
TRANSLATING BPMN TO E-GSM:
SPECIFICATIONS AND RULES

Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Politecnico di Milano

Dipartimento di Elettronica Informazione e Bioingegneria

Piazza Leonardo da Vinci 32

20133 Milano - Italy

http://www.deib.polimi.it

Feb. 20, 2016

Technical Report

cba

Unless otherwise indicated, the content is available under the terms of the Creative
Commons Attribution-ShareAlike license (CC-BY-SA) v3.0 or any later version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55256146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

This work has been partially funded by the Italian Project ITS Italy 2020
under the Technological National Clusters program.

ii

Translating BPMN to E-GSM: specifications and rules 1

Contents

1 Introduction 2

2 E-GSM 2

3 Transformation Rules 5
3.1 Basic Elements . 5
3.2 Normal flow . 7
3.3 Exceptional flow . 11

4 Validation 14

5 Conclusions 16

List of Figures

1 E-GSM meta-model and its graphical representation. 3
2 Lifecycle of an E-GSM Stage S. 4
3 Transformation rule for activities. 5
4 Transformation rule for events. 6
5 Transformation rule for non-interrupting boundary events. 6
6 Transformation rule for interrupting boundary events. 6
7 Transformation rule for sequence blocks. 8
8 Transformation rule for parallel blocks. 8
9 Transformation rule for conditional exclusive blocks. 9
10 Transformation rule for conditional inclusive blocks. 9
11 Transformation rule for loop blocks. 10
12 Transformation rule for blocks with empty branches. 11
13 Transformation rule for forward exception handling blocks. 12
14 Transformation rule for backward exception handling blocks. 12
15 Transformation rule for non-interrupting exception handling blocks. . 13
16 BPMN of the example shipping process. 14
17 Corresponding E-GSM model of the example shipping process. 15

2 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

1 Introduction

This report discusses the details of our approach on how to translate a BPMN process,
which is easy to conceive, into an equivalent model in E-GSM, an extension to the
Guard-Stage-Milestone (GSM) artifact-centric modeling notation [3]. Goal of this
translation is to feed a lightweight distributed process monitoring system, that is
under development, able to check anomalies during the execution of the process.
Indeed, the resulting E-GSM model can be shared by the involved parties to allow
them to keep track of the order in which activities are executed and of the status of
each activity. Deviations from the “original” execution flow can easily be detected
at run-time during the process enactment. Using a declarative model, instead of an
imperative model, to instrument the monitoring system, makes the process monitoring
activities more flexible as it does not enforce any specific execution flows and in case of
anomalies can log the failure and keeps continuing the monitoring. An implementation
of the BPMN2EGSM translator, based on ATL (ATLAS Transformation Language)
is currently available at https://bitbucket.org/polimiisgroup/bpmn2egsm.

Section 2 discusses E-GSM, an extension of GSM to enable a data-artifact driven
process monitoring solution. Section 3 introduces the set of rules we defined to trans-
late BPMN elements into equivalent E-GSM ones. Finally, an example of translation
is reported in Section 4.

2 E-GSM

The GSM notation is a declarative language that allows one to model artifact-centric
processes by defining conditions that determine the activation and termination of
activities, called Stages, based on events. GSM events can be external, like sent
or received messages, or internal, like the termination of activities, to the process.
Starting from the standard GSM notation and our preliminary work [1], we propose E-
GSM, an extension where we distinguish between Data Flow Guards and Process
Flow Guards and we add Fault Loggers.

The goal of this extension is to include in the artifact-centric definition of the
process information on the normal flow, that is, the expected behavior of the process
or happy path. To this aim, the process model includes the dependencies among
activities in terms of control flow. Being a declarative language, E-GSM does not
use control flow information to enforce a specific execution path among activities.
Instead, it uses such information to let the process engine detect deviations among
the happy path and how the process is actually executed.

Figure 1 shows a simplified version of the meta-model behind E-GSM, along with
the graphical representation of its main elements. The original definition of GSM
comprises Stages, Guards, and Milestones. A Stage represents the unit of work
that can be executed in a process instance. A Stage can have one or more nested
Stages, or it can be atomic, thus representing a single task. A Stage may be deco-
rated with one or more Guards and Milestones.

