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Abstract

Fractional calculus has been proved to be very effective in representing the

visco-elastic relaxation response of materials with memory such as polymers.

Moreover, in modelling the temperature dependency of the material func-

tions in thermo-visco-elasticity, the standard time-temperature superposition

principle is known to be ineffective in most of the cases (thermo-rehological

complexity). In this work, a novel finite element formulation and numerical

implementation is proposed for the simulation of transient thermal analysis in

thermo-rehologically complex materials. The parameters of the visco-elastic

fractional constitutive law are assumed to be temperature dependent func-

tions and an internal history variable is introduced to track the changes in

temperature which are responsible for the phase transition of the material.

The numerical approximation of the fractional derivative is employed via the

so called Grnwald-Letnikov approximation. The proposed model is used to

numerically solve some test cases related to relaxation and creep tests con-
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ducted on a real polymer (Etylene Vynil Acetate), which is used as the major

encapsulant of solar cells in photovoltaics.

Keywords: Thermo-visco-elasticity, fractional calculus, materials with

memory, finite element method, rheological complexity.

1. Introduction

The theory of visco-elasticity deals with the description of materials that

exhibit a combination of elastic (able to recover the original undeformed

state after stress removal) and viscous (deformation-preserving after stress

removal) behaviours. Quantitative description of such materials involves a

strain-stress constitutive relation that depends upon time. The classical lin-

earized model of visco-elasticity leads to an integro-differential equation in

which the elastic stress tensor σ is a convolution product between the strain

ε, which encodes the deformation history of the material up to the current

time, with an appropriate memory kernel E(t) (in one dimension), represent-

ing the relaxation mechanism:

σ(t) =

∫ t

0

E(t− s)ε̇(s) ds. (1)

The visco-elastic constitutive response is usually assessed through experi-

mental creep or relaxation tests. In a relaxation test, a constant strain ε0

is applied quasi-statically to a uniaxial tensile bar at t = 0. Due to visco-

elasticity, the stress σ needed to maintain the imposed strain decreases with

time. The relaxation modulus of the material is defined as E(t) = σ(t)/ε0,
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and it usually shows a power-law dependency with time for the majority of

polymers. In the creep test, on the other hand, the uniaxial tensile bar is

loaded by a constant stress σ0 imposed at t = 0. Again, the load is applied

quasi-statically or in such a manner as to avoid inertia effects, and the ma-

terial is assumed to have no prior history. In this case, the strain ε under

the constant load increases with time and the test defines a new quantity

called creep compliance J(t) = ε(t)/σ0. Various mathematical models have

been proposed and used to represent the visco-elastic material functions an-

alytically. The simplest mechanical model consists of two elements: a spring

for the elastic behavior and a dashpot for the viscous one. Spring and dash-

pot elements can be combined in a variety of arrangements to produce a

simulated visco-elastic response. Early models due to Maxwell and Kelvin

combine a linear spring in series or in parallel with a Newtonian damper [1]:

kσ + η
Dσ

Dt
= kη

Dε

Dt
(Maxwell), (2a)

σ = kε+ η
Dε

Dt
(Kelvin-Voigt). (2b)

Other basic versions include the three-parameter solid and the four-parameter

fluid models. A more versatile model is obtained by connecting a number N

of Maxwell elements (arms) in series and adding a spring in parallel, leading

to a Prony series relaxation function:

E(t) = E0 +
N∑
i=1

Eiexp(−t/τi), (3)
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where Ei, τi are material properties to be determined from data. It has to be

pointed out that Ei, τi in the Prony series have to be fitted from real data

obtained from realxation tests. This is not a straight forward task because it

involves the solution of a constrained optimization problem, as pointed out

in [2, 3].

