY Y YY , 1, 2,...j  are identified and they 

are interpolated respectively by an upper and a lower 
envelope expressed on a cubic spline basis (notice that, 
without loss of generality, an equal sample size, p , is 
assumed for all the acquired profiles); 

2) the mean of the two envelopes is computed and designated 
as 1, jm ; then, the difference between the signal jY  and 

1, jm  is computed and designated as 1, jh : 

 1, 1, ,     1, 2,...j j j jh Y m   (1) 

If 1, jh  is an IMF, i.e., if 1, jh  satisfies the following 

conditions: 
a) in the entire dataset, the number of extremes and the 

number of zero crossings must be either equal or 
different at most by one;  

b) at any point, the mean value of the envelope defined 
by the local maxima and the envelope defined by the 
local minima is zero; 

then, 1, jh  is taken as the first IMF of the signal and 

designated as 1, jc . If 1, jh is not an IMF, 1, jh replaces the 

original signal and the above steps are repeated until an 
IMF is obtained. 

3) The first IMF, 1, jc , is separated from the signal jY  by: 

 1, 1, ,     1, 2,...j j j jr Y c   (2) 

The residue 1, jr  is treated as the original signal and the 

above steps are repeated, leading to the extraction of the 
following IMFs 2, ,, ...,

jj n jc c  such that: 

 
1, 2, 2,

1 , ,

1, 2,...
j j j

j j j

n j n j n j

j
r c r

r c r
  (3) 

At the end of the process, the signal is decomposed into 

jn   intrinsic modes and a residue ,jn jr : 

 , ,
1

,     1, 2,...
j

j

n

j i j n j
i

jY c r   (4) 

The residue is a signal such that no further decomposition is 
possible. In this study, the Amplitude Ratio criterion proposed 
by Rilling et al. [9] is advocated. The EMD algorithm usually 
converges rapidly in few iterative passes, producing a nearly 
orthogonal adaptive basis. As an example, the decomposition 
of one waterjet pressure profile is shown in Fig. 2. In this case, 

8jn . 

2.2. Combined Mode Functions 

A critical issue regarding the EMD methodology is 
represented by the possible appearance of the so-called mode 
mixing effect [7]. It causes an intrinsic mode to be split into two 
or more adjacent IMFs, or disparate scales to be superimposed 
into a single IMF, which deprives single IMFs of physical 
meaning. Different approaches have been proposed to cope 
with such an issue. Wu and Huang [10] proposed a method 
called Ensemble EMD (EEMD) whose main limitation is the 
computational cost, as it requires the computation of a 
sufficient number of ensemble trials. A more efficient variant 
of the EEMD was proposed by Zhang et al. [11], but the 
computational cost is still considerably higher than the basic  

 
Fig. 2. EMD of a pressure profile in waterjet cutting 

 
EMD, and this makes EEMD-based methods poorly attractive 
as far as in-process applications are concerned. 

A more interesting and effective approach from an in-
process implementation perspective is based on the Combined 
Mode Function (CMF) approach [12]. It consists of combining 
neighboring IMFs , 1, 1 ,, ,...,

si j i j q jc c c  to obtain a new CMF, 

,ks jc , as follows: 

 , , 1, ,... ,   1, 2,....; [1, ]
k ks j i j i j i q j jj i nc c c c   (5) 

where 1kq  is the number of IMFs combined into the kth 

CMF, being 0 1k jq n   and jk n  . Such a combination 

of subsets of IMFs can be interpreted as a new adaptive filter 
bank, which is based on the intrinsic time scales of the signal, 
resulting in an accuracy increase of the EMD [12]. Grasso et 
al. [3] showed that by combining adjacent IMFs into CMFs two 
main benefits may be achieved: (i) a more synthetic 
representation of multiscale signal features and (ii) a mitigation 
(or even the avoidance) of the mode mixing effect. 

Nevertheless, there is no clear procedure to automatically 
choose the number k  of CMFs and to select the best CMF 
decomposition. There is a wide literature devoted to the 
automatic selection of subsets of IMFs for different goals that 
include (i) signal de-noising (when only low frequency modes 
are retained), (ii) signal de-trending (when the profile is 
reconstructed by removing the last IMFs), or (iii) the isolation 
of physically relevant IMFs (band-pass filtering). The 
mainstream approaches rely on synthetic indexes (e.g., average 
value [13], energy [14], [15] correlation between the IMF and 
the original signal, [16] peak frequency, and others [17]). 
However, the literature lacks an automated strategy to 
determine the best (minimal) decomposition.  

3. The proposed approach for CMF selection 

The proposed approach for the generation of the CMFs 
inherits the index-based techniques proposed in the literature, 
but it leads to a fully automated procedure. It consists of the 
following steps: 
1) Generation of an iteratively increasing number of CMFs 

for the current profile, jY  , from 1k  (i.e., all IMFs 
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combined into a single CMF) up to jk n  (i.e., CMFs that 

coincide with the IMFs), by using a dissimilarity-based 
criteria; 

2) A metric consisting of the sum of squares of within-CMF 
differences is computed to determine to what extent IMFs 
combined into the same CMFs are similar to each other; 

3) The optimal CMF configuration is chosen such that the 
sum of squares decrease by passing from k-1 to k CMFs is 
maximized: this means that the addition of the kth CMF 
enhances the decomposition, whereas a configuration with 
a larger number of CMFs do not provide relevant 
improvements. 

