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Abstract 

In industrial applications, the continuously growing development of multi-sensor approaches, together with the trend of creating data-rich 
environments, are straining the effectiveness of the traditional Statistical Process Control (SPC) tools. Industrial data streams frequently violate 
the statistical assumptions on which SPC tools are based, presenting non-normal or even mixture distributions, strong autocorrelation and complex 
noise patterns. 
To tackle these challenges, novel nonparametric approaches are required. Machine learning techniques are suitable to deal with distributional 
assumption violations and to cope with complex data patterns. Recent studies showed that those methods can be used in quality control problems 
by exploiting only in-control data for training (such a learning paradigm is also known as “one-class-classification”). 
In recent studies, the use of distribution-free multivariate SPC methods was proposed, based on unsupervised statistical learning tools, pointing 
out the difficulty of defining suitable control regions for non-normal data. In this paper, a Self-Organizing Map (SOM) based monitoring approach 
is presented. The SOM is an automatic data-analysis method, widely applied in recent works to clustering and data exploration problems. A very 
interesting feature of this method consists of its capability of providing a computationally efficient way to estimate a data-adaptive control region, 
even in the presence of high dimensional problems. Nevertheless, very few authors adopted the SOM in an SPC monitoring strategy. The aim of 
this work is to exploit the SOM network architecture, and proposing a network design approach that suites the SPC needs.  A comparison study 
is presented, in which the process monitoring performances are compared against literature benchmark methods. The comparison framework is 
based on both simulated data and real data from a roll grinding application.  
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

In the mechanical industry there is an increasing interest in 
the quality monitoring of manufacturing processes based on 
signals acquired from one or more sensors during the process 
itself. These machines, equipped with several sources of 
information, represent a real data-rich environment with 
enormous streams of data that are available and exploitable for 
many purposes (e.g., monitoring, diagnostics, predictive 
maintenance, etc.). 

In industrial applications a common practice is to extract 
synthetic features from one or multiple sensors to characterize 
the stability of the ongoing process. This practice is known in 

the literature as index-based monitoring, which consists in 
designing and implementing control charts to monitor 
performance of the manufacturing process based on extracted 
indexes. Despite of the various advantages provided by in-
process monitoring tools [1-3], the conventional SPC 
assumptions relative to the underlying data distribution may not 
be appropriate for the design of signal-based control charts.  

On the other hand, nonparametric and machine learning 
techniques have proved to be suitable to deal with distributional 
assumption violations and to cope with complex data patterns. 
One interesting feature of this category of methods consists of 
their distribution-free properties, and hence, they provide 
flexible solutions to extend the application field of signal-based  
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SPC. Recent studies showed that those methods can be used in 
quality control problems by exploiting only in-control data for 
training, by allowing the implementation of traditional 
classification techniques in the SPC frame in which no 
information on the nature of possible departures from the 
natural condition is available. This kind of approach goes under 
the category of methods that is known as “one class 
classification” or “novelty detection” [4].  

In this work, we present the Self-Organizing Map (SOM), 
which is a Machine Learning tool originally designed and 
applied for unsupervised clustering and data exploration 
problems. A very interesting feature of this method consists of 
its capability of providing a computationally efficient way to 
estimate a data-adaptive control region making it a promising 
tool to deal with one-class classification problems. 

As very few authors adopted the SOM in an SPC monitoring 
strategy, the aim of this work is to exploit the SOM network 
architecture and compare it on real industrial data against other 
benchmark techniques (e.g., the fuzzy-ART-based scheme 
proposed by Pacella and Semeraro [5]). 

The performances of the method are evaluated using Monte 
Carlo simulations in the presence of mixture distributions 
(a.k.a., as multimode data, [6]) and a real dataset acquired 
during roll grinding operations. 

The paper is organized as follows: Section 2 presents the 
industrial case study to motivate the need for nonparametric 
methods; Section 3 presents the framework of the Self-
Organizing Map monitoring approach; Section 4 provides a 
performance comparison analysis based on a real case study in 
transverse roll grinding; Section 5 concludes the paper.  

