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Abstract: This paper is concerned with computing enclosures for the constrained reachable
set of uncertain nonlinear dynamic systems. Our main contribution is a nontrivial extension of
the generalized differential inequality, proposed in Villanueva et al. (2015), for the case that
an a priori enclosure, of the reachable set is available. A practical implementation is worked
out in detail for the case of ellipsoidal enclosures. The applicability of the proposed method is
illustrated using a Lotka-Volterra system, for which a nonlinear solution invariant is known.
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1. INTRODUCTION

Computing enclosures for the reachable set of uncertain
dynamic systems is a central task in various model-based
methodologies. These include, global dynamic optimiza-
tion [Papamichail and Adjiman 2002], robust optimal con-
trol [Mitchell et al. 2005], guaranteed state and parameter
estimation [Jaulin 2002, Paulen et al. 2016], and fault-
detection [Tulsyan and Barton 2016].

This paper focuses on continuous-time set-propagation
methods for reachability analysis. These are based on the
construction of an auxiliary dynamic system whose flow
describes a pointwise-in-time enclosure of the reachable
set of the original system. Walter’s theory of differential
inequalities (DIs) [Walter 1970] provides a theoretical basis
for continuous-time interval methods. This approach has
also been used for polyhedral enclosures [Harwood and
Barton 2016], Taylor models [Chachuat and Villanueva
2012], and ellipsoidal enclosures [Kurzhanski and Vélyi
1997, Houska et al. 2012].

Some systems admit an a priori enclosure of their reach-
able sets, which can be used to reduce conservatism. An
extension of Walter’s theory enabling the use of linear and
nonlinear solution invariants for interval-based DIs can be
found in [Scott and Barton 2013a] and [Shen and Scott
2018]. A method for constructing polytopic enclosures un-
der polytopic a priori enclosures can be found in [Harwood
and Barton 2018]. These methods have found applications
in chemical kinetics [Scott and Barton 2010], chemical
reactors [Tulsyan and Barton 2017] and reachability of
differential algebraic equations [Scott and Barton 2013b].

This paper extends the differential inequality based enclo-
sure methods from [Villanueva et al. 2015] for systems with
known a priori enclosures. After formalizing the problem

in Section 2, we provide sufficient conditions for a set-
valued function to be an enclosure of the reachable set of
an uncertain dynamic system for which a time-varying a
priori enclosure is known. These conditions, introduced in
Section 3, are given in the form of a differential inequal-
ity for the support function of the set-valued function.
In Section 4 the special case of ellipsoidal enclosures is
presented. Section 5 presents the implementation details
of the ellipsoidal approach, and its application to a Lotka-
Volterra system. Section 6 concludes the paper.

Notation: LT is the set of n-dimensional L;-integrable
functions, while the Sobolev space of weakly differentiable
functions with L} derivatives is denoted by Wi';. Weak
derivatives of functions z € W', are denoted by Z. The
set of compact and convex compact sets in R™ are denoted
respectively by K" and K¢. The power set of a set Z C R"
is denoted by P(Z). Its interior and closure are denoted
by int(Z) and cl(Z). The support function of Z C R™= is
denoted by V[Z](c) = sup,c, Tz, for all ¢ € R™*. The
set of n x n positive semidefinite and definite matrices are
denoted by S" and S7, respectively. An ellipsoid with
center ¢ € R”™ and shape matrix @ € S?} is denoted by

£(q,Q) = {q+Q%v ‘ vTy < 1} ,

where Q% is the positive semidefinite square root of Q.
2. PROBLEM FORMULATION

We consider uncertain dynamic systems of the form
vt e [0,T], &(t)= f(t,z(t),p), 1)
with z(0) € Xo € K¢r.
The function « : [0,7] — R™= denotes the state trajectory
and Xy is a given set of initial conditions. Moreover,
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p € R™ denotes a time-invariant disturbance, whose value
is unknown but assumed to be bounded by given set,
pelPe Kg’”. The function f : R x R?» x R" — R"= is
assumed to be jointly continuous in all its variables as well
as locally Lipschitz continuous in z, uniformly on [0, T] x P.