The different steps of the proposed methods are explained 
and discussed in the following sub-sections. 

3.1. Computation of the dissimilarity between IMFs 

An estimate of similarity/dissimilarity between adjacent 
IMFs can be based on synthetic indexes like the ones 
mentioned in the previous section. The following indexes are 
considered: the IMF energy, ,j iE , the cross-correlation 

coefficient between each IMF and the original signal, ,j iC , the 

IMF peak-to-peak range, ,j iR , the IMF skewness, ,j iS , and the 

IMF kurtosis, ,j iK , for 1,..., ji n  and 1, 2,...j . 

Two options are compared in this paper: (i) a univariate 
approach, where only one of those indexes is considered, and 
(ii) a multivariate approach, where a vector 

, , , , , ,[ , , , , ]T
j i j i j i j i j i j iE C S KV  is considered. 

Let ,j iI  be any of the indexes mentioned above. With regard 

to the univariate approach, the dissimilarity between two 
adjacent IMFs, ,i jc  and 1,i jc , is computed as 

, , 1 ,l j j i j iD I I  for 1,..., 1jl n . With regard to the 

multivariate approach, instead, the dissimilarity is computed as  

, , 1 ,l j j i j iD V V .  

It is evident that the choice of the index plays a critical role. 
The next section will show the impact of this choice on the 
overall performances of the method.  

3.2. Iterative generation of CMFs 

The iterative generation of CMFs works as follows: 
1) Compute the distance ,l jD between each pair of adjacent 

IMFs for the current profile jY . As an example, the ,l jD

values for the 9 IMFs shown in Fig. 2 are depicted in Fig. 

3, where , , 1 ,l j j i j iD E E ; 

2) Initialize a counter q=1; 
3) Set k=q: 

a. if q=1, then a single CMF is generated, which is the 
sum of all the IMFs;  

b. if q=2, then two CMFs are generated, such that  

1 , 1

qT

s j ii
c c  and 

2 , 1

j

q

n

s j ii T
c c , where 

,arg max( )q l j
l

T D . In the example shown in Fig. 3, 

two CMFs would be generated by summing up the 
IMFs from i=1 to i=7 and the ones from i=8 to i=9,  

 
Fig. 3. Values of the distance Dl,j as a function of l for the pressure profile in 

Fig. 2 (based on energy index) 
 

because the maximum dissimilarity occurs at the 7th 
IMFs; 

c. if q>2, then the CMF that includes the ( 1)thq  largest 

difference ,l jD  is divided into two distinct CMFs 

analogously to the previous point, where now qT  is the 

argument of the ( 1)thq  largest difference. 

4) Set q=q+1 and repeat the step 3) until jk n . 

The result is a collection of CMF configurations: each 
configuration consists of a signal decomposition into k CMFs, 
from k=1 to jk n . The last step of the proposed procedure 

consists of selecting the best configuration among them. 

3.3. Selection of the optimum number of CMFs 

The proposed approach for the selection of the optimum 
number of CMFs is inspired by the cluster validation criteria 
used in unsupervised learning [18]. Analogously to clustering 
problems, we want to find a CMF configuration such that both 
the similarity within each CMF and the dissimilarity between 
distinct CMFs are large. A suitable index for such a purpose is 
the sum of squares within the CMF (SSW), computed as 
follows: 

  

 
,

,, , ,1 s jk

k
j qk j j i qq i c

SSW   (6) 

 
where , ,j i q is the statistic used to estimate dissimilarities 

among IMFs, i.e., , , , ,j i q j i qI  in the univariate case, or 

, , , ,j i q j i qV  in the multivariate case, for 1,...,q k  and 

1, 2,...j . 

As an example, Fig. 4 (top) shows the values of ,k jSSW  for 

the signal in Fig. 2 (in this case the univariate approach based 
on the energy index is applied). Generally speaking, ,k jSSW  is 

a monotone decreasing function. Assume that the signal 
includes k known modes (i.e., k separable time-frequency 
scales): then, the separation of original IMFs into k CMFs will 
produce a great reduction of ,k jSSW , but if one goes on by 

decomposing the signal into more than k CMFs, the further 
reduction of the index will be negligible. Because of this, the 
proposed criterion for the automatic selection of k consists of 
choosing k such that the successive differences of  ,k jSSW  are 

maximized, i.e. , 1,arg maxj k j k j
k

k SSW SSW , where  jk is 

the optimal choice of k for the jth profile. Fig. 4 (bottom) shows 
the successive differences of the ,k jSSW  index: in this case, the  
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Fig. 4. SSW (top panel) and its successive differences as a function of the 

number k of CMFs (for the pressure profile in Fig. 2) – energy based approach 
 

 
Fig. 5. Resulting CMF decomposition of the pressure profile in Fig. 2 when 

the univariate approach based on the energy index is used 
 

maximum occurs at k=2, and hence the two CMFs shown in 
Fig. 5 are generated. 

