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SUMMARY

The paper considers a network of agents with multiple-integrator internal dynamics, which share partial

information on their states according to an arbitrary topology. For this system, two control problems are

addressed and solved. The first consists in assigning the dominant closed-loop poles. The second consists in

achieving a specified consensus with arbitrarily fast dynamics. In both cases, the regulator is required to be

decentralized and the controlled network has to result tolerant with respect to faults in the communication

apparatuses of the agents. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Networks are systems composed of subsystems, called agents, which share information useful for

control. The relevant literature is very vast, and mainly concentrates on the case where the agents

are identical and have single- or multiple-integrator dynamics. Most of the papers tackle consensus,

synchronization, flocking ans similar coordination problems (see, e.g., [1–27]). Other papers face

stabilization and pole-placement [28–30].

Within this general context, we consider two problems for networks whose agents have a multiple-

integrator dynamics. We assume that: (i) the states available for measure are those corresponding to

one or more of the highest integration levels; (ii) the agents share pieces of information according

to an arbitrary topology; (iii) the regulators are decentralized. Furthermore, we include some fault-

tolerance conditions in the statements.

The first problem concerns the assignment of the closed-loop dynamics. Specifically, we aim at

designing a regulator able to place the dominant poles of the controlled network near prespecified

locations. Moreover, we assume that faults may occur in the agents’ communication apparatuses.
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2 A. LOCATELLI, N. SCHIAVONI

In particular, we consider the possibility that: (i) one or more agents become unable to transmit

information to other agents; (ii) one or more agents become unable to receive information from the

other agents. We require that the dominant poles remain close to the desired positions in all these

events.

We have already faced similar problems in [31–34]. These papers make reference to the

stabilization of continuous-time and discrete-time multiple-integrator networks, and propose the

adoption of low-gain regulators. We dealt with a fault-tolerant dominat-pole-placement problem

for double-integrator networks in [35] and for single-integrator networks in [36]. In this paper,

by following the lead of [30, 35, 36], the solution is attained by means of high-gain regulators.

In [31,32,35], the exchange of information among the agents pertained only to the states relative to

the highest-order integrals of the control variable. On the contrary, the lower-order integrals were

not assumed as available for measure. Here, we remove this assumption, as we did in [33,34].

We show that the problem outlined above can be solved by means of least-order regulators, whose

dynamics are spread over the network.

The second problem concerns consensus. We remind the reader that the consensus problems are

those where the agents’ states are required to asymptotically converge to a unique motion, which

may be called agreement law, or else consensus function. Typically, this objective has to be reached

by means of a distributed protocol, or, with a terminology more usual in control, by means of

a decentralized regulator, which makes the control variable of each agent to depend only on its

outputs. These outputs are combinations of the differences of the agents’ states, which they share

according to a given topology. See, e.g., [13,14].

With respect to standard consensus problems, the one considered here has some particularities.

The first one is that the agreement law is given a priori, that is, it is an arbitrarily prespecified

linear combination of the agents’ initial states (see, e.g., [15, 16]). Note that we do not assume the

presence of a leader agent, nor of a model reference (see, e.g., [8, 11, 13, 20, 37]). As far as the

second specific feature is concerned, we introduce a dominant-pole-placement issue in the problem.

With such a requirement, we assign the network dynamics towards what is called the consensus

manifold, that is, we assign the shape of the transients towards the agreement law. Note that, on

the contrary, only the convergence is usually required, without any particular attention to speed of

response and damping (see, e.g., [7,10]). Finally, the most qualifying aspect of the present problem

is that we assume that the communication apparatuses of the agents are subject to faults, and include

a fault-tolerance condition. To be more precise, we consider the possibility that one or more couples

of agents become unable to exchange the differences of their states, and require that the controlled

network still reaches the agreement law with the prescribed dynamics in all these events. Many

previous papers deal with what is called switching topology (see, e.g., [9, 15, 17, 37]). However,

the invariance with respect to faults of both agreement law and dynamics towards the consensus

manifold are usually not required. We here follow the lead of [38], where the agents can have only

single- and double-integrator dynamics, and of [39], where the agents have a second-order oscillator

dynamics. We propose the use of high-gain regulators even for solving this second problem.

The solution technique for the first problem has its roots in some previous results of ours,

concerning what is called regulator problem in the presence of actuator and sensor faults [40–43].

The second problem is solved by exploiting the results found for the first one.
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TWO FAULT-TOLERANT CONTROL PROBLEMS FOR MULTIPLE-INTEGRATOR NETWORKS 3

The paper is organized as follows. We describe the network and the decentralized regulator in

the next section. Then, we formally state and solve the fault-tolerant pole-placement problem and

the fault-tolerant consensus problem in Section 3 and 4, respectively. Subsequently, we illustrate

our design techniques in Section 5 by means of a couple of examples. Finally, we present some

concluding remarks in Section 6. The proofs are collected in the Appendix.

Notation. Let ∅ denote the empty set, and, for any set ξ, let κξ be its cardinality. For any vector ϕ,

let [ϕ]i denote its i-th entry. For any matrix K , let [K]i be its i-th row and ki,j its (i, j) entry. If K

is diagonal, the entries ki,i are denoted by ki for simplicity.

For any matrix K ∈ Rσ×σ and any two sets of integers

ξ1 := {ξ1i |1 ≤ ξ1i ≤ σ and ξ1i 6= ξ1j , ∀i 6= j }

ξ2 := {ξ2i |1 ≤ ξ2i ≤ σ and ξ2i 6= ξ2j , ∀i 6= j }

let

K[ξ1,ξ2] :=
{
k[ξ1,ξ2]i,j

}
, k[ξ1,ξ2]i,j :=





0 , j ∈ ξ1 , i 6= j

0 , i ∈ ξ2 , j 6= i

ki,j , otherwise

It turns out that K[ξ1,ξ2] ∈ Rσ×σ . Of course, K[∅,∅] = K . For any set of integers ξ, of the same form

as ξ1 and ξ2 above, let K(ξ) ∈ R(σ−κξ)×(σ−κξ) be the matrix obtained from K after removing its

rows and columns with indices in the set ξ. Analogously, for any vector ϕ ∈ Rσ , let ϕ(ξ) ∈ R(σ−κξ)

be the vector obtained from ϕ after removing its entries with index in ξ. Conventionally, if ξ = ∅

nothing is removed. In a similar way, for any scalar variable γ, let us adopt the notationsK[ξ1,ξ2](γ),

K(ξ)(γ), ϕ(ξ)(γ) for a matrix function K(γ) and a vector function ϕ(γ).

As usual, let Iσ ∈ Rσ×σ be the σ × σ identity matrix and 0 be the zero matrix of any dimensions.

Furthermore, let 1 denote the column vector, of any dimension, with all its entries equal to 1.

A set of negative real and/or pairwise complex conjugate numbers with negative real parts is

called Hurwitz.

Finally, let o(ζ) be any function such that limζ→0 o(ζ)/ζ = 0.

2. NETWORK AND REGULATOR

We consider a network of m > 1 identical agents, whose internal dynamics are constituted by

chaines of n > 1 integrators. As a whole, it is described in the time-domain by

ẋi(t) = xi+1(t), i ∈ N \ {n} (1a)

ẋn(t) = u(t) (1b)

where N := {1, 2, . . . , n}. Here, u(t) ∈ Rm and xj(t) ∈ Rm, j ∈ N , are vectors collecting all the

control variables and the j-th state variables of all the agents, respectively. Of course, xj(t) is the

(n− j + 1)-th integral of u(t).

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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4 A. LOCATELLI, N. SCHIAVONI

We assume that only a partial information on the state of the network is available to the

agents. Specifically, each agent has got p, 1 ≤ p ≤ n, scalar outputs. The j-th of them, j ∈ P :=

{1, 2, . . . , p}, is a linear combination of the entries of xj(t). As a whole, the output of each agent

depends on the p highest-order integrals of u(t). Finally, the coefficients of these combinations are

the same for all j ∈ P . Thus, the flow of information throughout the network is formally described

by

yj(t) = Gxj(t), j ∈ P (2)

where yj(t) ∈ Rm, j ∈ P , and G ∈ Rm×m is real and referred to as the topology matrix. Of course,

the input of the i-th agent, i ∈ M, is [u(t)]i and its outputs are [yj(t)]i, j ∈ P .

The model (1), (2), where both n and p are arbitrary, has already appeared in [33]. It generalizes

those frequently adopted in the literature. See, for instance, [30,35], where n = 2 and p = 1, [31,32],

where n is arbitrary and p = 1, [12,17], where n is arbitrary and p = n.