Let x(-,xo,p) be the solution of (1) for a given zy € Xg
and a given p € P. We assume that a set-valued function
© : R — K¢ is given, such that

vt e R-ﬁ X(tvaap) € G)(t) lnt(e(t)) 7& g, (2)
for all zg € X and all p € P. We call this function a robust
positive invariant tube.

and

An example of a dynamic system with invariants is the
index-1 semi-explicit differential-algebraic equation

Tp (t) = g(t7 ID (t)a LA (t),p)
0= h(t, mD(t)va(t)ap) :
Here, 2p(t) € R™ and za(t) € R™ are the differential
and algebraic variables, respectively. Differentiating the

algebraic equation 0 = h(t,zp,za,p) with respect to the
algebraic variable, one gets

@+ oh dzp Oh dwp
ot Ozp dt  Oza dt
Since the system is of index-1, the matrix 5{1—}; is invertible.

If x = (xp,za), one can write

g
f= (8h>_1(8h+8h > : (3)
D a ot " owp?
Now, the state of the dynamic system defined through
the right-hand side (3) must lie on the manifold given by
h(t,zp(t), za(t),p) = 0. This relation can be used to define
a set-valued function © with

Ot) 2 {¢ e R"™H™4 |vp e P, h(t,&,p) =0} .

In this paper we focus in the following problem. Given (1)
and ©, we are interested in characterizing the constrained
reachability tube X : [0,7] — P (R") given by

Jz e Wi, Ipe R™:

v € [0,t],

X(t)=q8§€R™ li(r) = f(r,2(1),p), ¢ - (4)
z(0) € Xo, p€P,
z(t) = ¢

Here, it is important to recall that, as stated in (2), the
set-valued function © is assumed to satisfy X (t) C O(¢)
for all t € [0,T]. Unfortunately, an exact characterization
of X is impossible except in very few instances. Thus,
the focus of this paper is on constructing tractable outer
approximations of X.

3. CONVEX ENCLOSURES USING DIFFERENTIAL
INEQUALITIES

This section focuses on conditions for a set-valued function
Y :[0,T] — K¢ to be an outer approximation (enclosure)
of X on [0, 7], i.e. such that it satisfies Y (t) 2 X(¢) for all
t e [0,17.

The conditions given in this paper are generalizations of
those given in Thm. 3 in Villanueva et al. [2015]. This
theorem establishes sufficient conditions for a set-valued

function Y to be an enclosure of the reachability tube
of (1) in the absence of constraints.

The theorem is reproduced next—with a slightly different
notation—for the sake of completeness. In the following,
we use the the short-hand notation

cTE =V[Zi](e)
§ S Z1 n 1nt(Z2) s
pelP
which is defined for all Z; € K¢, all closed Z, € P(R™*),
all 7 € R, and all ¢ € R"=.

Theorem 1. Consider system (1). Let Y : [0,T] — K¢ be
a set-valued function such that

(1) the function VY (-)](c) is, for all ¢ € R"=, Lipschitz
continuous on [0, T]; and
(2) the inequalities
Vt e (0,T], VY ()(c) > V[ (c,t,Y(),R"™)](c)
with VIY(0)](c) > V[Xo](c)
hold for all ¢ € R™. Then, Y is an enclosure of X, i.e. we
have Y () D X(t) for all ¢ € [0, T].

F(C,T,Zl,ZQ): f('ﬂ&p)

Proof. See Villanueva et al. [2015] for a proof. O

The next theorem presents the main contribution of this
section, namely, a generalization of Thm. 1 for enclosing
reachable sets when an a priori enclosure is known. In
particular, it introduces a differential inequality which—
unlike that in Thm. 1—takes advantage of ©, to reduce
the conservatism of Y.
Theorem 2. Let Y : [0,T] — K¢ be a set-valued function
satisfying Y () Nint(©(t)) # @ for all ¢ € [0, T|. Moreover,
let Y be such that
(1) the functions VY (+)](c) and VY (-)NO(-)](c) are, for
all ¢ € R™ | Lipschitz continuous on [0, T]; and
(2) the differential inequalities
vt € (0,T), V[Y(1)(c) = VI (e, t,Y(t),0(t))](c)
with VIY(0)](c) = V[Xo(c)
hold for all ¢ € R™. Then, the convex set-valued function
Yo : R — K¢ given by Ygo(t) = Y(t) N ©(t), for all
t € [0, 77, satisfies Yo(t) 2 X (¢) for all ¢t € [0,T].

A proof of this theorem is included in Appendix A.

4. ELLIPSOIDAL ENCLOSURES FOR
CONSTRAINED REACHABILITY

In the following, we introduce a practical construction for
ellipsoidal enclosures satisfying the differential inequality
from Theorem 2. We consider ellipsoidal-valued enclosures,

Y(t)=£E(qt),Q)) -
Here, ¢ : R — R and @ : R — S'}7, denote the central
path of the tube and its time-varying shape matrix.