Translating BPMN to E-GSM: specifications and rules 3

Figure 1: E-GSM meta-model and its graphical representation.

A Guard (Data Flow Guard in E-GSM) is an Event-Condition-Action (ECA)1.
If true, the associated Stage is declared opened. A Milestone is another ECA rule.
If true, the Stage is declared closed. A Milestone may also have an invalidator : a
boolean expression that can invalidate the Milestone and reopen the Stage.

In the proposed extension, a Stage can now also be decorated with Process Flow
Guards and Fault Loggers. A Process Flow Guard is a boolean expression that
predicates on the activation of the Data Flow Guards and Milestones used to
map the expected control flow. The expression is evaluated once one of the Data
Flow Guards of the associated Stage is triggered, and before the Stage becomes
opened. If the expression is true, the Stage complies with the expected execution,
otherwise the Stage has been activated without respecting the normal flow.

A Fault Logger is an ECA rule. If true, the associated Stage is declared as faulty
because something went wrong during the execution of the activity. A faulty Stage
does not imply its termination, as the termination is only determined by Milestones.

Figure 2 sketches the lifecycle of an E-GSM Stage organized around three main
orthogonal, execution perspectives: state, status, and compliance2.

The Execution state captures the state of a Stage: unopened, opened or closed.
A Stage is unopened if its Data Flow Guards have never been triggered. A Stage

1An ECA is an [on e] [if c] expression, which is triggered when an event e occurs and the
condition c is true. When [on e] is missing, the ECA is triggered once c becomes true, when [if

c] is missing, the ECA is triggered once e occurs.
2In this paper we use the the notation introduced in [3], so we write S.DFGi, S.PFGk, S.FLl to

indicate the activation of a Data Flow Guard, Process Flow Guard, or a Fault Logger associated
with Stage S, +S.Mj (-S.Mj) to indicate the achievement (invalidation) of a Milestone Mj, S.Mj to
indicate that Stage S is closed and a Milestone Mj is achieved, and Active(S) to indicate that Stage
S is opened.

4 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Figure 2: Lifecycle of an E-GSM Stage S.

can become opened only if it is unopened or closed and the parent Stage is opened.
In addition, at least one of its Data Flow Guards must be triggered (S.DFGi). A
Stage becomes closed if it is opened and a Milestone is achieved (+S.Mj), or if the
parent Stage becomes closed.

The Execution status captures the situation of a Stage, which can be either regular
(none of its Fault Loggers has ever been triggered) or faulty (at least one of its Fault
Loggers has been triggered, A.FLl).

The Execution compliance captures the compliance of each Stage with the normal
flow. A Stage is declared onTime by default. It can become outOfOrder (according
to the normal flow) when one of its Data Flow Guards is triggered but none of its
Process Flow Guards holds (A.DFG and not(A.PFG)). If a Stage S is declared as
outOfOrder, another Stage S’ is declared as skipped if its Process Flow Guards
require that S be activated (S.Mj or Active(S) ∈ S’.PFGk). If a Stage is skipped,
once one of its Data Flow Guards is triggered (S.DFGi), it becomes outOfOrder.

The combination of these three perspectives says that the whole lifecycle assumes
that a Stage is initially onTime, regular, and unopened. Data Flow Guards drive
the change of state. Fault Loggers drive the status, while Process Flow Guards
are in charge of the compliance. With respect to Standard GSM, E-GSM interprets
reopening a closed Stage as a new iteration of that process portion. Therefore, once
a parent Stage is reopened, the lifecycle of all its child Stages will restart from
scratch.

Translating BPMN to E-GSM: specifications and rules 5

3 Transformation Rules

The transformation rules we have defined are applicable to every BPMN process
model that complies with a workflow net [7], that is, the process has only one start
event and only one end event, and it always terminates (soundness). Another as-
sumption is that activities are not duplicated, meaning that an activity can only be
defined once in the process model. We make this assumption to avoid ambiguity in
detecting which activity instance is currently running. Given these assumptions, the
rules we have derived to translate BPMN in E-GSM are defined in the rest of this
section.