In the complex variable domain, our model can be given the form

Yj(s) =
1

sn−j+1
GU(s), j ∈ P (3)

where Yj(s) and U(s) are the Laplace transforms of yj(t) and u(t).

Our goal is controlling the above network. Specifically, we aim at adopting decentralized linear

time-invariant regulators composed of m local elements, the i-th of which is applied to the i-th

agent. Such regulators can be described by

U(s) =
∑

j∈P

Rj(s)Yj(s) (4a)

Rj(s) := D(s)−1Nj(s), j ∈ P (4b)

Nj(s) := diag {nj1(s), nj2(s), . . . , njm(s)} , j ∈ P (4c)

D(s) := diag {d1(s), d2(s), . . . , dm(s)} (4d)

where Rj(s), j ∈ P , is proper, the 1 + p polynomials di(s), n1i(s), n2i(s), . . . , npi(s) do not have

common factors, and the di(s)s are monic polynomials of degree ρi, i ∈ M := {1, 2, . . . ,m}.

Moreover, let

R(s) :=
[
R1(s) R2(s) · · · Rp(s)

]
(5)

The particular control problems addressed in this paper are stated and solved in the following two

sections. The qualifying feature of both of them is that they incorporate tolerance requirements with

respect to classes of faults in the communication apparatuses. Such classes of faults will be specified

later on.
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TWO FAULT-TOLERANT CONTROL PROBLEMS FOR MULTIPLE-INTEGRATOR NETWORKS 5

3. FAULT-TOLERANT DOMINANT-POLE-PLACEMENT

This section is devoted to present a fault-tolerant dominant-pole-placement problem for the

previously introduced multiple-integrator network. The problem is stated in the next subsection

and solved in the following one.

3.1. Problem statement

As already mentioned, our network is subject to faults in the communication apparatuses of one or

more agents. Specifically, in this section we assume that the agents with indices in any set fT ⊆ M

become unable to transmit information on their states to other agents, and similarly that the agents

with indices in any set fR ⊆ M become unable to receive information on the states of other agents.

Hence, all the operating conditions of the network are described by the pair (fT , fR) ⊆ M×M.

Of course, (fT , fR) = (∅, ∅) represents the nominal condition.

Equations (1), (2) and (3) describe the network in nominal condition, whereas we are interested

in describing also the situations where the above faults occur. Nominal and faulty conditions can be

considered at once by substituting (2) with

yj(t) = G[fT ,fR]xj(t), (fT , fR) ⊆ M×M, j ∈ P (6)

and (3) with

Yj(s) =
1

sn−j+1
G[fT ,fR]U(s), (fT , fR) ⊆ M×M, j ∈ P (7)

Now, notice that the loop transfer function of the positive feedback system (3), (4a), (4b), obtained

by cutting the loop at U(s), is

L̂(s) :=
∑

j∈P

Rj(s)
1

sn−j+1
G = DL(s)

−1N̂L(s) (8)

where

N̂L(s) :=
∑

j∈P

sj−1Nj(s)G, DL(s) := snD(s) (9)

Then, by letting

Q(s) := DL(s)− N̂L(s) (10)

for any (fT , fR) ⊆ M×M, the characteristic equation of the positive feedback system (4a), (4b),

(7) is

det
(
Q[fT ,fR](s)

)
= 0 (11)

We observe that, for any couple (fT , fR) ⊆ M×M,

det
(
Q[fT ,fR](s)

)
= χ(s, fT , fR)

∏

i∈fT ∪fR

ωi(s) (12)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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6 A. LOCATELLI, N. SCHIAVONI

where

χ(s, fT , fR) :=

{
det
(
Q(fT∪fR)(s)

)
, fT ∪ fR ⊂ M

1 , fT ∪ fR = M
(13a)

ωi(s) := Q(M\{i})(s) = sndi(s)−
∑

j∈P

sj−1nji(s)gi,i, i ∈ fT ∪ fR (13b)

Equations (12), (13) can easily be proved by recalling (4c) (4d), (9), (10) and the zero-non-zero

pattern of G[fT ,fR]. Hence, the characteristic equation (11) of system (4), (7) is equivalent to the set

of equations

χ(s, fT , fR) = 0, fT ∪ fR ⊂ M (14a)

ωi(s) = 0, i ∈ fT ∪ fR (14b)

Equation (14a) is the characteristic equation of the controlled subnetwork composed of the agents

not involved in faults. On the other hand, (14b) are the characteristic equations of the single

controlled agents whose transmitting and/or receiving apparatuses are faulty.

Then, we are in the right position to state our problem.

Problem 3.1

Let m Hurwitz sets L̂i :=
{
λ̂ij |j ∈ N \ {n}

}
, i ∈ M, and two positive scalars α and β be given.

Find a regulator with transfer function R(s) of the form (4b)-(4d), (5) such that, for all (fT , fR) ⊆

M×M, the conditions specified in the following points are satisfied.

1. Equation (14a) possesses (n− 1)(m− κfT∪fR) roots λij with

Re {λij} < 0,

∣∣∣∣∣
λij − λ̂ij

λ̂ij

∣∣∣∣∣ < α, i ∈ M \ (fT ∪ fR), j ∈ N \ {n} (15)

and m− κfT∪fR +
∑

i∈M\(fT ∪fR) ρi roots νiri with

Re {νiri} < −β, ri = 1, 2, . . . , ρi + 1, i ∈ M \ (fT ∪ fR) (16)

2. Each one of (14b) possesses n− 1 roots λij with

Re {λij} < 0,

∣∣∣∣∣
λij − λ̂ij

λ̂ij

∣∣∣∣∣ < α, i ∈ fT ∪ fR, j ∈ N \ {n} (17)

and 1 + ρi roots νiri with

Re {νiri} < −β, ri = 1, 2, . . . , ρi + 1, i ∈ fT ∪ fR (18)

�

This problem can be interpreted as the formal statement of a dominant-pole-placement issue

raised in both nominal and faulty conditions. The elements λ̂ij of the L̂is are the desired dominant

poles, whereas α and β are design parameters. More precisely, Problem 3.1 requires that the

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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TWO FAULT-TOLERANT CONTROL PROBLEMS FOR MULTIPLE-INTEGRATOR NETWORKS 7

controlled network possesses (n− 1)m eigenvalues λij located close to the λ̂ijs. The parameter

α specifies how close they have to be (see (15), (17)). Of course, it is reasonable that α is

small. Furthermore, the location of the m+
∑

i∈M ρi remaining eigenvalues is constrained by (16)

and (18). If β ≫ maxi∈M,j∈N\{n} |Re(λ̂ij)|, then the λijs can legitimately be interpreted as the

dominant poles of the controlled network. Since the λ̂ijs are arbitrary, the initial condition response

of the overall control system can be made as fast as desired. We stress that the above must be true

not only in nominal, but also in all possible faulty conditions.

3.2. Problem solution

An obvious necessary condition for Problem 3.1 solvability is that matrix G is nonsingular, since,

otherwise, the network is not observable in nominal condition. Furthermore, the results in [44, 45]

guarantee that appropriate pole-placement problems can be solved for any fault (fT , fR) ⊆ M×M

by means of decentralized regulators tuned to (fT , fR) if and only ifG[fT ,fR] is nonsingular. Indeed,

this condition means that the faulty network has no fixed modes (at s = 0). However, the regulator

transfer function (4b)-(4d), (5) is independent of the network operating condition. Put in a different

way, Problem 3.1 calls for the existence of a single decentralized regulator able to solve at once

all the dominant-pole-placement problems corresponding to all the possible (nominal and faulty)

network operating conditions. Hence, without loss of generality, we assume

det
(
G[fT ,fR]

)
6= 0, (fT , fR) ⊆ M×M (19)

and expect a solvability condition tighter than (19).

In this subsection, our line of reasoning, aimed at solving Problem 3.1, is the following. First,

we state the new Problem 3.2 and prove its equivalence with Problem 3.1 (Lemma 3.1). Then, we

study the solvability of Problem 3.2 (Lemmas 3.2-3.4). Finally, we actually give the necessary and

sufficient condition for the solvability of Problem 3.1 and supply explicit formulas for the regulator

(Theorem 3.1).

As a first step, for any given f ⊂ M, we define the equation

det
(
Q(f)(s)

)
= 0 (20)

Then, we state the following problem.

Problem 3.2

Let m Hurwitz sets L̂i :=
{
λ̂ij |j ∈ N \ {n}

}
, i ∈ M, and two positive scalars α and β be given.