2. Distribution-free data streams: a real case study 

The growing sensor technology together with increasing 
computational capabilities have enabled the development of 
industrial quality monitoring tools based on the real-time 
analysis of different signals acquired during production 
process. The signal-based SPC framework is based on 
monitoring variables, which usually represent heterogeneous 
quantities that come from one or multiple sensors. For this 
reason an information synthesis step aimed at extracting a 
reduced set of variables from raw signals is usually performed. 
These processed variables allow characterizing the ongoing 
process and detecting possible shifts from an in-control state. 

The pre-processing step of raw signals is usually done by 
time-domain, frequency-domain or more complex kinds of 
analysis. The assumption of multi-normality is frequently 
violated in practice and data transformation to normality may 
be a very difficult task [7].  

In addition to non-normality, discrete manufacturing 
processes may exhibit a “multimode” nature that yields 
clustered data clouds within the space spanned by the 
monitored variables, under in-control conditions. This leads to 
a challenging violation of common distributional assumptions 
(e.g. Fig 1). It is worth to notice that, when multimode 
(clustered) data refer to in-control conditions, one may be 
interested in estimating a control region that globally adapts to  

Fig. 1. Examples of datasets where traditional SPC assumptions are violated. 

the clustered pattern. Because of this, the one-class-
classification paradigm is still applicable, but the applied 
method must cope with the multimode nature of training data.  

An industrial example in which clustered signal data are 
acquired and distributional assumptions are frequently violated 
is the case study of a transverse roll grinding operation, where 
the information coming from two accelerometer sensors 
installed on the machine are synthesized and used to monitor 
the stability of the cutting process. 

The product of the presented case-study consists of large 
cylindrical rolls for metal sheets milling operations.  It is well 
known that process vibrations are one of the most critical issues 
in grinding processes, which may cause undesired undulations 
on the manufactured surface [8]. The waves generated on the 
workpiece surface, called chatter marks, are created by the 
relative vibration between the grinding wheel and the 
workpiece, resulting in a depth-of-cut modification after one 
workpiece revolution. The phase shift between the surface 
waves and the current relative vibration makes the process 
unstable when the chattering condition is reached. 

Fig. 2 (left panel) shows the surface of the grounded roll in 
absence of chatter-marks, whereas Fig. 2 (right panel) shows 

 

 

Fig. 2. Surface quality of the grinded roll. 
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Fig. 3. Qualitative scheme of the machine tool used for the experiments. 

the wavelength of the chatter-marks distributed on the surface 
of the roll. An experimental campaign was performed to collect 
real data during cylindrical grinding processes under stable and 
unstable cutting conditions. The workpiece used for the 
experiments was a special alloyed steel roll for hot rolling, 
having an initial diameter of 500 mm and an axial length of 
1700 mm. The machine was equipped with a resin bonded 
wheel with a diameter of 790 mm, and a width of 70 mm. 
A qualitative scheme of the machine tool used for the 
experiments is shown in Fig. 3. 

Three tri-axial accelerometer sensors were mounted on the 
wheel head, tailstock and on the headstock, (as shown in Fig. 
3). The acceleration signals along the x-axis were acquired with 
a sampling rate of 2 kHz and segmented into sliding time 
windows of 1 second in duration. The vibration signal within 
the  time window were processed online to compute the root 
mean square indexes. The result of this pre-processing step is a 

trivariate quality characteristic 2
ix ,  i 1, 2,R , where 

i signal ix rms  .  

We are focusing on this specific case study because this kind 
of process involves more grinding cycles, each one consisting 
of multiples runs performed with different cutting parameters 
that may vary within given ranges. This situation yields to a 
multimode process in which the in-control distribution of the 
monitored indices is characterized by sequentially changing 

distributions, which correspond to different combinations of 
cutting parameters. 

Fig. 7 shows the multimode distribution of 

i signal 1,i signal 2,i signal 3,ix rms ,   rms  rms under in control 

conditions for different combinations of cutting parameters. 
Clustered data represent the natural pattern that characterizes 
the IC condition as a consequence of the multimode behavior 
of the process. The natural process variability leads to switching 
between one mode and another causing shift, which should not 
be signaled by an appropriately designed control chart. On the 
other hand, the out-of-control state characterized by the 
chattering condition, needs to be quickly detected and 
suppressed [8] in order to avoid undesired undulations of both 
the workpiece and the wheel, and to prevent the execution of 
extra grinding cycles to cope with those chatter marks. 