Fractional calculus has been proved to be very effective in modelling the

power-law time-dependency of the relaxation behavior of polymers, offering

also an easier way to estimate the model parameters as compared to the

above rheological models [4–6, 32–35, 38–40]. As highlighted in [7], Nutting,

established in 1921 that for many polymers the relationship between stress

and strain is described by an equation of the form:

σ(t) = At−αε(t), 0 ≤ α ≤ 1, (4)

where the relaxation modulus E(t) in Eq. (4) is assumed to be a fractional

kernel function of the parametres A > 0, 0 ≤ α ≤ 1 of the type:

E(t) = At−α/Γ(1− α), (5)

being Γ(x) the Euler gamma function. In this case, the constitutive relation

(5) reduces to an elastic spring for α = 0 or to a dashpot for α = 1, suggest-

ing that visco-elasticity is something in between those two limit constituive

models. This is the reason why the stress-strain relation (5) is usually called

a spring-pot element [8, 9]. Noting that the fractional derivative of a function
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f(t) of order 0 ≤ α ≤ 1 is defined as [19]:

Dαf(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αḟ(s) ds, (6)

it is straightforward to recast the constitutive relation (5) in terms of a

fractional derivative [8, 10–12]:

σ(t) = ADαε(t). (7)

Polymers display a strong thermo-visco-elastic constitutive response, with

a variation in the material properties up to three orders of magnitude, de-

pending on temperature [2–4, 35, 38–40]. Hence, it is a common assumption

the use of the so-called time-temperature superposition principle [1, 13–15],

which states that all the material visco-elastic functions at any temperature

T can directly be obtained from the same curve, the so-called master-curve,

obtained at a base temperature Tref , shifted in the time axis by a quantity

aT . This quantity is a material parameter and must be determined from

experiments. Unfortunately, for a large class of materials, this fitting leads

to poor results showing that the time-temperature superposition principle

does not always apply [2, 3]. Those materials are called thermo-rheologically

complex [6, 13].

In the present study, a new formulation for the analysis of coupled thermo-

visco-elastic material problems is proposed within the finite element method
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that is able to account for rheologically complex materials. For such mate-

rials, the classical time-temperature superposition principle does not apply

and a fractional calculus formulation, with parameters function of tempera-

ture, is developed. A new material function τ(t, T ) is introduced, function of

time and temperature history and taking into account the phase transition in

the microstructure of the polymer due to temperature variations. Ethylene-

Vynil-Acetate (EVA) is considered as a representative material showing this

effect in technological applications.

In Section 2, visco-elastic constitutive equations in 3D are formulated, with

special regard to rheologically complex materials. In Section 3, the strong

and weak problems of the thermo-visco-elastic dynamics are formulated. In

Section 4, the finite element formulation is derived. Section 5 addresses a

series of benchmarks numerical examples to show the capabilities of the pre-

sented model. Section 6 concludes this article, highlighting the major results

and the future perspectives of the present research.

2. Visco-elastic constitutive equations in 3D and rheologically com-

plex materials

In three dimensions, the material functions characterizing completely the

response of a visco-elastic solid are the Young modulus E(t), the bulk mod-

ulus K(t) and the shear modulus G(t). The Young modulus is considered to

be of fractional type (5), as in [4]. Following [16], the assumption of constant

bulk modulus K(t) = K is made. This is because polymer materials are
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known to show a predominant visco-elastic behaviour in shear deformation

rather than in volumetric expansion. The remaining shear modulus G(t) is

found via elastic/visco-elastic correspondence principle and inverse Laplace

transform using the Mittag-Leffler special functions [17]. Let us consider a

material occupying a region R ⊂ R3 in the three-dimensional space. Let u

be the displacement field. Let ε = (∇u +∇uT)/2 be the infinitesimal strain

tensor. Assume that the material is isotropic, then decomposing the over-

all stress tensor σ into its deviatoric and hydrostatic parts, a visco-elastic

behavior only for the deviatoric part is herein considered. The split of the

stress tensor σ reads:

σd(t) = 2

∫ t

0

G(t− s)∂εd(s)

∂t
ds, σv(t) = 3Kεv (8)

where σd = σ − σv/3 and εd = ε − εv/3 are the deviatoric stress and

strain tensors, G(t) is the shear modulus and K(t) = K is the constant bulk

modulus. The visco-elastic constitutive model (8) is of Kelvin-Voigt type.

