Journal of Physics Special Topics

An undergraduate physics journal

A3 9 All I Want Thaw Christmas Is You

K. Holland, L. Flood, T. Leversha, M. Manley
Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH

December 14, 2022

Abstract

In this paper, we investigate if it would be possible to defrost Mariah Carey from an ice cube of length 2 m in time for the 1 st of December if you began defrosting her on the 1 st of November. It was found that it would take a total of 12.6 days for Mariah to return to normal body temperature, leaving her plenty of time to prepare for the Christmas season before it arrives.

Introduction

The Christmas season is upon us again. At this time, the world bears witness to seasonal magic that only comes about once a year. A main figurehead in this magic is the Queen of Christmas herself, Mariah Carey. It is often joked that Mariah is frozen between the Christmas seasons and allowed to defrost every year in time for the celebration to begin. In this paper, we investigated how long it would take for Mariah to defrost if she were encased in an ice cube of length 2 m .

Model and Assumptions

For the sake of simplicity, we modelled Mariah as a cylinder with height 1.73 m [1] and diameter 36.7 cm (the average shoulder width for an American woman) [2]. We built our model on the assumption that Mariah is defrosting in a room with an ambient temperature $T_{a}=40^{\circ} \mathrm{C}=313$ K , as this is above the average body temperature of $T=37{ }^{\circ} \mathrm{C}=310 \mathrm{~K}[3]$ that Mariah must reach. We also assumed that the room is continually heated such that it never drops below T_{a}. Furthermore, we assume the ice is at a temperature of $T_{i}=0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$. Finally, we chose to
calculate the time for the ice cube to melt and the time for Mariah's body temperature to reach T separately. In reality, Mariah's body would begin to acclimate unevenly as soon as any part of her body were freed from the ice, but the maths of this would be unnecessarily complicated for a paper of this scope.

Melting the Ice Cube

We began by calculating how long it would take for the ice to melt. To do this, we applied Fourier's law of thermal conduction:

$$
\begin{equation*}
\frac{Q}{t_{i}}=k A_{i} \frac{\Delta T_{i}}{\Delta x} . \tag{1}
\end{equation*}
$$

Here, Q is the heat transferred to the ice, t_{i} is the time taken for the ice to melt, k is the ice's thermal conductivity ($2.75 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}[4]$), A_{i} is the surface area of the ice $\left(24 \mathrm{~m}^{2}\right)$ and $\frac{\Delta T_{i}}{\Delta x}$ is the ice's temperature gradient (the difference in the ice's temperature at its surface and centre, 40 K , over the distance from the surface to the centre, $1 \mathrm{~m} ; 40 \mathrm{~K} \mathrm{~m}^{-1}$). We can substitute $Q=$ $m_{i} L_{f}$, where m_{i} is the ice's mass and L_{f} is the ice's latent heat of fusion $\left(334 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1}\right)$. Likewise, we can substitute $m_{i}=V_{i} \rho_{i}$, where V_{i} is the ice's volume and ρ_{i} is the ice's mass
density $\left(917 \mathrm{~kg} \mathrm{~m}^{-3}\right)$. Here, $V_{i}=V_{\text {cube }}-V_{M}$, where $V_{\text {cube }}$ is the volume of the cube $\left(8 \mathrm{~m}^{3}\right)$ and V_{M} is Mariah's cylindrical volume $\left(0.183 \mathrm{~m}^{3}\right)$. This gives $m_{i}=7170 \mathrm{~kg}$. Rearranging for t_{i} :

$$
\begin{equation*}
t_{i}=\frac{m_{i} L_{f}}{k A_{i}}\left(\frac{\Delta T_{i}}{\Delta x}\right)^{-1} \tag{2}
\end{equation*}
$$

This gives $t_{i}=9.07 \times 10^{5}$ seconds $=10.5$ days.

Defrosting Mariah

Next, we calculated how long it would take for Mariah's body temperature to rise from T_{i} to T. This required the application of lumped system analysis [5]:

$$
\begin{equation*}
\frac{T-T_{a}}{T_{i}-T_{a}}=\exp \left(\frac{-h_{c} A_{M} t_{M}}{\rho_{M} V_{M} c_{M}}\right) . \tag{3}
\end{equation*}
$$

Here, h_{c} is Mariah's heat transfer coefficient (4.1 $\left.\mathrm{W} \mathrm{m}{ }^{-2} \mathrm{~K}^{-1}[6]\right), A_{M}$ is Mariah's cylindrical surface area $\left(2.21 \mathrm{~m}^{2}\right), t_{M}$ is the time taken for Mariah's body temperature to reach T, ρ_{M} is Mariah's mass density (which we approximate as the mass density of water, $1000 \mathrm{~kg} \mathrm{~m}^{-3}$, since the human body is mostly water) and c_{M} is Mariah's specific heat capacity $\left(3.47 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}[7]\right)$. Rearranging for t_{M} :

$$
\begin{equation*}
t_{M}=\frac{-\rho_{M} V_{M} c_{M}}{h_{c} A_{M}} \ln \left(\frac{T-T_{a}}{T_{i}-T_{a}}\right) . \tag{4}
\end{equation*}
$$

This gives $t_{M}=1.81 \times 10^{5}$ seconds $=2.10$ days.

Conclusion

To find the total time to defrost Mariah, we simply calculated the sum of t_{i} and t_{M}, which gives 12.6 days. This means that if you began defrosting Mariah after Halloween, on the 1st of November, she would defrost in plenty of time before the beginning of December. However, this conclusion is based on a very simplified model that does not account for Mariah's body acclimating as the ice melts, which would make the model much more realistic. Of course, this is based on a wholly unrealistic situation to begin with, as hypothermia occurs at core temperatures below $21^{\circ} \mathrm{C}$ [3], but we can choose to believe that Mariah would survive through the magic of Christmas.

References

[1] https://celebhealthmagazine.com/ mariah-carey/ [Accessed 30 November 2022]
[2] https://www.healthline.com/health/
average-shoulder-width [Accessed 30 November 2022]
[3] https://www.livescience.com/ 6008-person-freeze-death.html [Accessed 30 November 2022]
[4] Bonales, L., Rodriguez, A. and Sanz, P. Thermal conductivity of ice prepared under different conditions. International Journal of Food Properties, 20(sup1), July 2017.
https://doi.org/10.1080/10942912. 2017.1306551
[5] https://mechcontent.com/
lumped-system-analysis/ [Accessed 30 November 2022]
[6] Ju, X. et al. Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions. Building and Environment, 196, June 2021. https://doi.org/10.1016/ j.buildenv. 2021.107778
[7] Faber, P. and Garby, L. Fat content affects heat capacity: a study in mice. Acta Physiologica Scandinavica, 153(2), February 1995. https://doi.org/10.1111/ j.1748-1716.1995.tb09850.x