Find a regulator with transfer function R(s) of the form (4b)-(4d), (5) such that, for all f ⊂ M, (20)

possesses (n− 1)(m− κf ) roots λij with

Re {λij} < 0,

∣∣∣∣∣
λij − λ̂ij

λ̂ij

∣∣∣∣∣ < α, i ∈ M \ f, j ∈ N \ {n} (21)

and m− κf +
∑

i∈M\f ρi roots νiri with

Re {νiri} < −β, ri = 1, 2, . . . , ρi + 1, i ∈ M \ f (22)

�
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8 A. LOCATELLI, N. SCHIAVONI

The relationship between Problem 3.1 and Problem 3.2 is enlightened by the following result.

Lemma 3.1

Problem 3.1 admits a solution if and only if Problem 3.2 admits a solution.

Furthermore, a regulatorR(s) of the form (4b)-(4d), (5) solves Problem 3.1 if and only if it solves

Problem 3.2. �

The rationale behind Problem 3.2 and Lemma 3.1 is fairly easy to understand. We have already

observed that, when a fault (fT , fR) occurs, the characteristic equation of the network breaks

down into the equations (14). Then, even the dominant-pole-placement problem breaks down

into subproblems relative to the single factors of the overall characteristic polynomial. Moreover,

considering all the f ⊂ M in Problem 3.2 means that all the (fT , fR) ⊆ M×M in Problem 3.1

are considered. The details are in the proof.

Now, we state a necessary condition for the solvability of Problem 3.2. It makes reference to the

matrix

G̃ := diag

{
g1,1
|g1,1|

,
g2,2
|g2,2|

, . . . ,
gm,m

|gm,m|

}
(23)

which is well defined, since (19) implies gi,i 6= 0, i ∈ M.

Lemma 3.2

Problem 3.2 admits a solution only if

det
(
G(f)

)
det
(
G̃(f)

)
> 0, ∀f ⊂ M (24)

�

A moment reflection allows us to realize that condition (24) includes (19), for all (fT , fR) ⊆

M×M, and is actually tighter than it, as expected.

Let us move now towards a sufficient solvability condition for Problem 3.2, by first defining the

scalars êij through the identity

∑

j∈N

êijs
j−1 ≡

∏

j∈N\{n}

(
s− λ̂ij

)
, i ∈ M (25)

Furthermore, let

Êj := diag {ê1j , ê2j , . . . , êmj} ∈ Rm×m, j ∈ N (26a)

ÊS :=
[
Ê1 Ê2 · · · Êp−1 0

]
∈ Rm×pm (26b)

ÊD :=

[
0 0 · · · 0
︸ ︷︷ ︸
p−1 m×m blocks

∑n
j=p Êjs

j−p
]
∈ Rm×pm (26c)

Note that êin = 1, i ∈ M, so that Ên = Im.

Then, for any µ 6= 0, ε 6= 0 and V̂ ∈ Rm×m, consider the regulator

R(s) = µV̂

{
ÊS +

1

(1 + εs)n−p
ÊD(s)

}
(27)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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It is easy to check that such regulator is characterized by ρi = n− p, i ∈ M, and can be given the

realization

ε ˙̂zi(t) = −ẑi(t) + ẑi+1(t) + ĤiV̂ yp(t), i = 1, 2, . . . , n− p− 1 (28a)

ε ˙̂zn−p(t) = −ẑn−p(t) + Ĥn−pV̂ yp(t) (28b)

u(t) = µ





∑

j∈P\{p}

Êj V̂ yj(t) + ε−(n−p)V̂ yp(t)− ε−(n−p)ẑ1(t)



 (28c)

where ẑi(t) ∈ Rm, i = 1, 2, . . . , n− p, whereas the coefficients Ĥi ∈ Rm×m, i = 1, 2, . . . , n− p,

are uniquely defined through the identity

(1 + εs)n−p −

n−p∑

i=1

Ĥi(1 + εs)n−p−i ≡ εn−p
n∑

j=p

Êjs
j−p (29)

Hence, for any f ⊂ M, (20) is the characteristic equation of the controlled subnetwork described in

the time-domain by

ẋi(f)(t) = xi+1(f)(t), i ∈ N \ {n} (30a)

ẋn(f)(t) = µ





∑

j∈P\{p}

Êi(f)V̂(f)G(f)xj(f)(t) + ε−(n−p)V̂(f)G(f)xp(f)(t)− ε−(n−p)ẑ1(f)(t)





(30b)

ε ˙̂zi(f)(t) = −ẑi(f)(t) + ẑi+1(f)(t) + Ĥi(f)V̂(f)G(f)xp(f)(t), i = 1, 2, . . . , n− p− 1 (30c)

ε ˙̂zn−p(f)(t) = −ẑn−p(f)(t) + Ĥn−p(f)V̂(f)G(f)xp(f)(t) (30d)

We are now ready to state a first sufficient condition for the solvability of Problem 3.2.

Lemma 3.3

If there exists a diagonal matrix V̂ such that, for all f ⊂ M, the matrices V̂(f)G(f) are Hurwitz, then

Problem 3.2 admits a solution.

Furthermore, there exist µ̂ > 0 and ε̂(·) > 0 such that, for all µ > µ̂ and ε ∈ (0, ε̂(µ)), the

regulator (25)-(29) solves Problem 3.2. �

Thus, whenever matrix V̂ there exists, the regulator (25)-(29) with µ sufficiently large and ε

sufficiently small, is able to place the eigenvalues of systems (30) so that they satisfy conditionts

(21), (22) of Problem 3.2 for all f ⊂ M.

A first remark on Lemma 3.3 concerns the rationale behind it, which is the following. For

any f ⊂ M, (20) is the characteristic equation of the positive feedback system with loop transfer

function L̂(f)(s), where L̂(s) is given by (8). In view of (5), (8), (25)-(27), it turns out that

L̂(f)(s) =
µ

sn
V̂(f)


 ∑

j∈P\{p}

Êj(f)s
j−1 +

1

(1 + εs)n−p

n∑

j=p

Êj(f)s
j−1


G(f) (31)
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10 A. LOCATELLI, N. SCHIAVONI

If we first set ε = 0 in (27), the regulator turns out to be nondynamic and to contain multiple

derivative actions. In this situation, when µ→ +∞, the closed-loop system has (n− 1)(m− κf )

eigenvalues satisfying (21). This is due to the fact that the regulator introduces (n− 1)(m− κf )

transmission zeros in the locations where the dominant poles have to be placed, as it is apparent

from (31). Furthermore, the remaining m− κf eigenvalues satisfy (22). Indeed, (27) shows that

they tend to the eigenvalues of µV̂(f)G(f), which is Hurwitz. Then, by letting ε be positive and

sufficiently small, the previously mentioned eigenvalues still satisfy their respective conditions, the

regulator becomes proper, and (n− p)(m− κf ) new eigenvalues appear, which satisfy (22). The

details are in the proof.

Furthermore, the regulator of Lemma 3.3 has got a number of interesting features. First of all,

it is indeed decentralized, since the matrices V̂ and Êj , j ∈ N , are actually diagonal. Secondly, it

is high-gain, in the sense that its d.c. gain goes to infinity together with µ. However, what is most

important is that its order (n− p)m is the least possible one. In fact, consider the case f = M\ {i}.

Then, (20) becomes ωi(s) = 0, that is,

sndi(s)−
∑

j∈P

sj−1nji(s)gi,i = 0

A necessary condition for this equation to have all the roots lying in the open left-half of the complex

plane is that the coefficient of sn−1 in ωi(s) is different from zero. This implies that the degree of

some nji(s) is at least n− p, which, at its own turn, implies that the degree of di(s) is not less than

n− p, since the regulator (4b)-(4d) is assumed as proper. Hence, the order of the regulator (4b)-(4d)

cannot be less than (n− p)m, which is the order of the regulator of Lemma 3.3.

Moreover, observe that all the dynamics are concentrated in the regulator transfer function

between yp(t) and u(t), whereas the transfer functions between yi(t), i ∈ P \ {p}, and u(t) are

nondynamic. Coherently, when p = n (all network state variables are available for measure), it turns

out

R(s) = µV̂
[
Ê1 Ê2 · · · Ên

]

and, when p = 1 (only x1(t) is available for measure), it turns out

R(s) =
µ

(1 + εs)n−1
V̂
∑

j∈N

Êjs
j−1

Lemma 3.3 gives a sufficient solvability condition not expressed in terms of Problem 3.2 data and,

as such, cannot be said completely satisfactory. On the contrary, it raises the subproblem of the

existence of V̂ . Fortunately enough, we can give a complete solution to this subproblem in the

following lemma, which is based on a general algebraic result of ours [46].

Lemma 3.4

A diagonal matrix V̂ there exists such that, for all f ⊂ M, the matrices V̂(f)G(f) are Hurwitz if and

only if (24) holds.