The case study of the transverse roll grinding regards one of 
the most challenging violations of the traditional statistical 
process control distributional assumptions, which motivates the 
use of more sophisticated techniques. For this reason we discuss 
the applicability of the SOM based control chart approach in 
this real industrial scenario, comparing its performances against 
the different methods mentioned in this study. 

3. Process monitoring via Self-Organizing map 

3.1. The Self-Organizing map 

The SOM has been used for visualization of correlation 
patterns, clustering data, monitoring of operation state, and as 
a novelty detection tool [9].  

Thanks to its ability to automatically detect features in the 
dataset, it has a clear advantage compared to other Machine 
Learning techniques based on supervised learning, which 
require target values to be known.  

For these reason, the SOM not only has been widely applied 
to the visualization of high-dimensional data [9] but has also 
been successfully used in various engineering applications [10] 
covering areas like pattern recognition, image analysis, process 
monitoring and control, and fault diagnosis. 

The SOM algorithm performs a topology preserving 
mapping of the input data from its high-dimensional data space 
onto a two-dimensional grid. By doing this, the relative 
distances between data points are preserved and a roughly 
approximation of the probability density function of the data 
can be estimated. 
The detection of out-of-control departures from natural process 
conditions can be implemented based on the so-called 
quantization error [9]. The larger is the quantization error, the 
larger is the expected departure from the in-control state. The 
methodology is briefly described in the following sub-sections. 

3.2. Learning framework 

During the iterative training procedure, the SOM creates a 
topology preserving mapping from high-dimensional space 
onto map units so that the relative distance between data points 
are preserved. The SOM consists of neurons organized on an 
array, and the size of the neuron grid can be changed according 
to the requirements. Each neuron is characterized by an n-
dimensional weight (a.k.a. codebook) vector, 
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i 1 2,   , , i i inw w ww , where n is the size of the input data 

space, such that each neuron is connected to the adjacent ones 
by a neighborhood relation, which dictates the topology (or 
structure) of the map. 
In each training step, one sample vector, X, is drawn randomly 
from the input data set and the distance between it and all the 
weight vectors of the SOM is calculated by using the Euclidian 
distance measure. The neuron whose weight vector is closest to 
the input vector, X, is referred to as the “best matching unit” 
(BMU). After the BMU is identified, the weight vectors of the 
BMU are updated, and its topological neighbors are moved 
closer to the input vector in the input data space. The neurons 
can be interpreted as n-dimensional points that tend to occupy 
the areas where the density of training data is higher. If training 
data are clustered, the neuron topology will reflect such a 
multimode nature. The final topology will represent the 
spreading of training data regardless of the actual distribution, 
which makes the SOM a suitable technique to design 
nonparametric monitoring tools. 

By exploiting the architecture of the SOM, we found a 
correlation between the number of codebooks (i.e., the neuron 
weights), the topology of the map and the false alarm rate (type 
I error). This means that the selection of the number of neurons 
has a great impact on the performances of the monitoring 
system. In Fig. 4, the approach proposed for the selection of the 
number of codebooks is schematically outlined. The dataset is 
divided into a “training” dataset and “tuning” dataset. The 
former is used to train the SOM, the latter to test the Type I 
error performances on a different set of data. Starting from the 
input dataset and an initial number of codebooks, a SOM 
network is trained. Then, the Euclidean distance between the 
input data and the BMUs is calculated and its 100(1- )% 
percentile is calculated by means of kernel smoothing density 
estimation [11]. The corresponding threshold is tested on the 
tuning data: if the estimated threshold does not reach the 
desired  target value (denoted by *), then the number of 
codebooks is increased until the false alarm rate matches the 
desired target.  
 

 

Fig. 4. Learning framework. 