Let the differentiable functions 8 : R — R and © :
R — S}, as well as the pairs (o, Qo) € R"* x S'7_ and

(p, P) € R™ x S}, be given, such that
VteR, O(t) CE(0(1),0() . XoCE(q,Qo) ,
and PCE(p,P) .



120 Mario E. Villanueva et al. / IFAC PapersOnLine 52-1 (2019) 118—123

We assume that a nonlinearity bound
PR x RMeXMe x RMXMe 5 R x Shr x R™ — ST*
is given such that
f(t765p> - A(€ - 7") - B (p _ﬁ> € S(O,p(t,A,B,T‘, R))
for all t € R, all £ € &(r, R); all vectors r € R™, and
p € R"™; and all matrices A € R"=*"= B € R"*"r and
R € S'}7, . Notice that since f is Lipschitz continuous in &,

such a function can always be constructed [Houska et al.
2012]. Furthermore, we introduce the shorthand notations

¢(t,r,R,0) = [ (t,r,p) + oR(O(t)~") (6(t) =)  (5)
and
o(t,r, R, A, B,k,\,0) = AR+ RAT

1 1
+(k+ MR+ ;BPBT + Xp(t, A,B,r, R)

+o (1 -|[Be)y* (- y) Hz I-R (@(t)—1)> R.

which are, again, defined for all vectors r and p as well as
all matrices A, B, and R of compatible dimensions.

(6)

The following theorem summarizes the construction of
ellipsoidal outer approximations for X (t).

Theorem 3. Let ¢ : R — R™, Q : R — S’7, be any
differentiable functions satisfying

Q(t) = (,O(t, q(t)7 Q(t)v U(t))

Qt) = ©(t, (1), Q(t), At), B(t), (1), A(t), o (t))
for all ¢t € (0,T], with ¢(0) = go and Q(0) > (o and for
any given functions A : R — R X" B : R — R"=X"»,
kK, A : R — Riy and 0 : R — R,. Then, the set-valued
function Y : [0,T] — K¢ given by Y (t) = £(q(t), Q(t)),
for all ¢t € [0,T], satisfies the differential inequality of
Theorem 2 on [0, T].

The proof of this theorem is rather technical. For the sake
of brevity, only an outline is provided in Appendix B.

5. IMPLEMENTATION AND CASE-STUDY
5.1 Implementation details

This section describes the main details behind the imple-
mentation of the ellipsoidal outer approximation scheme
for the constrained reachability tube X. The main diffi-
culty in using the conditions of Theorem 3 is the con-
struction of the right-hand side in the auxiliary bounding
systems, i.e. the functions (5) and (6).

Notice that the right-hand side of ODEs for ¢ and @
is identical to the ones introduced by Kurzhanski and
Varaiya [2002], Houska et al. [2012] [Villanueva et al. 2015,
see also], except for the terms

cR(©@1)) (0(t) — 1)

in ¢ and
o (1 - H@(t)—% (r—9(t) Hz I-R (@(t)_1)> R

in ®. For example, in [Villanueva et al. 2015] the im-
plementation of the auxiliary bounding system—for the
unconstrained reachability problem—is based on Taylor
model arithmetics. Notice that the use of Taylor model
arithmetics provides a means to have a fully systematic

and automatic way for evaluating the right-hand side func-
tions ¢ and ®. Due to the dependence of Taylor models on
interval arithmetics, which are only Lipschitz continuous,
such an implementation could not be used within gradient-
based algorithms for optimal control.

In this paper, we choose the functions A and B given by

0 0

A) = G tat).p) and Bl = T t.a).p).
The nonlinearity estimate can be constructed using in
a semi-automated manner, using Hessian bounds [see,
e.g. Villanueva et al. 2017a,b]. In this paper, we use an
analytical approach, exploiting globally valid algebraic
relations within a function [Houska et al. 2012, Villanueva
et al. 2018, see, e.g.] .