Furthermore, if (24) holds, then there exists τ̂ > 0 such that, for all f ⊂ M and for all τ ∈ (0, τ̂),

the matrices −G̃(f)T(f)G(f), where
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T := diag
{
τ, τ2, . . . , τm

}
(32)

have distinct negative real eigenvalues. �

Hence, it is clear that, for any τ ∈ (0, τ̂ ), the matrix

V̂ := −G̃T(τ) (33)

has the property required in Lemma 3.3.

As a consequence, the necessary condition (24) is also sufficient for the existence of a solution to

Problem 3.2. Thus, the combination of Lemmas 3.1-3.4 supplies the proof of the main result of this

section, stated in the following theorem.

Theorem 3.1

Problem 3.1 admits a solution if and only if (24) holds.

Furthermore, there exist τ̂ > 0, µ̂(·) > 0 and ε̂(·) > 0 such that, for all τ ∈ (0, τ̂ ), for all µ > µ̂(τ)

and for all ε ∈ (0, ε̂(µ)), the regulator (23), (25)-(29), (32), (33) solves Problem 3.1. �

It is worth noticing that the necessary and sufficient solvability condition (24) depends only on

the topology matrix G. On the contrary, it is independent of n and p. Condition (24) has already

appeared in the literature, though in the equivalent form det
(
G(f)

)∏
i∈M\f gi,i > 0, f ∈ M. For

instance, it was expedient in [35] and [36] to solve Problem 3.1 for the particular cases n = 2, p = 1

and n = p = 1, respectively. Quite unexpectedly, the same condition was found to be necessary and

sufficient to solve the less demanding fault-tolerant stabilization problem dealt with in [31] for n

arbitrary, p = 1, and in [33] for n and p arbitrary. Finally, it coincides as well with the solvability

condition for the fault-tolerant stabilization problem stated for discrete-time chaines of integrators

in [32], where n is arbitrary and p = 1, and in [34], where n and p are arbitrary. On the other hand,

the regulator (23), (25)-(29), (32), (33) does depend on n and p, and, as already noticed, its order is

the least possible one for any n and p.

One may wonder whether condition (24) can be given any interpretation in terms of the existence

of some special paths (e.g., trees) in the graph of the network, which is the graph having a node

for each agent and an edge from node i to node j if the output of agent j depends on the state of

agent i. Quite differently from what happens in consensus problems (see, e.g., the next section of

this paper), the answer is negative. This claim is immediately proved by considering the limit case

of a diagonal G, with any nonzero diagonal entries, where condition (24) always holds. However,

the fulfilment of condition (24) depends in general on the specific values of the entries of G, not

only on its zero-non-zero pattern. For instance, when m = 2, condition (24) takes on the form

g1,1g2,2(g1,1g2,2 − g1,2g2,1) > 0.

We also point out that the regulator (23), (25)-(29), (32), (33) solving Problem 3.1 can be designed

according to the following three-step procedure: (i) find a sufficiently small positive τ such that the

matrices −G̃(f)T(f)G(f), f ⊂ M, are Hurwitz; (ii) set ε = 0 and find a sufficiently large µ such

that (15)-(18) are satisfied; (iii) find a sufficiently small positive ε such that (15)-(18) still hold. The

possibility of successfully performing step (i) is guaranteed by Lemma 3.4. As far as steps (ii) and

(iii) are concerned, their feasibility is guaranteed by Lemma 3.3, as a consequence of its already

illustrated rationale.
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12 A. LOCATELLI, N. SCHIAVONI

Finally, it is worth noticing that our solution to Problem 3.1 supplies the controlled network with

a nice robustness property. Specifically, let

∆l := diag {δl1, δl2, . . . , δlm} (34a)

∆r := diag {δr1, δr2, . . . , δrm} (34b)

0 < δli ≤ δ̂li, δ̂li ≥ 1, 0 < δri ≤ δ̂ri, δ̂ri ≥ 1, i ∈ M (34c)

and consider a matrix G which takes on the form

G = ∆lGn∆r (35)

where Gn can be thought of as the known nominal topology matrix.

Then, we consider Problem 3.1, where the conditions in points 1 and 2 have to be satisfied for G

as in (35) and all ∆l and ∆r specified by (34).

This modified problem seems interesting, since matrices ∆l and ∆r allow us to take into account

possible uncertainties on the gains of the communication apparatuses. For instance, assuming that

δ̂li = 1 (δ̂ri = 1) means that the gain of the receiving (transmitting) apparatus of the i-th agent may

undergo any unknown reduction δli (δri) with respect to the gain specified by Gn (see (2)).

Now, we observe that, in view of (35), (34),

det
(
G(f)

)
det
(
G̃(f)

)
= det

(
∆l(f)

)
det
(
Gn(f)

)
det
(
∆r(f)

)
det
(
G̃n(f)

)

where

G̃n := diag

{
gn1,1
|gn1,1|

,
gn2,2
|gn2,2|

, . . . ,
gnm,m

|gnm,m|

}

Since det
(
∆l(f)

)
> 0, det

(
∆r(f)

)
> 0, we concludes that the necessary and sufficient solvability

condition (24) becomes

det
(
Gn(f)

)
det
(
G̃n(f)

)
> 0, f ⊂ M

which is independent of ∆l and ∆r. Consequently, this new problem is solvable if and only if

Problem 3.1 is solvable with G = Gn. Moreover, the regulator (23), (25)-(29), (32), (33), with

G = Gn, solves also our new problem. Of course, tuning the parameters τ , µ and ε is now somehow

more cumbersome.

4. FAULT-TOLERANT CONSENSUS

Stabilization problems, as the one dealt with in the preceding section, can by no means be solved

when matrix G is singular. On the contrary, a different and meaningful class of problems can be

faced in this case, provided that G is endowed with some special features. Here, reference is made

to what are called consensus problems, which consist in finding regulators such that, for each j ∈ N ,

all the components of xj(t) asymptoticallly converge to the same function of time.
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This section is devoted to present a particular fault-tolerant consensus problem for the previously

introduced multiple-integrator network. The problem is stated in the next subsection and solved in

the following one.

4.1. Problem statement

We consider networks (1), (2) and (3) where, for any j ∈ P , the output [yj(t)]k of agent k is a

nonnegative linear combination of the differences between [xj(t)]k and [xj(t)]i, i 6= k. Moreover,

we assume that the coefficients of the above combinations are independent of j and symmetric.

More precisely, let

[yj(t)]k =
∑

i∈M\{k}

lki
(
[xj(t)]k − [xj(t)]i

)
, k ∈ M, j ∈ P (36a)

lki = lik ≥ 0, (k, i) ∈ M×M, k 6= i (36b)

The meaning of the symmetry condition (36b) is twofold. First, the communication channel between

any two agents is bidirectional, if it there exists. Second, the weight lki of the difference [xj(t)]k −

[xj(t)]i in the output [yj(t)]k is the same as the weight lik of the difference [xj(t)]i − [xj(t)]k in the

output [yj(t)]i.

Thus, the topology matrix G of (2) and (3) takes on the form

G := {gk,i} , gk,i :=

{
−lki , k 6= i∑

i∈M\{k} lki , k = i
, (k, i) ∈ M×M (37)

and, in view of (36), satisfies the following assumption.

Assumption 4.1

The topology matrix G is such that

gk,i ≤ 0, (k, i) ∈ M×M, k 6= i (38a)
∑

i∈M

gk,i = 0, k ∈ M (38b)

G′ = G (38c)

�

Equations (38a), (38b) define what is usually called a Laplacian matrix. Note that G is singular

and G1 = 0, as a consequence of (38b). Of course, 1′G = 0 too, because of (38c).

As already announced, we assume that faults may occur in the communication apparatuses of the

agents. Differently from what has been done in Section 3, we here suppose that one or more couples

(k, i), k 6= i, of agents may become unable to share the information concerning their states, that is,

lki = lik may vanish. The consequence of such a fault on the topology matrix is that the entries

(k, i) and (i, k) have to be set to zero. Furthermore, the k-th and i-th diagonal entries have to be

recalculated. From a technical point of view, a fault is defined as any couple θ ⊂ Θ, where
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14 A. LOCATELLI, N. SCHIAVONI

Θ := {(k, i)|(k, i) ∈ M×M, i > k}

Then, when a fault θ occurs, matrix G has to be substituted with

G〈θ〉 := G′
〈θ〉 :=

{
g〈θ〉k,i

}

g〈θ〉k,i :=





−
(∑

j∈M,(k,j)/∈θ,(j,k)/∈θ gk,j

)
, k = i

0 , (k, i) ∈ θ

gk,i , (k, i) ∈ Θ \ θ

, k ∈ M, k ≤ i ≤ m

We observe that G〈θ〉 is Laplacian and symmetric whenever G satisfies Assumption 4.1. Moreover,

G〈∅〉 = G. As a consequence, we can deal with nominal and faulty conditions at once by substituting

G〈θ〉 to G whenever it occurs. Specifically, we substitute (2) with

yj(t) = G〈θ〉xj(t), θ ⊂ Θ, j ∈ P (39)

and (3) with

Yj(s) =
1

sn−j+1
G〈θ〉U(s), θ ⊂ Θ, j ∈ P (40)

The loop transfer function of the positive feedback system (4a), (4b), (40), obtained by cutting the

loop at U(s), is

L(s, θ) :=
∑

j∈P

Rj(s)
1

sn−j+1
G〈θ〉 = DL(s)

−1NL(s, θ)

where

NL(s, θ) :=
∑

j∈P

sj−1Nj(s)G〈θ〉

and DL(s) is given by (9).