3.1 Basic Elements

The transformation rules defined for basic elements are the following four.

Rule 1 A BPMN Activity A is translated into a Stage A with one or more Data Flow
Guards (A.DFGi) and one or more Milestones (A.Mj).

Figure 3: Transformation rule for activities.

Producing the conditions associated with those Data Flow Guards and Mile-
stones is far from trivial [2]. They depend on the associated data objects and, if the
activity is a task, on its type (i.e., receive or user task). In case of a generic task,
placeholders A s and A t are associated with, respectively, A.DFG1 and A.M1 to repre-
sent the explicit start and termination of the activity. If the activity is a sub-process,
A.DFGi and A.Mj are then derived from the structure of the sub-process and from its
elements, as explained in the following.

Rule 2 A BPMN Start, End or Intermediate Event e is translated into a Stage E

where E.DFG1 and E.M1 have the occurrence of the event as condition.

6 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Figure 4: Transformation rule for events.

Rule 3 A BPMN Activity A with a non-interrupting Boundary Event e attached is
translated into a Stage A according to Rule 1 with A.FL1 having the occurrence of the
event as condition (i.e., on e).

Figure 5: Transformation rule for non-interrupting boundary events.

Rule 4 A BPMN Activity A with an interrupting Boundary Event e attached is trans-
lated into a Stage A according to Rule 1 with an additional Milestone A.Me and A.FL1

having the occurrence of the event as condition.

Figure 6: Transformation rule for interrupting boundary events.

Translating BPMN to E-GSM: specifications and rules 7

3.2 Normal flow

The combination of the above rules for basic elements allows one to translate well-
structured business process models. A process model is well-structured if it is made
of process-portions, named blocks, that have a single inbound control flow and a
single outbound control flow, that can be nested, and that must not overlap [5]. In
particular, we focus on five types of blocks, defined starting from the classical control
flow patterns [6]:

• A sequence block is made of linked activities, events and other blocks without
splits or merges. It corresponds to pattern sequence.

• A parallel block organizes activities, events, and other blocks in two or more
parallel threads resulting from the combination of patterns parallel split and
synchronization.

• A conditional exclusive block organizes activities, events, and other blocks in
two or more branches resulting from a combination of patterns exclusive choice
and simple merge.

• A conditional inclusive block organizes activities, events, and other blocks in
two or more branches resulting from a combination of patterns multi-choice
and structured synchronized merge.

• A loop block organizes activities, events, and other blocks according to pattern
structured loop.

For each of these blocks the following transformation rules have been defined.

Rule 5 A sequence block corresponds to a Stage Seq that includes Sx inner Stages
obtained by applying the transformation rules to all the elements (i.e., Activities,
Events, inner blocks) that belong to the block.

• In addition to the existing Process Flow Guards, each inner stage has Sx.PFG1 to
state that none of its Milestones is achieved, and at least one of the Milestones
of the element that directly precedes it (if present) is achieved. This way, inner
Stages are expected to be opened only once, and only after their direct predecessor
is closed.

• Seq has a set Seq.DFG that includes all Sx.DFGi, and a Milestone Seq.M1 that
requires that, for all Sx, at least one Sx.Mj be achieved. This way, Seq is opened
when at least one of its Sx is opened too, and – as achieving a Milestone is
enough to close a Stage – Seq is closed when all Sx are closed.

8 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Figure 7: Transformation rule for sequence blocks.

Rule 6 A parallel block is translated into a Stage Par that includes all the Stages
obtained by applying Rule 5 to all its threads, which result in Sx inner Stages.

• For each Sx, Sx.PFG1 is added to check that no Sx.Mj has already been achieved
(i.e., inner stages must be opened only once).

• Similarly to the sequence block, Par has a set Par.DFG that includes all Sx.DFGi,
and a Milestone Par.M1 that requires that, for all Sx, at least one Sx.Mj be
achieved.

Figure 8: Transformation rule for parallel blocks.