Another difficulty is in choosing the functions A, k, and
o introduced in Theorem 3. In a robust control context,
such functions can be interpreted as additional degrees
of freedom, and are left to be chosen by the optimizer. In
this paper, we choose fixing these degrees of freedom using
heuristic relations. In particular, we choose these functions
such that they minimize, e.g. the trace of Q(¢). In this case,

we have
w0 - V/TQ0)
Tr(Bt)QuwB(t)T)
and
Tr(Q(1))

Alt) = .
Y= T, A, B0, QW1 0))
For more details, see Villanueva et al. [2015, 2017b]. For
o, we can also introduce the following heuristic

() = {go it TH(Q(1) > Tr(Q(1)B(1) ' Q(1))

otherwise
which minimizes Tr(Q(t)), whenever E(q(t),Q(t)) C
E(O(t),O(t)). In order to avoid discontinuities and stiffness
in the integration routine, we use the smooth approxima-

tion
<atan (Tr(Q(t) — Tr (Q(H)O(1)~*Q(1))) n 7")

o(t) =

ENIST

€ 2
with @ € (0,00) and € > 0.

5.2 Case Study: Lotka-Volterra System

Consider the Lotka-Volterra system
#1(t) = pra () (1 — 22(t)) (7)
Ta(t) = pawa(t)(21(t) — 1)
with initial conditions xg = (1.2,1.1)T. The uncertain
parameters are bounded by the ellipsoid &(p, P) with
p=(3,1)T and P = 2diag(107%,107%).

Equation (7) satisfies an invariant of the form

log 9611 (;) —(z1(t) — 1.2)
w(m(t)vp) =p' Ig.(t) =0
log 1 (z2(t) — 1.1)

for every, fixed, p € R2. This can be verified by checking
that V¢ f = 0. Figure 1(left) shows the sets

= P =
{5 e R? Jg;p) : 0} C VU= {5 € R? %w(g,p) < 0}’
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Fig. 1. Invariant and state bounds for the Lotka-Volterra system. Left: set of solution invariants (dark gray), ¥ (light
gray) and its ellipsoidal enclosure (boundary shown in black). Center and right: Projections of X(-) onto the
state-time coordinates (gray), unconstrained ellipsoidal bounds (dashed lines) and projections of Y'(+) (solid lines)

in dark and light gray, respectively. Let § = (1,1)T and
© = 1072 diag(6,2.5), then the ellipsoid & (6, 0)—whose
boundary is depicted as a black line—is an enclosure of .
We then set © : t — & (6,0).

The bounding system from Theorem 3 was implemented in
MATLAB and solved forward in time using its adaptive-
step Runge-Kutta 4-5. The nonlinearity estimate p is given

by
p(t, A1), B(t),q(t), Q(t)) =

diag (’l’Ll(Q(t), Q(t))2> nQ(q(t)v Q(t))g) ’
with

ni(r,R) = \/31,1?1,1 + 71 \/R2,2P1,1
+ 1 \/R1,1?1,1 + \/R1,1R2,2ﬁ1,1
na(r,R) = 1 \/R2,2ﬁ2,2 +ry \/R1,1ﬁ2,2

+ \/31,132,2P2,2 + \/Rz,zﬁm .
The functions n; and ne, were obtained by the procedure
outlined in Villanueva et al. [2018, Appendix 2].

The central and right panels in Figure 1 show projections
of X () onto the (x1,t)- and (z2,t)-spaces (in gray), as well
as projections of ellipsoidal enclosures. The dashed lines,
were obtained without taking intersections, i.e. o(t) = 0,
for all ¢ € [0,T]. The solid black lines denote the projec-
tions of Y (), computed via Thm. 3. None of these methods
leads to bound explosion over [0,40], while the bounds
obtained using Taylor models [Chachuat and Villanueva
2012, Lin and Stadtherr 2007], and polyhedral enclo-
sures [Harwood and Barton 2016] diverge before T' = 40.

6. CONCLUSION

This paper has presented a framework for reachability
analysis of continuous-time nonlinear systems, whenever
a time-varying a priori enclosure—namely, a robust pos-
itive invariant tube, is available. The methodology uses
a differential inequality which provides a sufficient con-
dition for a time-varying support function to describe a
convex enclosure for constrained reachability tubes. In
addition, we provide tractable conditions for the case of
ellipsoidal-valued enclosures. The applicability of this the-
ory is demonstrated by means of the construction of en-
closures for the reachable sets of a Lotka-Volterra system.
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Appendix A. PROOF OF THEOREM 2

Before providing a proof for Thm. 2, we prove the following
intermediate result.