Then, for any θ ⊂ Θ, the characteristic equation of the positive feedback system (4a), (4b), (40)

is

det
(
DL(s)−NL(s, θ)

)
= 0 (41)

We remark that, whichever the regulator may be, this equation has at least n roots equal to 0. Indeed,

all the eigenvalues of the network (1), (39) are zero, and straightforward calculations show that the

dimension of its unobservability subspace is at least n.

Now, we are ready to introduce our fault-tolerant consensus problem with arbitrary assignment

of both the agreement law and the dominant dynamics. In its statement, we make reference to the

vector

c :=
[
c1 c2 · · · cm

]′
, ci > 0, i ∈ M, c′1 = 1 (42)
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Problem 4.1

Let G satisfy Assumption 4.1. Furtermore, let an Hurwitz set L :=
{
λ̄j |j ∈ N \ {n}

}
, and two

positive scalars α and β be given. Finally, let Θ be a given proper subset of the power set of Θ, with

∅ ∈ Θ.

Find a regulator with transfer function R(s) of the form (4b)-(4b), (5) and set its initial state so

that, for all θ ∈ Θ, the conditions specified in the following points are satisfied.

1. For any given c as in (42) and for all xi(0), i ∈ N ,

lim
t→+∞

(
xi(t)− 1c′

n∑

k=i

tk−i

(k − i)!
xk(0)

)
= 0, i ∈ N (43)

2. Equation (41) possesses (n− 1)(m− 1) roots λij with

Re {λij} < 0,

∣∣∣∣
λij − λ̄ij

λ̄ij

∣∣∣∣ < α, i ∈ M \ {m} , j ∈ N \ {n} (44)

and m− 1 +
∑

i∈M ρi roots νi with

Re {νi} < −β, i = 1, 2, . . . ,m− 1 +
∑

i∈M

ρi (45)

�

Point 1 of Problem 4.1 calls for the controlled network to reach a consensus and specifies the

desired agreement law. For any i ∈ N , such agreement law is a polynomial function of t whose

coefficients are linear combinations of the network initial states xk(0), i ≤ k ≤ n. The weights of the

entries of the xk(0)s in these combinations are the entries of c divided by (k − i)!. One may wonder

whether the agreement law (43) is the only achievable one. The answer is negative. Indeed, it is

easily shown that, since G is singular, the uncontrolled network has got (at least) n fixed modes [45]

at s = 0. Furthermore, the controlled system contains (at least) a chain of n unobservable integrators.

Hence, the agreement law must be a polynomial function of t, and, in general, its coefficients depend

on the initial state of both the network and the regulator (see, e.g., [16]). However, the case where

the agreement law does not depend on the regulator initial state is of obvious particular interest.

Simple computations show that imposing such property implies that the agreement law must have

the form in (43). Finally, it is plainly reasonable that the coefficients of tk−i/(k − i)! in (43) are

positive convex combinations of all the entries of xk(0). This is precisely what the definition of c in

(42) states.

Point 2 concerns only n(m− 1) +
∑

i∈M ρi eigenvalues out of nm+
∑

i∈M ρi total ones. As

a matter of fact, nothing could be required on the remaining n eigenvalues, since they are anyhow

located at s = 0. Moreover, such condition is entirely equivalent to points 1, 2 of Problem 3.1, so

that the comment reported just after Problem 3.1 applies also to Problem 4.1. Hence, (44), (45) can

legitimately be interpreted as stating a dominant-pole-placement issue for the dynamics towards the

consensus manifold. However, we note that in Problem 3.1 the desired locations of the dominant

poles are independent one from each other. Indeed, they are the elements of L̂i, i ∈ M. On the other

hand, in Problem 4.1 the desired locations of the dominant poles is somehow constrained, since they

are the elements of L repeated m times.
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16 A. LOCATELLI, N. SCHIAVONI

We stress that all the above must be true not only in nominal condition, but also in all the possible

considered faulty conditions, as specified by the set Θ.

4.2. Problem solution

In order to introduce our necessary and sufficient solvability condition for Problem 4.1, we first

define the scalars ēj through the identity

∑

j∈N

ējs
j−1 ≡

∏

j∈N\{n}

(
s− λ̄j

)
(46)

Furthermore, let

Ej := ējIm ∈ Rm×m, j ∈ N (47a)

ES :=
[
E1 E2 · · · Ep−1 0

]
∈ Rm×pm (47b)

ED(s) :=

[
0 0 · · · 0
︸ ︷︷ ︸
p−1 m×m blocks

∑n
j=p Ejs

j−p
]
∈ Rm×pm (47c)

Note that ēin = 1, i ∈ M, so that En = Im.

Then, for any µ 6= 0 and ε 6= 0, consider the regulator

R(s) = µV

{
ES +

1

(1 + εs)n−p
ED(s)

}
(48a)

V := −diag
{
c−1
1 , c−1

2 , . . . , c−1
m

}
(48b)

It is easy to check that such regulator is characterized by ρi = n− p, i ∈ M, and can be given the

realization

ε ˙̄zi(t) = −z̄i(t) + z̄i+1(t) + h̄iV yp(t), i = 1, 2, . . . , n− p− 1 (49a)

ε ˙̄zn−p(t) = −z̄n−p(t) + h̄n−pV yp(t) (49b)

u(t) = µ





∑

j∈P\{p}

ējV yj(t) + ε−(n−p)V yp(t)− ε−(n−p)z̄1(t)



 (49c)

where z̄i(t) ∈ Rm, i = 1, 2, . . . , n− p, whereas the scalars h̄i, i = 1, 2, . . . , n− p, are uniquely

defined through the identity

(1 + εs)n−p −

n−p∑

i=1

h̄i(1 + εs)n−p−1 ≡ εn−p
n∑

j=p

ējs
j−p (50)

Then, the solution of our fault-tolerant consensus problem is given in the following theorem.
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Theorem 4.1

Problem 4.1 admits a solution if and only if the set Θ is such that all the matrices G〈θ〉, θ ∈ Θ, have

only one zero eigenvalue.

Furthermore, there exist µ̄ > 0 and ε̄(·) > 0 such that, for all µ > µ̄ and for all ε ∈ (0, ε̄(µ)), the

regulator (42), (46)-(50), with initial state such that

c′z̄i(0) = 0, i = 1, 2, . . . , n− p (51)

solves the problem. �

Notice that the solvability condition above does not depend on n and p, and is the same as that

presented in [39] for oscillators networks.

Contrary to what has been claimed about condition (24) of Problem 3.1, the necessary and

sufficient solvability condition of Problem 4.1 can be given a nice interpretation in terms of the

graph of the network (1), (2) and (3). Indeed, it is well known that a topology matrix has got one

and only one zero eigenvalue if and only if the corresponding graph is connected (see, e.g., [20]).

On the other hand, it is apparent that no consensus problem at all can be solved for networks with

unconnected graphs, since the information about the agents’ initial conditions cannot be shared

over the whole network itself. Consequently, the solvability of Problem 4.1 does not depend on the

request of getting a particular agreement function and a particular location of the dominant poles.

Put in a different way, Problem 4.1 can be solved if and only if any general consensus problem

(without special requirements on the agreement function and on the dominant dynamics) can be

solved. In particular, notice that problem solvability is independent of n and p.

Let us now illustrate the rationale behind Theorem 4.1. As far as the position of the eigenvalues

is concerned, it is quite similar to the one behind Lemma 3.3. First, the fact that G is Laplacian

implies that the controlled network has got n eigenvalues at the origin of the complex plane. Then,

if we set ε = 0 in (48a), the regulator turns out to be nondynamic and to contain multiple derivative

actions. In this situation, when µ→ +∞, for any θ ∈ Θ, the closed-loop system has (n− 1)(m− 1)

eigenvalues satisfying (44) and m− 1 eigenvalues satisfying (45). This is due to the fact that the

cascade connection of network and regulator contains (n− 1)(m− 1) transmission zeros in the

locations where the dominant poles have to be placed. Then, by letting ε be positive and sufficiently

small, the previously mentioned eigenvalues still satisfy their respective conditions, the regulator

becomes proper, and (n− p)m new eigenvalues appear, which satisfy (45). On the other hand, the

fulfilment of point 1 of Problem 4.1 is guaranteed by the sensible choice (48b) for the matrix V .