In Fig. 5, the average run length (ARL) is plotted against the 
possible combinations of codebooks that constitute the input of 
the SOM network. For the specific input dataset, the target 
ARL could be reached with 4 different combinations of 
codebooks. By selecting this map configuration it is possible to 
assure the desired false alarm rate along the monitoring phase. 

3.3. Control chart-based monitoring: a simulation study 

When the SOM network is trained with the selected 
codebooks map and the cutoff threshold has been estimated, it 
is possible to monitor if the new observations belong to the in-
control region by calculating the Euclidean distance of each of  

 

 Fig. 5. Selection of the number of codebooks 

them from its BMU and compare it to the estimated threshold. 
If the Euclidean distance of the new observation is higher than 
the threshold value, this observation will be marked as out-of-
control, otherwise it will be considered as an effect of the 
natural variability of the process. 

To motivate the usage of the SOM for monitoring free-form 
multivariate distributions, a simple simulation study is 
presented. A non-normal bivariate distribution is generated 
according to equation (1). 

 (1) 

Three scenarios have been simulated introducing a 
distortion in the distribution geometry by acting on the  
coefficients. Scenario 1 acts on the coefficient 1 while keeping 

2 unchanged; scenario 2 does the opposite; scenario 3 modifies 
both the coefficients 1 and 2. Five different values of 
  0.9, 0.7, 0.5, 0.3, 0.1 have been selected to prove the 
effectiveness of the reviewed methods in detecting deviations 
from the in-control state of  = 1. 

To compare the performances in terms of average run 
length, two competitors have been selected as representative of 
consolidated approaches for MSPC. The first one is the 
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Hotelling’s T2 control chart with empirical limits, and the 
second one is the one-class classification variant of the Fuzzy 
ART, presented and discussed in [5]. For the simulation study, 
1000 replicates of each shift and scenario condition have been 
considered; the results of the simulation are shown in Table. 1. 

Table 1. Simulated data: comparison in terms of ARL. 

 ARL scenario 1 & 2 ARL scenario 3 

Shift 
Fuzzy 
ART 

T2 SOM 
Fuzzy 
ART 

T2 SOM 

0 98,98 99,59 99,36 100,33 99,02 99,87 

1 159,74 122,84 104,06 317,61 181,53 89,92 

2 314,33 111,08 41,09 5437,56 713,07 14,99 

3 384,26 75,85 12,91 9902,87 3361,31 3,68 

4 399,1 49,95 5,73 9988,33 7608,6 1,72 

5 462,84 32,45 3,61 10000 8977,52 1,33 

 
By examining the results, it was possible to see that each 

considered method yields the same results in scenario 1 and 2, 
which is why they are unified in the results table. In both cases, 
the SOM approach proved to be the best performer, by an 
earlier detection of the distribution modification (lower ARL). 
While SOM and T2 increase their performances when greater 
values of shifts are considered, the Fuzzy ART shows an 
increasing weakness in detecting out-of-control conditions. 
This is mainly due to the control region generated by this 
methodology and the fact that the out-of-control condition 
consists of a displacement of the data towards the inside of the 
banana-shaped distribution. Fig. 6 shows the control region of 
each compared method, where it is possible to notice that the 
SOM control region fits the in-control data distribution better 
than its competitors. 

When, in Scenario 3, the shift occurs on both the 1 and 2 
coefficients, the data distribution changes dramatically and 
only the SOM approach is capable of detecting this 
modification. The reason why the competitors fail in the 
identifications is due to the fact that the out-of-control 
distribution falls entirely in their control region, which is not 
properly fitting the in-control distribution. 

As a result of this simulation study, the SOM seems to be a 
flexible tool for distribution-free process monitoring. Future 
studies may be aimed at comparing the SOM methodology with 
other machine learning method based on the one-class-
classification paradigm [6].  

4. Main results 

Signal-based SPC usually follows an information synthesis 
step aimed at extracting a reduced set of variables from raw 
signals. These variables allow characterizing the ongoing 
process and detecting possible shifts from an in-control state. 
In the case of a transverse roll grinding operation, where three 
accelerometer sensors are used to monitor the stability of the 
process, the RMS of each signal is monitored. Transverse roll 
grinding involves consecutive cycles composed by different 
process runs, each one executed with different cutting 
parameters, which yields to a transition from one operating 
mode (i.e., one set of cutting parameters) to the following one. 