Fig. 5 shows that, when , , , ,j i q j i qE  is used in Eq. 6, two 

CMFs are generated: the first one captures the noise term and 
the high frequency transients that are localized in time, whereas 
the second CMF captures the low frequency ripples. In the next 
section we discuss how different choices of the synthetic 
indexes influence the CMF decomposition. 

4. A real case study 

The waterjet cutting process introduced in Section 1 is used 
as a real case study to discuss the performances of the proposed 
method in a real industrial application. The pressure profiles 
were collected by installing a water pressure transducer on the 
high pressure water duct. Signal data were collected on a 45 
kW UHP with a nominal working point characterized by a 
water pressure of 350 MPa, a water flow rate of 5 l/min and a 
0.25 mm orifice. The signal was acquired at 2 kHz during 
repeated cutting on a laminate, and it was segmented into 
profiles such that one profile corresponds to a complete 
pumping cycle [3, 4]. In this study, 50 profiles under in-control 
conditions are considered, and each profile is decomposed via 
the proposed approach. The goal is to evaluate the resulting 
decomposition and to what extent such a decomposition is 
stable (in terms of number and nature of the CMFs) for all the 
in-control profiles.  

 

 
Fig. 6. Successive differences of the energy-based (top panel) and kurtosis-

based (bottom panel) SSW index 
 
With regard to the univariate approach for the IMF 

dissimilarity computation, Fig. 6 shows that different indexes 
may yield different decompositions. As an example, Fig. 6 
shows the SSW successive differences based on the energy 
index, ,j iE , and on the kurtosis index, ,j iK , respectively, for 

50 pressure profiles. 
Apart from few exceptions, the use of index ,j iE  yields the 

selection of two CMFs, which correspond to the ones shown in 
Fig. 5, whereas the use of index ,j iK  yields the selection of 

three CMFs, shown in Fig. 7. The kurtosis index is more 
appropriate to determine differences between stationary 
fluctuations and transient ones, and hence it allows one 
separating the high frequency transients both from the noise 
term and the low frequency ripples. In terms of multiscale 
pattern interpretation, the CMF decomposition shown in Fig. 7 
might be preferred, as it enhances the characterization of the 
local transients, although the low frequency ripples results less 
smooth than in Fig. 5. 

 
Table 1. Frequency of selection of k CMFs for the different kinds of indexes 
 

 Index 
Frequency of selection of k CMFs (%) 
k=2 k=3 k=4 k>4 

Univar. 

Energy, E 94 4 2 0 
Corr, C 96 2 2 0 

Range, R 94 4 2 0 
Kurt, K 6 88 6 0 
Skew, S 4 58 22 16 

Multivariate 50 20 12 18 

 
Table 1 shows the frequencies of the number k of CMFs 

generated for all the in-control profiles, either by using 
univariate indexes or the multivariate approach (i.e. the entire 
set of indexes included into a single vector).  

It is worth to notice that, whenever k=2, the CMF 
decomposition resembles the one in Fig. 5, whereas, whenever 
k=3, it resembles the one in Fig. 7. 

For the waterjet data, k=2 and k=3 are the two most likely 
choices, as far as the univariate approach is used. The main 
difference between these two CMF decompositions is the 
superimposition or separation of the noise term and the 
transient mode. The choice k=2 is achieved by using either the  
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Fig. 7. Resulting CMF decomposition of the pressure profile in Fig. 2 when 

the univariate approach based on the kurtosis index is used 
 

,i jE , the ,i jC  or the ,i jR  index, and such a choice results to be 

stable as the EMD is applied to repeating profile patterns. 
The choice k=3 is achieved by using either the ,i jK  or the 

,i jS  index, but the stability is lower (especially regarding the

,i jS  index). Eventually, the multivariate approach results the 

less stable one, since the choice depends on which subset of 
indexes prevails on the other one, case by case. 

The results summarized in Table 1 show that the choice of 
the index used to determine the dissimilarity between IMFs 
plays a crucial role. Some engineering knowledge about the 
process might be required to choose the proper index. 
Otherwise, more reliable and effective approaches may be 
investigated in future study, to avoid the use of one (or more) 
synthetic indexes and to focus on statistics that are more 
informative.  

5. Conclusions 

Multiscale signal decomposition is a key issue to analyze 
and monitor sensor signals whose salient features belong to 
different time-frequency scales. The EMD is a flexible 
technique for such a task, thanks to its data-driven and adaptive 
nature, but it does not guarantee a synthetic and easy to 
interpret decomposition of major signal modes. This study 
proposed an automated approach to find an optimal and 
synthetic decomposition in terms of a minimal number of 
CMFs that are expected to be easier to interpret than the 
original IMFs. The results showed that this method is suitable 
to deal with real data and complex patterns, but the choice of 
the indexes for determining the dissimilarity between IMFs 
plays a crucial role. Future studies will be aimed at 
investigating more effective solutions that do not rely on 
synthetic indexes, and make a better use of the overall 
information enclosed in each IMF.   
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