Based on these rules sequence and parallel blocks differ only in the conditions on
the Process Flow Guards of their inner Stages. In case of a sequence block, the
conditions require that the execution order defined in the BPMN model be respected.
In case of a parallel block, no order is imposed.

Rule 7 A conditional exclusive block is translated into a Stage Exc that includes all
the Stages obtained by applying Rule 5 to all its branches, which result in Sx inner
Stages.

• For each Sx, Sx.PFG1 is added to check that no Sx.Mj has already been achieved,
that the condition on the branch from which Sx is produced (if present) is sat-
isfied, and that none of the other inner Stages is opened (i.e., not Active(Sy)

where y6=x). This way, Sx are expected to be opened only once, and only when
their branch is taken and no other branch is.

Translating BPMN to E-GSM: specifications and rules 9

• Exc has a set Exc.DFG that includes all Sx.DFGi, and a Milestone Exc.M1 that
requires that, for at least one Sx, one Sx.Mj be achieved, and the condition on
the branch from which Sx is produced (if present) be satisfied, as long as none of
the other inner Stages is opened. This way, Exc is opened when at least one of
its inner Stages can be opened too, and closed when the activated inner Stages
become closed, as long as no other Stage is opened.

Figure 9: Transformation rule for conditional exclusive blocks.

Rule 8 A conditional inclusive block is translated into a Stage Inc that includes all
the Stages obtained by applying Rule 5 to all its branches, which result in Sx inner
Stages.

• For each Sx, Sx.PFG1 is added to check that no Sx.Mj is already achieved and that
the condition on the branch from which Sx is produced (if present) is satisfied.

• Inc has a set Inc.DFG that includes all Sx.DFGi, and a Milestone Inc.M1 that
requires that, for all Sx whose branch condition (if present) is satisfied, one of
Sx.Mj be achieved.

Figure 10: Transformation rule for conditional inclusive blocks.

Rule 9 A loop block is translated into two Stages, Ite and Loop. Ite includes Sx
inner Stages obtained by applying Rule 5 to all the branches within the loop block. One
of these stages is a forward Stage, that is, its control flow goes in the same direction
as the one of the control flow that includes the loop block. The others are backward
Stages.

• For all the inner Stages, Sx.PFG1 is added to check that no Sx.Mj is already
achieved. Moreover, if Sx is a backward stage, Sx.PFG1 also requires that the

10 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

condition on the branch (if present) be satisfied, and that one of the Milestones
of the forward stage be achieved. This way, both Stages are expected to be opened
only once and, for the backward Stages, only after the forward Stage is closed,
the branch they represent is taken and no other branch is.

• Ite has a set Ite.DFG that includes all Sx.DFGi, and two Milestones, where:

– Ite.M1 requires that one of the Milestones of the forward Stage be achieved
and the exit condition of the loop (if present) be satisfied, as long as no
backward Stage is opened.

– Ite.M2 requires that one of the Milestones of the forward Stage be achieved
and, for at least a backward Stage, one of its Milestones be achieved and
the condition on that branch (if present) be satisfied, as long as none of
the other backward Stages is opened.

Stage Loop includes Ite and has Loop.DFG = Ite.DFG and Loop.M = on Ite.M1

(i.e., the process can exit the loop).

Figure 11: Transformation rule for loop blocks.

The iteration Stage Ite has no Process Flow Guards since it is supposed to
be executed multiple times and, every time it becomes opened, a new iteration of the
loop is carried out. Thus, Ite is opened when at least one of its inner Stages can
be opened too, and it is closed when either the process can exit the loop (Ite.M1 is
achieved), or when an iteration is complete (Ite.M2 is achieved).

Conditional exclusive, conditional inclusive, and loop blocks may have an empty
branch, that is, a branch with no activities, events, or inner blocks. That block can
then be skipped entirely. To handle this situation, a specific rule is defined.3.

Rule 10 An empty branch corresponds to a Stage Empty that has Empty.DFG =

Empty.M = if Empty.PFG. The conditions in Empty.PFG are defined by the rules
related to the block in which the empty branch is included. Moreover, for any stage
S where Empty is an inner Stage at any level, the condition if S.PFG is added to
S.DFG, and S.DFG must not include Empty.DFG.