The details are in the proof.

Similarly to the regulator (23), (25)-(29), (32), (33) solving Problem 3.1, the regulator (42), (46)-

(50) is actually decentralized, high-gain and with dynamics concentrated in a single transfer function

for any agent. However, it is able to solve Problem 4.1 only if its initial state satisfies (51), since,

otherwise, the agreement law would not take on the form specified in point 1 of Problem 4.1. Of

course, (51) is trivially satisfied by z̄i(0) = 0, i = 1, 2, . . . , n− p. However, it is rather interesting to

notice that the regulator initial state can always be set so that (51) is fulfilled and u(0) = 0. Indeed,

on one hand from (49c) it follows that u(0) = 0 if and only if
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18 A. LOCATELLI, N. SCHIAVONI

z̄1(0) = εn−p
∑

j∈P\{p}

ējV yj(0) + V yp(0) (52)

On the other hand, (51) is actually satisfied in view of (39), (48b) and Assumption 4.1. Thus, a

bumpless control can always be achieved.

We also point out that the regulator (42), (46)-(50) solving Problem 4.1 can be designed according

to the following two-step procedure: (i) set ε = 0 and find a sufficiently large µ such that (44), (45)

are satisfied; (ii) find a sufficiently small positive ε such that (44), (45) still hold. The possibility

of successfully performing the above steps is guaranteed by Theorem 4.1, as a consequence of its

already illustrated rationale.

Finally, it is worth noticing that our solution to Problem 4.1 supplies the controlled network

with a nice robustness property. In order to illustrate it, first let G be the set of all the m×m

symmetric Laplacian matrices with only one zero eigenvalue. Thus, the regulator (42), (46)-(50),

besides solving Problem 4.1, is such that points 1 and 2 in it are also satisfied for all the topology

matrices belonging to any subset G of G. Indeed, the equations describing our regulator do not

depend on the set of considered topology matrices, and the proof of Theorem 4.1 can easily be

extended to cope with the new framework. Of course, tuning the parameters µ and ε becomes a

cumbersome task if G is an infinite set.

As an example, suppose that Gn is a matrix with only one nonzero eigenvalue which satisfies

(36a), (37) for some given lki = l̄ki. Then, all the matrices obtained by substituting aki l̄ki to l̄ki,

aik = aki , in (36a), (37) constitute a meaningful set G. Indeed, in the light of (36a), it may though

as describing an alteration of the communication apparatuses.

5. ILLUSTRATIVE EXAMPLES

The theory presented in the preceding sections is now illustrated by means of a couple of examples,

referring to fault-tolerant dominant-pole-placement and to fault-tolerant consensus, respectively.

In both cases, we assume that the network is constituted by four agents with the dynamics of

triple integrators, namely, m = 4, n = 3. Furthermore, we consider the two situations where the

scalar outputs available to each agent are either 2 or 3, so that p = 2 or p = 3.

5.1. Example 1: Fault-tolerant Dominant-pole-placement

We assume here that the network topology matrix is

G =




1 0 1 6

0 3 2 7

4 0 5 3

0 1 1 7




which satisfies condition (24). Then, we complete the definition of Problem 3.1 by setting L̂i =

{−0.1,−0.2}, i = 1, 2, 3, 4, α = 0.4, β = 1. By applying Theorem 3.1 with T = I3, ε = 0.2, µ =

10, we get a 4-th order regulator which solves the problem for p = 2 and a nondynamic regulator

which solves the problem for p = 3. The maximum relative errors
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Table I. Example 1: Maximum relative errors in the locations of the dominant poles.

p = 2 p = 3

fT = ∅, fR = ∅ 0.1432 0.1087
fT = {4}, fR = {4} 0.3514 0.3306
fT = {3}, fR = {1} 0.0788 0.0417
fT = {4}, fR = {2} 0.3514 0.3306

maxi∈{1,2,3,4},j∈{1,2}

∣∣∣∣∣
λij − λ̂ij

λ̂ij

∣∣∣∣∣

in the locations of the dominant poles are reported in Table I, for the nominal and some faulty

conditions. As far as the nondominant poles are concerned, the one closest to the imaginary axis has

real part −1.3524 in the nominal case and −2.3187 in the faulty cases for p = 2, and −3.7984 in the

nominal case and −1.3544 in the faulty cases for p = 3.

Moreover, some initial condition responses of the two controlled networks are reported in Figure

1. Specifically, we concentrated on the transients of x1(t) relative to the nominal condition as well as

the faulty condition defined by fT = {4}, fR = {2}. We assumed xi(0) = 1, i = 1, 2, 3, as network

initial condition, and, when p = 2, ẑ1(0) = 0 as regulator initial condition. Of course, the drawn

responses confirm that the design objectives have been achieved. For both p = 2 and p = 3, the

transients of [x1]2 and [x1]4 are not significantly affected by the considered fault. On the contrary,

the fault influences the transients of [x1]1 and [x1]3. This influence can be reduced by increasing µ

and decreasing ε.

5.2. Example 2: Fault-tolerant Consensus

We assume here that the network topology matrix is

G =




3 −1 −1 −1

−1 2 −1 0

−1 −1 5 −3

−1 0 −3 4




which satisfies Assumption 4.1. Then we complete the definition of Problem 4.1 by

letting L = {−0.1,−0.2}, α = 0.05, β = 4, Θ = {∅, (1, 2), (1, 3)∪ (1, 4), (2, 3) ∪ (3, 4)}, c =[
1/2 1/4 1/6 1/12

]′
. Straightforward computations show that G and Θ are such that the

condition of Theorem 4.1 is satisfied.

By applying Theorem 4.1 with ε = 0.1, µ = 5 we get a regulator which solves the problem. The

maximum relative errors

maxi∈{1,2,3},j∈{1,2}

∣∣∣∣
λij − λ̄ij

λ̄ij

∣∣∣∣

in the location of the dominant poles are reported in Table II, where the nominal and the faulty

conditions are considered. As far as the nondominant poles are concerned, the one closest to the
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Figure 1. Example 1: Initial condition responses of the variable x1(t) of the controlled network (p = 2 and
nominal condition: black solid; p = 2 and faulty condition fT = 4, fR = 2: blue dotted; p = 3 and nominal

condition: red dashdot; p = 3 and faulty condition fT = 4, fR = 2: green dashed).

Table II. Example 2: Maximum relative errors in the location of the dominant poles.

p = 2 p = 3

θ = ∅ 0.0277 0.0082
θ = (1, 2) 0.0407 0.0215

θ = (1, 3) ∪ (1, 4) 0.0481 0.0291
θ = (2, 3) ∪ (3, 4) 0.0366 0.0173

imaginary axis has real part −4.8483 in the nominal case and −4.8465 in the faulty cases for p = 2,

and −48.6312 in the nominal case and −13.8678 in the faulty cases for p = 3.

Moreover, some initial condition responses are reported in Figures 2 and 3 for p = 2, xi(0) =[
1 2 3 4

]′
, i = 1, 2, 3, and z̄1(0) as in (52), so as to get a bumpless control.

Note that, in view of (43), the value of c and the considered initial condition, the agreement laws

for xi(t), i = 1, 2, 3, turn out to be
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Figure 2. Example 2: Initial condition responses of the variables δxi(t) relative to the controlled network in
nominal condition (δx1(t): black solid; δx2(t): blue dotted; δx3(t): red dashdot).

xag1(t) := c′
3∑

k=1

tk−1

(k − 1)!
xk(0) =

11

6
(1 + t+ 0.5t2)

xag2(t) := c′
3∑

k=2

tk−2

(k − 2)!
xk(0) =

11

6
(1 + t)

xag3(t) := c′
3∑

k=3

tk−3

(k − 3)!
xk(0) =

11

6

Specifically, Figure 2 refers to the network nominal condition. It shows the differences δxi(t)

between the network state variables and the agreement laws, namely δxi(t) := xi(t)− 1xagi(t),

i = 1, 2, 3. Plainly, the design objectives are fulfilled in this situation.