Proposition 4. Let Y : [0,T] — K be a set-valued
function whose images, Y(t), are strictly convex and
have a nonempty intersection Y (¢t) N ©(t) # 0 for all
t € [0,T]. Moreover, let Y be such that the functions
VIY()l(e) and VY (-) N ©(-)](c) are, for all ¢ € R,
Lipschitz continuous on [0, 7). If in addition, Y satisfies
the differential inequalities

e = VY (®)l(c)
£eY()ne() | (o),
pelP

VIY(@®)](e) >V | { f(t,€p)

for all ¢ € R™ and all t € [0, 7], then Y is an enclosure of
X, i.e. we have Y (t) D X (¢t) for all t € [0,T].

Proof. Our proof is indirect. Let us assume that the
conditions in the theorem hold, but Y is not an enclosure
of X (t). Then, by the Lipschitz continuity of V[Y(-)](c),
we can assert the existence of a time instant ¢ € [0,7]; a
vector ¢ € R™ with ¢ # 0 and some € > 0 such that

X(t) CY(¢) (A1)
VIX®)](c) = VIY ())(c) (A.2)

and
V1€ (t,t+¢€): VIX(1)](c)>VIY()](c). (A.3)

Notice that by the sufficiency of the conditions in Thm 1,
and our assumptions for the proof, this is only possible
if the unconstrained differential inequality is violated at
(t,c). That is, we must have
VIY(@®)](c) < V[T (e,t, Y (8),R™)]
Let us introduce the constraint set
cT¢ = V[zi](c)
VAVARVA = R"™»
21,2200 = { St

defined for all Z1,Z5 € P(R") and all ¢ € R"=. Since
Y'(t) is assumed to be strictly convex, F [Y (t), R"=] (c) the
supporting facet of Y (¢) in the direction ¢ is a singleton.
Recall that © is, by assumption, an enclosure of X. Hence,
as a consequence of (A.1) and (A.2), the implication

e FY(t),R™](c) = ¢ € F[X(1),0(t)] (c) (A5)
must hold. Using (A.1) and (A.2) again, shows that
e F[X(),0)](c) = e FY(t),0()](c). (A6)
also holds. Thus, (A.5), (A.6) together with (A.4) imply
cTe = VY (t)l(c)
EeY()NoO(t)
pelP

which is a contradiction to our assumption that all the
conditions of the proposition hold. This, in turn, yields
the statement of the proposition. a

(A.4)

VIY()](c) <V |4 f(t€p) (),

We can now proceed to give a proof of Theorem 2.

Proof. Notice that Proposition 4 considers:

e set-valued functions Y with strictly convex images for
all t € [0,T]; and

e a larger set Y (¢) N ©(t)—compared to the tighter
intersection Y (t) Nint(O(¢)) in Thm. 2.

Our proof proceeds in two steps: we relax the conditions
of Proposition 4 and claim that its conclusion still holds.

Step 1. Let us show that the statement holds without
strict convexity of Y'(¢). Consider the Hausdorff metric

dp(A, B) = max {maxmin la — b||, max min |ja — b|} )
acA beB beB A€A

defined for all A, B € K"=. Now, we construct a family of

enclosures Y. : [0,T] — K¢ of Y, such that for all € > 0:

e for all t € [0, T, the sets Y, (¢) are strictly convex; and
e There exists a continuous function o : Ry — R with
a(0) = 0, satisfying
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du(Yc(t),Y(t)) < a(e) and

V[Y](e) > VY ( )(¢) + Lafe)
for all ¢ € [0, 7] with L = 7.

For a proof of the existence of such functions, see Lem-
mata 1 and 2 in Villanueva et al. [2015]. Assume for a
moment that L is large enough such that
VIY](e) =2 VY (8)](c) + Lafe)

2 V[I(e,t,Y(t),0(t))](c) + La(e)

> V(e t, Ye(t), 0(1))](c)
holds for a sufficiently small ¢ > 0. Then, we can apply
Proposition 4, to show that Y. is an enclosure of X. The
first claim, namely that the result holds without the strict
convexity assumption, follows after taking the limit as
€ — 0—invoking a continuity argument. Notice that L
can always be as large as needed by partitioning [0, 7
into a finite number of sufficiently small subintervals and
applying the above procedure.

Step 2. We now show that the result of Proposition 4 still
holds if we replace Y (t) N ©(t) by the tighter intersection
Y (t) N ©(t). Notice that
cl(Y(t) nint(©(t))) = cl(Y () N O(t))

since O(t) # @ and Y (¢) N int(O(t)) # @. Thus, the
statement of the theorem remains unchanged if we replace
O(t) in the intersection by its interior. This follows from
the fact that the supremum of a continuous function over
any bounded set coincides with its maximum over the
closure of the set.