3Due to page limit, Figure ?? reports only the case that applies to the conditional exclusive block,
other cases can be easily derived from this.

Translating BPMN to E-GSM: specifications and rules 11

Figure 12: Transformation rule for blocks with empty branches.

3.3 Exceptional flow

BPMN supports the management of foreseen exceptions through boundary events,
that is, events directly attached to activities. These events, like split gateways, de-
termine a branching of the control flow into an exceptional flow, which leaves the
boundary event, and a normal flow, to continue the execution from the activity. If
the foreseen exception occurs while executing the activity, the attached boundary
event activates the exceptional flow. A dedicated set of rules is thus required to
preserve this behavior in E-GSM models.

Like split gateways, also boundary events determine a branching of the control
flow. If the attached event is an interrupting event, it interrupts the normal exe-
cution flow that follows the activity to which the event is attached, and switch to
the exceptional flow. Since normal and exceptional flows are mutually exclusive, we
expect them to be merged by an exclusive merge gateway at the end. This requires
that two additional blocks, called forward exception handling and backward exception
handling, respectively, along with two new transformation rules, be defined.

The forward exception handling block comprises an interrupting boundary event,
and a simple merge, defined with a BPMN exclusive gateway, that merges the excep-
tional control flow and the portion of the normal control flow that follows the activity
to which the boundary event is attached. Its behavior is similar to the one of the
conditional exclusive block, therefore we have defined a similar transformation rule.

Rule 11 A forward exception handling block is translated by applying Rule 7 to that
block.

• Sx.PFG1 and EExc.M1 replace the satisfaction of the condition that activates
the branches with the following statements. For the branch that represents the
exceptional control flow, the Milestone Me derived from the Boundary Event by
Rule 4 must be achieved. For the branch that corresponds to the normal control
flow, Me must not be achieved.

12 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Figure 13: Transformation rule for forward exception handling blocks.

The backward exception handling block comprises an interrupting boundary event
and a simple merge, defined with a BPMN exclusive gateway, that merges the ex-
ceptional control flow and the portion of the normal control flow that precedes the
activity to which the boundary event is attached. This block produces a loop that
allows one to re-execute part of the normal control flow if the boundary event is
triggered, and therefore it is translated similarly to a loop block.

Rule 12 A backward exception handling block is translated by applying Rule 9 to that
block, with the following differences:

• Ite.M1 replaces the satisfaction of the exit condition of the loop with the state-
ment that the Milestone Me, derived from the Boundary Event by Rule 4, must
not be achieved.

• Sx.PFG1 and Ite.M2 replace the satisfaction of the condition activating branches
with the statement that Me must be achieved.

Figure 14: Transformation rule for backward exception handling blocks.

In BPMN, boundary events could also be non interrupting: i.e., they activate
the exceptional control flow without terminating the associated activity. Therefore,
the elements within the exceptional control flow can run in parallel with the normal
flow that starts from activity the boundary event is associated with. Since we expect
these potentially simultaneous control flows be merged by an inclusive merge gateway,
the transformation requires an additional block, called non interrupting exception
handling block, and a new transformation rule.

This new block comprises a non interrupting boundary event to split the execution
flow into an exceptional flow and the continuation of the normal one, and a structured
synchronized merge, defined with a BPMN inclusive gateway, to merge the two flows
in case the exception occurred.

Translating BPMN to E-GSM: specifications and rules 13

Rule 13 A non interrupting exception handling block is translated by applying Rule 8
to that block.

• Sx.PFG1, being x the Stage that represents the exceptional control flow, checks
that the Stage derived by Rule 3 from the Activity to which the Boundary Event
is attached is opened.

• EInc.M1 requires that, for the Stage that represents the normal control flow,
one of its Sy.Mj be achieved, as long as the Stage representing the exceptional
control flow is not opened.

Figure 15: Transformation rule for non-interrupting exception handling blocks.