In order to check that the problem requirements are fulfilled also in the presence of faults, we

show in Figure 3 the differences δ∗xi(t) between the state variables of the network in nominal

condition and the state variables of the network in the faulty condition θ∗ := (2, 3) ∪ (3, 4), namely

δ∗xi(t) := xi(t)|θ=∅ − xi(t)|θ=θ∗ . Apparently, the design objectives are fulfilled in this situation

too.
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Figure 3. Example 2: Initial condition responses of the variables δ∗xi(t) relative to the controlled network
in nominal condition and in the faulty condition θ = (2, 3) ∪ (3, 4) ([δ∗xi(t)]1: black solid; [δ∗xi(t)]2: blue

dotted; [δ∗xi(t)]3: red dashdot; [δ∗xi(t)]4: green dashed).

6. CONCLUDING REMARKS

This paper presented a couple of problems concerning the decentralized control of multiple-

integrator networks. The first of them is aimed at supplying the controlled network with prespecified

real dominant poles, so as to get any desired speed of response. The goal of the second one is

achieving a preassigned consensus with arbitrary dynamics. The networks agents considered in the

problems are subject to faults of the communication apparatuses, and the regulator must be such that

the closed-loop systems are fault-tolerant, that is, the above mentioned properties are not affected

by the faults.

For both problems, we gave necessary and sufficient solvability conditions together with explicit

formulas for the regulators, which turned out to be high-gain.

The proposed regulators have been shown to be least-order for the first problem. On the contrary,

the minimality issue is still to be assessed for the second problem.

Among the other open topics which deserve attention in future works, we cite the extension of the

presented results to the cases where the agents’ dynamics are not all those of a multiple integrator.

Another interesting point concerns the situations where the models of the faults are more general

than those adopted here.
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APPENDIX: PROOFS

Proof of Lemma 3.1

First assume that fT ∪ fR ⊂ M. Equations (14) of Problem 3.1 reduce to (20) of Problem 3.2 for

f = fT ∪ fR and f = M\ {i}, i ∈ fT ∪ fR, respectively. Viceversa, (20) of Problem 3.2 reduces

to (14a) of Problem 3.1 if fT ∪ fR = f . Secondly, assume that fT ∪ fR = M. In this case, (14b) of

Problem 3.1 coincides with (20) of Problem 3.2 for f = M\ {i}, i ∈ M. Furthermore, conditions

(15)-(18) coincide with (21), (22). �

Proof of Lemma 3.2

Assume that a regulator R(s) given by (4b)-(4d), (5) solves Problem 3.2. Then, all the roots of (20),

f ⊂ M, have negative real part. Hence, the coefficients of the terms with highest and lowest degree

of det
(
Q(f)(s)

)
have the same sign. The former originates from det

(
snD(f)(s)

)
and is equal to

one, since the polynomials di(s), i ∈ M, are monic. Thus, the latter must be positive, that is,

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)

Prepared using rncauth.cls DOI: 10.1002/rnc



TWO FAULT-TOLERANT CONTROL PROBLEMS FOR MULTIPLE-INTEGRATOR NETWORKS 25

det
(
−N1(f)(0)G(f)

)
= det

(
G(f)

) ∑

i∈M\f

(−n1i(0)) > 0, ∀f ⊂ M (53)

Consider now the particular case where f = M\ {i}, i ∈ M. Then, condition (53) becomes

− gi,in1i(0) > 0, ∀i ∈ M (54)

which means that gi,i and n1i(0) have opposite signs. Hence, (53), (54) yield

det
(
G(f)

) ∑

i∈M\f

gi,i > 0, ∀f ⊂ M

which obviously supplies (24), in view of (23). �

Proof of Lemma 3.3

Recall (31). Moreover, let

A :=




−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1



∈ R(n−p)×(n−p), B :=




0

0
...

1



∈ Rn−p, C′ :=




1

0
...

0



∈ Rn−p

Now, for any f ⊂ M, consider the (2n− p)(m− κf )-th order system

ẋi(f)(t) = xi+1(f)(t), i ∈ N \ {n} (55a)

ẋn(f)(t) = u(f)(t) (55b)

εżi(t) = Azi(t) +B

n∑

j=p

[
Êj(f)

]
i
V̂(f)G(f)xj(f)(t), i ∈ M \ f (55c)

w(M\{i})(t) = [w(t)]i = µ


Czi(t) +

∑

j∈P\{p}

[
Êj(f)

]
i
V̂(f)G(f)xj(f)(t)


 , i ∈ M \ f (55d)

where w(t) ∈ Rm.

Simple, though cumbersome, computations show that the transfer function of system (55) from

u(f)(t) to w(f)(t) is exactly the function L̂(f)(s) given in (31). Hence, the roots of (20) do coincide

with the eigenvalues of system (55), after setting u(f)(t) = w(f)(t). The dynamical matrix of this

system is
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F̂ (f) :=




0 Im−κf
· · · 0 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...

0 0 · · · 0 0 · · · Im−κf
0

µ
̂̂
E1(f) µ

̂̂
E2(f) · · · µ

̂̂
Ep−1(f) 0 · · · 0 µĈ(f)

0 0 · · · 0 ε−1 ˜̂Ep(f) · · · ε−1 ˜̂En(f) ε−1Â(f)




(56)

where

Â(f) := diag




A,A, . . . , A︸ ︷︷ ︸
m−κf blocks




, B̂(f) := diag




B,B, . . . , B︸ ︷︷ ︸
m−κf blocks




, Ĉ(f) := diag




C,C, . . . , C︸ ︷︷ ︸
m−κf blocks





̂̂
Ei(f) := V̂ (f)Êi(f)G(f), i ∈ P \ {p}

˜̂
Ei(f) := B̂(f)V̂ (f)Êi(f)G(f), i = p, p+ 1, . . . , n

Now, remind that the order of each local regulator is ρi = n− p. Thus, the number of the eigenvalues

which have to comply with (22) is (1 + n− p)(m− κf).

By applying standard singular perturbation theory [47], when ε→ 0, (n− p)(m− κf )

eigenvalues of (56) tend to the eigenvalues of ε−1Â(f), which are all at ε−1. Hence, if ε is positive

and sufficiently small, they satisfy (22).

The remaining n(m− κf) eigenvalues of F̂ (f) tend to the eigenvalues of

F̂s(f) :=




0 Im−κf
· · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Im−κf

µ
̂̂
E1(f) µ

̂̂
E2(f) · · · µ

̂̂
Ep−1(f) µ

̂̂
Ep(f) · · · µ

̂̂
En(f)




(57)

where

̂̂
Ei(f) := −Ĉ(f)Â(f)−1 ˜̂Ei(f) = −Ĉ(f)Â(f)−1B̂(f)V̂ (f)Êi(f)G(f) =

= V̂ (f)Êi(f)G(f), i = p, p+ 1, . . . , n

since Ĉ(f)Â(f)−1B̂(f) = −Im−κf
.

By again applying standard singular perturbation theory, when µ→ +∞, m− κf eigenvalues of

(57) tend to the eigenvalues of µ
̂̂
En(f) = µV̂(f)Ên(f)G(f) = µV̂(f)G(f), in view of (25) and (26a).

Since the matrices V̂(f)G(f) are Hurwitz by assumption, for µ sufficiently large, these eigenvalues

satisfy (22).

The remaining (n− 1)(m− κf ) eigenvalues of F̂s(f) tend to the eigenvalues of
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F̂ss(f) :=




0 Im−κf
· · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · Im−κf

−Ê1(f) −Ê2(f) · · · −Ên−1(f)




whose characteristic polynomial is

det
(
λI(n−1)(m−κf ) − F̂ss(f)

)
=

m−κf∏

i=1

(
∑

j∈N

êijλ
j−1

)

Hence, in view of (25), the eigenvalues of F̂ss(f) satisfy (21). �

Proof of Lemma 3.4

The proof can be performed along the same steps as those of the proof of Theorem 2.1 in [46], after

substituting matrix GD there with matrix G̃. �

Proof of Theorem 3.1

Necessity follows from Lemmas 3.1 and 3.2. Sufficiency follows from Lemmas 3.1, 3.3 and 3.4. �

Proof of Theorem 4.1

As for necessity, we assume by contradiction that there exists θ∗ ∈ Θ such that the (symmetric)

matrix G〈θ∗〉 has more than one zero eigenvalue. Thus, for θ = θ∗, the network is composed by

(at least) two completely separated subnetworks (see, e.g., [20]). Hence, no agreement law can be

reached, and point 1 of Problem 4.1 is violated.

As for sufficiency, we assume θ ∈ Θ. Then, as a first step, we show that the regulator supplies the

controlled network with the required eigenvalues (point 2 of Problem 4.1), and, as a second one, we

show that the asymptotic behavior is the one called for (point 1 of Problem 4.1).

Let us begin by studying point 2, that is, the eigenvalues of the controlled network, described by

(1), (39), (42), (46)-(50).