To solve the three-dimensional visco-elastic problem, it is necessary to know

the actual mathematical expression of the three material functions G,K and

E, and their dependency upon time. Following [4], a Young modulus of

fractional type is herein considered:

E(t) = At−α/Γ(1− α), 0 ≤ α ≤ 1. (9)
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Given the espression of the Young modulus E(t), an explicit time-dependency

of the shear modulus G(t) is now obtained. Let f be a function and denote

with L[f ] its Laplace transform. The s-multiplied Laplace transform given by

s ·L[f ] is denoted as f
∗
(s). The elastic/visco-elastic correspondence principle

[18] states that, in the Laplace domain, the shear modulus is given by:

G
∗
(s) =

3E
∗
(s)K

∗
(s)

9K
∗
(s)− E∗(s)

, (10)

then, because K(t) = K and E(t) is given by Eq. (9), in the Laplace domain

K(s) = K/s and E(s) = Asα−1. Substituting these espressions in Eq. (10)

and taking the inverse Laplace transform, leads to:

G(t)/3 = −Eα[−9Ktα/A],

where

Eα[x] =
∞∑
k=0

xk

Γ(αk + 1)

is the Mittag-Leffler special function of order α [17, 19]. Since this function

does not have a closed-form expression, the following asymptotic approxima-

tion is introduced:

Eα[−λt−α] ≈


1− λ tα

Γ(1 + α)
, t→ 0+

t−α

λΓ(1− α)
, t→ +∞,

(11)
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valid for any λ. From this expression, the formula found by Pipkin in [20] is

recovered:

G(t) ≈ E(t)/3, t→ +∞, (12)

which will be used in the sequel as the expression for the time-dependent

shear modulus.

2.1. Time-temperature superposition principle and its limits

In treating problems involving polymers, the so-called time-temperature

superposition principle is a common assumption. This principle states that

all the relaxation functions E(t, T ), G(t, T ) and K(t, T ) at any temperature T

can directly be obtained from the material functions at base temperature Tref ,

by replacing the current time t with a shift function aT , which is a material

property of the material and must, in general, be determined experimentally

[21–23, 35, 38–40]:

E(t, T ) = E(t/aT , Tref). (13)

This is equivalent to say that, for any fixed temperature T , the relaxation

curve t 7→ E(t, T ) is obtained from the same master-curve at a base tempera-

ture Tref , shifted along the horizontal axis by a quantity aT in a log time scale.

The shift factor aT is usually described by the WLF (Williams-Landel-Ferry)

equation [24, 25] log(aT) = −C1(T−Tg)/(C2− (T−Tg)), where C1, C2 are
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constants and Tg is the glass transition temperature. The previous espression

is known to be valid only for T > Tg.

Materials where the shifting results in a satisfactory mastercurve are called

thermo-rheologically simple. Unfortunately, this is not the case for several

materials, like for instance EVA (Ethylene-Vynil-Acetate), which is a copoly-

mer containing semicrystalline parts and whose microstructure changes with

temperature, udergoing several phase transitions [4, 26]. Those materials are

called thermo-rheologically complex [7]. The relaxation curves of the Young

modulus E(t, T ) for EVA at different temperatures in a log-log scale are

shown in Fig.1 [2, 4]. It can be noticed that the straight lines have different

slopes in the temperature range under consideration, so that an horizontal

shifting of the material function E(t, T ) for different temperatures T does

not result in a satisfactory overlap. This result suggests that the shift factor

aT for the EVA material, as assumed by the time-temperature principle and

described by Eq. (13) is not accurate. This issue is confirmed looking at

Fig.2 where the fitting of the shift factor (13) for EVA taken from [26] shows

a very poor result, suggesting that a refined model should be considered for

materials that do not obey the time-temperature superposition principle.
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Figure 1: Experimental results of the Young modulus E(t, T ) over time in a log-log scale
obtained from relaxation tests at different temperatures in a range between −35◦C and
139◦C (dot lines) and results of the fitting according to Eq. (14) (solid lines).

Figure 2: Fitting obtained from experimental results of the shift factor aT (continuous
line) for EVA (Etylen-Vynil-Acetate) using the WLF equation (dot line).

2.2. A new model for thermo-rehological complexity

Following [4], a temperature dependency of the Young modulus is as-

sumed as:

E(t, T ) = A(T )t−α(T )/Γ(1− α(T )), (14)
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where the material parameters α(T ) and A(T ) are now temperature depen-

dent. Functions α(T ) and A(T ) can be determined from Eq. (14), fitting data

from uniaxial relaxation tests conducted for different temperatures. Using

the asymptotic representation of the shear modulus in Eq. (12), and substi-

tuing it in the first of Eqs. (8), leads to the following integral, describing the

relaxation behavior of the material properties induced by thermal effects:

A(T )

Γ(1− α(T ))

∫ t

0

(t− s)−α(T )∂εd(s)

∂s
ds. (15)

This espression is not convenient for applications because both α(T ) and

A(T ) change continuously with temperature T and time t during the process,

while it is better to find an espression similar, but having constant values of

α and A as long as the internal micro-stucture of the polymer remains the

same. To this purpose, a thermal material clock function is defined and an

espression similar to (15), which is suitable for applications, is introduced.