After identifying all possible blocks and defining the corresponding transformation
rules, we can now use nested Stages to translate any well-structured process model.
Note that, since we only admit one start event and one end event per process, we
can identify a single sequence block that covers the entire process definition. This
sequence block corresponds to the control flow that initiates with the start event, ends
with the end event, and traverses any other activity, intermediate event, or internal
block, if present. To manage the nested Stages, the following transformation rule is
defined.

Rule 14 Each BPMN Subprocess Activity is mapped to the sequence Stage that en-
closes all the Stages that correspond to elements that belong to the Subprocess.

14 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

Figure 16: BPMN of the example shipping process.

4 Validation

The transformation rules presented in the previous section allow any well-structured
BPMN process model to be translated into E-GSM. To prove it, we developed a
BPMN to E-GSM prototype translator4, where the transformation rules are imple-
mented in ATL (ATLAS Transformation Language [4]), and validated —and refined—
the proposed rules against several BPMN business processes with different levels of
complexity.

In this document we report an example taken from the logistics domain to better
explain how E-GSM models can be used to monitor the execution of complex (dis-
tributed) processes. A manufacturing company M has to ship its goods to one of its
customers N and, to do so, it relies on a shipping company S for rail and sea-cargo
transportation, and on a shipping company T for truck transportation. The shipping
process comprises four main phases: (i) loading goods into a shipping container; (ii)
shipping such a container to an intermediate site A by truck; (iii) depending on the
day of the week, shipping the goods to either site B by rail, or to site C by sea;
(iv) delivering the goods to the customer’s site by truck. Furthermore, if part of the
goods drops during the loading phase, that activity should stop, all involved actors
should be notified of such an accident, and then the loading phase redone. Figure 17
shows the BPMN definition of this process in the upper part, and the derived E-GSM
process, which is produced by our translator, in the lower part.

4The tool is publicly available at https://bitbucket.org/polimiisgroup/bpmn2egsm.

Translating BPMN to E-GSM: specifications and rules 15

Figure 17: Corresponding E-GSM model of the example shipping process.

16 Giovanni Meroni, Luciano Baresi, Pierluigi Plebani

5 Conclusions

This paper extends the Guard-Stage-Milestone (GSM) notation to embed control flow
information in the process model definition, and presents a solution for transforming
BPMN models into equivalent E-GSM ones. These process models exploit Mile-
stones and Data Flow Guards to detect the start and end of all the activities in
the process no matter the execution flow. Process Flow Guards help keep the in-
formation on the expected execution flow and, thus, identify deviations in the actual
execution. Finally, Fault Loggers provide means to deal with foreseen exceptions.

A tool implementing the transformation rules presented in this paper has been
developed and it can be used to automatically transform well-structured BPMN into
E-GSM.

References

[1] L. Baresi, G. Meroni, and P. Plebani, “A gsm-based approach for monitoring cross-
organization business processes using smart objects.” Accepted for publication,
2015.

[2] C. Cabanillas, A. Baumgrass, J. Mendling, P. Rogetzer, and B. Bellovoda, “To-
wards the enhancement of business process monitoring for complex logistics
chains,” in Business Process Management Workshops, pp. 305–317, Springer,
2014.

[3] R. Hull, E. Damaggio, F. Fournier, M. Gupta, I. Heath, Fenno(Terry), S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin, “Introduc-
ing the guard-stage-milestone approach for specifying business entity lifecycles,”
in Web Services and Formal Methods, vol. 6551 of Lecture Notes in Computer
Science, pp. 1–24, Springer, 2011.

[4] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transformation
tool,” Science of computer programming, vol. 72, no. 1, pp. 31–39, 2008.

[5] M. Reichert and B. Weber, Enabling flexibility in process-aware information sys-
tems: challenges, methods, technologies. Springer Science & Business Media, 2012.

[6] N. Russell, A. H. M. T. Hofstede, and N. Mulyar, “Workflow controlflow patterns:
A revised view,” Tech. Rep. BPM-06-22, BPM Center Report, BPMcenter.org,
2006.

[7] W. M. Van der Aalst, “Verification of workflow nets,” in Application and Theory
of Petri Nets 1997, pp. 407–426, Springer, 1997.