 

Fig. 6. Comparison of different control regions. 

This causes a shift in the monitored time series that should 
not be signaled as an alarm, since it corresponds to a natural 
transition between two consecutive in-control states.  

In Fig. 7, in addition to non-normality, the probability 
density function shows a multimodal behavior, which is a 
challenging violation of common distributional assumptions 
that motivates the usage of clustering tools such as the SOM. 

Here, the presented SOM-based control chart is compared 
against its competitors on the traverse roll grinding case. The 
three methods are evaluated in terms of percentage of out-of-
control identified (Tab. 2) and in terms of number of samples 

 

 

Fig. 7. Stable cutting, multimode real industrial dataset. 
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Fig. 8. Comparison of T2 and SOM control charts. 

before alarm (Tab. 3). All the approaches were trained with 
1250 samples of stable cutting conditions and tested against 
350 samples of unstable cutting conditions. The compared 
methods should identify the change in the cutting condition 
when the process switches from a stable to an instable mode. 

Table 2. Real industrial data: comparison in terms of percentage of out of 
control identified. 

 Real industrial data: % of out of control identified 

Cutting mode Fuzzy ART T2 SOM 

Unstable 
(chatter) 60.30% 60.30% 68.03% 

 
From the analysis of the results it turns out that even in the 

real industrial application the SOM shows a higher value of 
out-of-control correctly identified, thanks to its ability of better 
fitting the real data distribution. Furthermore, the proposed 
approach better performs in quickly identifying a deviation 
from the normal process conditions, which means that it is a 
much more reactive monitoring approach compared to the 
Hotelling’s T2 chart and the Fuzzy ART methodology. 

Table 3. Real industrial data: comparison in terms of samples before alarm. 

 Number of samples before alarm 

Cutting mode Fuzzy ART T2 SOM 

 chatter 105 106 9 

 
In Fig. 8 it is possible to see the T2 and the SOM-based 

statistics with their empirical control limits set with type-I error 
of 1%. As mentioned before, the SOM chart signals an alarm 
before the T2 does, which can be better understood by 
observing the quicker growth of the SOM statistics in the red 
region of the chart where the process is unstable. 

5. Conclusions 

In this paper, the Self-Organizing Map has been applied as 
a tool for recognizing out-of-control process conditions in the 
state of a multivariate manufacturing operation, which has a 
multimode and distribution free behavior. In particular, a 
SOM-based monitoring system has been proposed for 
multivariate manufacturing quality monitoring and compared 
to other benchmark approaches. The SOM-based process 
monitoring approach is capable of providing an assessment of 

the current process state, which is achieved by calculating the 
Euclidean distance between the RMS value of the acquired 
accelerometers and their best matching templates. By 
monitoring the stability of the calculated Euclidean distance 
with an estimated control threshold, it is possible to identify 
changes in the cutting conditions which lead to a reduction of 
the workpiece quality. In this study, an algorithm is proposed 
to select the input parameters when designing the SOM-based 
control chart to cope with real-world applications. 

The SOM is used as a one-class-classifier, hence it does not 
require previous information about abnormal pattern 
appearances but needs only normal operation datasets for the 
training.  This feature makes its application more flexible and 
easier to be used in real industrial application compared to other 
supervised monitoring approaches. The results with simulated 
data demonstrate that the SOM chart is more sensitive to 
process shifts than the benchmark MSPC control charts like the 
Hotelling’s T2 and the Fuzzy ART when monitoring 
multivariate processes which have a multimode and 
distribution free behavior. In comparison with the other 
reviewed monitoring scheme, the SOM chart showed the 
ability of creating data adaptive control regions by performing 
a better fit of the real probability distribution function. 
According to the simulations and the real industrial case 
analysis the SOM-based chart can be considered an effective 
and promising monitoring tool for unsupervised quality 
monitoring of industrial process, which present multimode and 
distribution free behavior. Future studies will be aimed at 
comparing this methodology with other one-class-
classification schemes for distribution-free process monitoring. 
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