This proves the statement of the theorem. O

Appendix B. AN OUTLINE OF THE PROOF OF
THEOREM 3

The proof requires ideas from [Kurzhanski and Vélyi 1997],
Houska et al. [2012], and Villanueva et al. [2015].

Let the set-propagation operator for (1) be denoted by
Jz € Wi'f,Ip e R :

Vt € [tl, tg],
H(tz,t1, Z1) = ¢ £ € R™ | &(t) = f(t,z(t),p),
z(t) € O(t), p e P,
SC(tl) = Zl, I(tg) = €
Notice that II is defined for all Z; € K¢* and all t1,t, € R
With tl S tg.

The main idea is to use a discretized differential inequality,
similar to the one presented in Villanueva et al. [2015,
Proposition 1], which requires stronger regularity condi-
tions, on Y. Namely, that

e the sets Y (¢) and Y (¢) N ©(t) are strictly convex for
all t € [0,T]; and

o the functions VY (-)](c¢) and VY (-)NO(-)](c) are, for
all ¢ € R™= differentiable on [0, T.

Under these conditions, the existence of a continuous
function a : R — R with «(0), such that the differential
inequality

VII(t, t+ h, Y (t)](c) < VY (t+ h)|(c) + ha(h), (B.1)

holds for all ¢ € R™ with ||c[| < 1 and all ¢t € [0,T], is
sufficient to guarantee that Y satisfies the conditions of

Theorem 2. Let
L(t,h) = a(t) + hf(t q(t),p) + hA@)(2(t) — q(t))
+hB(t)(p - p) + hn(t)

be an Euler approximation of (1). Here, z(t) € £(q(t), Q(¥))
and n(t) € £(0,p(t, A(t), B(t), q(t),Q(t))). From here on,
we use well known results from the field of ellipsoidal
calculus for constructing enclosures of the intersection and
Minkowski sums of ellipsoids [Kurzhanski and Valyi 1997,
Houska 2011]. In particular, since ©(t) C & (0(t), 6(t)),
we have that by setting

Q(t.h) = (o1(t, QW)™ + oa(t, WO )
q(t,h) = (o1 (t, M)Q() ™ q(t) + o2(t, 1)O(t)
it follows that Y (t) N ©(t) C £(4(t, h), Q(t, h)), as long as
o1(t, h), oa(t, h) > 0 satisfy

G(t,R)TQ(t, h)d(t,h) =1 — oy (L, h) (1 HQ H >

— oa(t,h) (1 - H@(t)%e(t)HZ> .

(B.2)

0(t) Q(t. h)

Now, recall that the inclusion

E(q1, Q1) ©&(q2,Q2) €€ <(J1 + q2, & + Q2>
Y1 Y2

holds, for any pair (q1,Q1), (g2, Q2) € R" xS’} | as long as
1,72 > 0 and 41 +v2 = 1 [Kurzhanski and Vélyi 1997]. A
repeated application of this statement shows that setting

Q(t,h) = (I +hA@®)Q(t, h)(I + hA(t))T

g4l (t7 h)
h? -
+772(t, M) B(t)PB(t)
2

h
+mp(t, A(t), B(t), q(t), Q(t)))

q(t,h) =q(t + h) + hf(t,q(t +h),p)
for any function v (¢, h), v2(t, h), y3(¢, h) > 0 with ~; (¢, h)+
’72(t7 h) + ’73(t7 h) = 13 1mphes
VIL(t + h,t, Y (1))](e) < VIE@G(E, h), Q(t, h)))(¢) + hB(h)
for a continuous function 8 : R — R with 3(0) = 0, for all
¢ with ||c]| = 1.
Let at (t7 h) = l_h)‘(t) —hH(t), 72(ta h) = hl{(t)a ’73(1.7 h) =
hA(t), and o1(t,h) = 1 — ho(t), with o2(t,h) defined
implicitly by (B.2). Differentiating the equations for §(t, h)
and Q(t, h) with respect to h yields

ddh i(t,0)= (t,cj(t,O),Q(t’o),U(t))

Since the right-hand side of these derivatives coincide with
the differential equations for ¢ and @, we must have
q(t+h) = 4(t,h)+0 (h*) and Q(t+h) = 4(t,h)+0 (h?).
In turns, this implies the existence of a function o : R — R
with «(0) = 0 and such that the desired inequality, i.e.
V[I(t+h,t, Y (1))](c) < V[E(q(t+h, Q(t+h)))](c)+ha(h) .
holds.