Let T (θ) ∈ Rm×m be a nonsingular matrix such that

V G〈θ〉 = T (θ)−1S(θ)T (θ), S(θ) :=

[
S(θ) 0

0 0

]
∈ Rm×m

where S(θ) ∈ R(m−1)×(m−1) is nonsingular, since G〈θ〉 has got exactly one zero eigenvalue and V

is nonsingular. Furthermore, it is Hurwitz, because the nonzero eigenvalues of V G〈θ〉 have negative

real parts in view of Assumption 4.1, (42), (48b) and the Gershgorin theorem.

Furthermore, let
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x̄i := T (θ)xi :=
[
x̄′ia x̄ib

]′
, x̄ia ∈ Rm−1, x̄ib ∈ R, i ∈ N (58a)

¯̄zi := T (θ)z̄i :=
[

¯̄z′ia ¯̄zib

]′
, ¯̄zia ∈ Rm−1, ¯̄zib ∈ R, i = 1, 2, . . . , n− p (58b)

η1 :=
[
x̄′1a x̄′2a · · · x̄′na ¯̄z′1a ¯̄z′2a · · · ¯̄z′n−pa

]′
∈ R(2n−p)(m−1) (58c)

η2 :=
[
x̄1b x̄2b · · · x̄nb

]′
∈ Rn (58d)

η3 :=
[

¯̄z1b ¯̄z2b · · · ¯̄zn−pb

]′
∈ Rn−p (58e)

Trivial, though cumbersome, computations show that

η :=
[
η′1 η′2 η′3

]′
= RT (θ)

[
x′1 x′2 · · · x′n z̄′1 z̄′2 · · · z̄′n−p

]′

where

T (θ) := diag




T (θ), T (θ), . . . , T (θ)︸ ︷︷ ︸

2n−p blocks





∈ R(2n−p)m×(2n−p)m

R :=




diag




Ra, Ra, . . . , Ra︸ ︷︷ ︸

2n−p blocks





diag




Rb, Rb, . . . , Rb︸ ︷︷ ︸

2n−p blocks








∈ R(2n−p)m×(2n−p)m

Ra :=
[
Im−1 0

]
∈ R(m−1)×m, Rb :=

[
0 1

]
∈ R1×m

Consequently, the controlled network (1), (39), (42), (46)-(50) is also described by the equation

η̇(t) = F (θ)η(t) (59)

where

F (θ) :=



F 1(θ) 0 0

0 F 2 F 23

0 0 F 3


 ∈ R(2n−p)m×(2n−p)m (60)
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F 1(θ) :=

[
F 1x(θ) F 1xz

F 1zx(θ) F 1z

]
∈ R(2n−p)(m−1)×(2n−p)(m−1) (61a)

F 1x(θ) :=

:=




0 Im−1 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Im−1

µē1S(θ) µē2S(θ) · · · µēp−1S(θ) µε−(n−p)S(θ) · · · 0




∈ Rn(m−1)×n(m−1)

(61b)

F 1zx(θ) :=




0 0 · · · 0 ε−1h̄1S(θ) · · · 0

0 0 · · · 0 ε−1h̄2S(θ) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 ε−1h̄n−p−1S(θ) · · · 0

0 0 · · · 0 ε−1h̄n−pS(θ) · · · 0




∈ R(n−p)(m−1)×n(m−1) (61c)

F 1xz :=




0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

−µε−(n−p)Im−1 0 0 · · · 0



∈ Rn(m−1)×(n−p)(m−1) (61d)

F 1z :=




−ε−1Im−1 ε−1Im−1 0 · · · 0

0 −ε−1Im−1 ε−1Im−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · ε−1Im−1

0 0 0 · · · −ε−1Im−1




∈ R(n−p)(m−1)×(n−p)(m−1)

(61e)
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F 2 :=




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




∈ Rn×n (62a)

F 23 :=




0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

−µε−(n−p) 0 0 · · · 0




∈ Rn×(n−p) (62b)

F 3 :=




−ε−1 ε−1 0 · · · 0

0 −ε−1 ε−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · ε−1

0 0 0 · · · −ε−1




∈ R(n−p)×(n−p) (62c)

Hence, the eigenvalues of F (θ) are those of F 1(θ), F 2 and F 3. The n eigenvalues of F 2 are all at

the origin of the complex plane. As a matter of fact, they are the network fixed modes mentioned

in commenting the statement of Problem 4.1. The n− p eigenvalues of F 3 are all at −ε−1. As far

as matrix F 1(θ) is concerned, notice that it is the dynamical matrix of the (2n− p)(m− 1)-order

system

˙̄xia(t) = ˙̄xi+1a(t), i ∈ N \ {n}

˙̄xna(t) = µ





∑

j∈P\{p}

ējS(θ)x̄ja(t) + ε−(n−p)S(θ)x̄pa(t)− ε−(n−p) ¯̄z1a(t)





ε ˙̄̄zia(t) = −¯̄zia(t) + ¯̄zi+1a(t) + h̄iS(θ)x̄pa(t), i = 1, 2, . . . , n− p− 1

ε ˙̄̄zn−pa(t) = −¯̄zn−pa(t) + h̄n−pS(θ)x̄pa(t)

where the coefficients h̄i are defined through the identity (50). This system has the same structure

as the one in (30). Consequently, by following the same line of reasoning as in the proof ol Lemma

3.3, it can be proved that it has: (i) (n− p)(m− 1) eigenvalues that, when ε→ 0, tend to −ε−1;

(ii) m− 1 eigenvalues that, when µ→ +∞, tend to the eigenvalues of µS(θ); their real parts tend

to −∞ since S(θ) is Hurwitz; (iii) (n− 1)(m− 1) eigenvalues that, when µ→ +∞, tend to the

eigenvalues of
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F ss :=




0 Im−1 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · Im−1

−ē1Im−1 −ē2Im−1 · · · −ēn−1Im−1




whose characteristic polynomial is

det
(
λI(n−1)(m−1) − F ss

)
=

(
∑

j∈N

ējλ
j−1

)m−1

since, in view of (46), ēn = 1.

In conclusion, for ε positive and sufficiently small and µ sufficiently large, matrix F (θ), besides

having n eigenvalus at s = 0, has: (i) m− 1 + (n− p)m eigenvalues which fulfil (45), since

ρi = n− p, i ∈ M; (ii) (n− 1)(m− 1) eigenvalues which fulfil (44). Hence, point 2 is satisfied.

Let us consider now point 1, that is, the asymptotic behavior of the controlled network, described

by (1), (39), (42), (46)-(50).

Notice that the last column of T (θ)−1 can be taken equal to 1. Thus, the last row of T (θ), to be

denoted by ψ′, has to satisfy the conditions

ψ′
1 = 1, ψ′V G〈θ〉 = 0

Hence, by recalling that G〈θ〉 is symmetric, it turns out that

ψ = c (63)

Consequently, simple computations show that, in view of (58b), (58e), (63), condition (51) is

equivalent to

η3(0) =




c′z̄1(0)

c′z̄2(0)
...

c′z̄n−p(0)



= 0 (64)

Thus, in view of (60)-(62), the solution of (59) is given by

η1(t) = eF 1(θ)tη1(0), t ≥ 0 (65a)

η2(t) = eF 2tη2(0), t ≥ 0 (65b)

η3(t) = 0, t ≥ 0 (65c)

Since it has already been proved that F 1(θ) is Hurwitz, then the solution of (65a) is such that

limt→+∞ η1(t) = 0. On the other hand, in view of (62a), the solution of (65b) is
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[η2(t)]i =

n−i∑

k=0

tk

k!
[η2(0)]i+k , t ≥ 0, i ∈ N (66)

Now, observe that, in view of (58a), (58d), (63),

η2(t) =




c′x1(t)

c′x2(t)
...

c′xn(t)




(67)

Since η1(t) asymptotically vanishes, then limt→+∞ x̄ia(t) = 0, i ∈ N , in view of (58c).

Furthermore, since xi(t)− T (θ)−1x̄i(t) = 0, in view of (58a), (58d),

0 = lim
t→+∞

(
xi(t)− T (θ)−1x̄i(t)

)
= lim

t→+∞
(xi(t)− 1x̄ib(t)) = lim

t→+∞
(xi(t)− 1 [η2(t)]i) , i ∈ N

Finally, in view of (66), (67),

lim
t→+∞

(
xi(t)− 1

n−i∑

k=0

tk

k!
c′xi+k(0)

)
= lim

t→+∞

(
xi(t)− 1c′

n∑

k=i

tk−i

(k − i)!
xk(0)

)
= 0, i ∈ N

which coincides with (43), so that point 1 is satisfied.

Thus, the theorem is proved. �
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