Consider an arbitrary temperature history T (t), depending on the thermo-

visco-elastic process, let δ > 0 be a given threshold. Let τ = τ(t, T ) be a

function which is always smaller or equal to the current time t, which has the

role of monitoring the temperature history inside the material. This function

is nothing but a counter taking discrete values 0 = τ0, . . . , τk, . . . , that ticks

when the temperature variation exceeds the threshold δ. At the beginning of

the process, τ = τ0 = 0, and it remains zero untill the temperature variation

inside the material does not exceed δ. After that moment, the clock ticks
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and τ is set equal to a new value τ = τ1. In general, during the evolution

of the process, there can be several of those temperature jumps, so that the

value τ(t, T ) at any time t is defined recursively as:


τ0 = 0

τk = infτk−1≤t′≤t{|T(t′)− T(τk−1)| ≥ δ}.

Consider the reduced time defined as: τ(t, T ) = τk1[τk,t)(t), where 1(a,b) is the

indicator function of a (time) interval (a, b). The function τ(t, T ) becomes

now a step function, which is constant inside each interval [τk−1, τk]. The

modified material functions are defined as Ã = A(T (τ)) = A(τk)1[τk,t) and

α̃ = α(T (τ)) = α(τk)1[τk,t), which are constant inside each interval [τk−1, τk].

The modified relaxation kernel gA,α(t) is defined as:

gA,α(t) = Ã(t− τ)−α̃/Γ(1− α̃).

This physical observation suggests that the thermo-visco-elastic relaxation

process (15) can be described by the following fractional-thermal derivative:

DA,αεd(t) =

∫ t

0

gA,α(t− s)ε̇d(s) ds. (16)

Formula (16) basically says that when the variation of temperature inside

the material exceeds a given threshold δ, and the thermal clock τ = τk ticks,

the relaxation process is shifted backwards in time of a quantity t − τk and
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restarts with new parameters evaluated at α(T (τk)) and A(T (τk)) for all

subsequent times (see Fig. 3). This is because the material has experienced

a phase transition and temperature has affected its internal microstructure.

Figure 3: Schematic representation of the relaxation process of the material function
E(t, T ) depending on the thermal history in a thermo-rheologically complex material.

Accordingly, the relaxation process for a thermo-rheologically complex

material can be re-written as:

σd =
2

3

∫ t

0

gA,α(t− s)ε̇d(s) ds = DA,αεd(t).

Notice that, if the process is adiabatic, i.e. the temperature T (t) remains

constantly equal to the initial temperature T0 during the time interval [0, tfin],

then α̃ = α(T0) = α and Ã = A(T0) = A are constants, the thermal clock is

τ(t) = 0, so that DA,αεd(t) reduces to the usual fractional derivative:

ADαεd(t) =
A

Γ(1− α)

∫ t

0

(t− s)−αε̇d(t) ds.
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As a concluding remark, the problem of defining an estimate for the thresh-

old δ is adressed. This parameter defines a temperature interval in which

the material properties A and α are constants. Looking at Fig. 2, it can be

noticed that the slopes of the straight lines are the same in different temper-

ature intervals, i.e., in [−35◦C,−28◦C], [−18◦C, 20◦C], [40◦C, 139◦C]. For

each of those temperature intervals, one can identify different values of α

and A, and a threshold δ can be defined accordingly, to mark the transition

from a temperature interval to another.

3. Strong and weak form of the coupled thermo-visco-elastic prob-

lem

The deviatoric and hydrostatic parts of the stress tensor are given by:

σd(t, T ) =
2

3
DA,αεd(t),

σv(t, T ) = 3Kεv − 3β(T − T0),

where β is the coupling thermal stress factor and T0 is the initial tempertaure

inside the material. Accordingly, the overall stress tensor is given by:

σ(t, T ) =
2

3
DA,αεd(t) + 3Kεv − 3β(T − T0)I. (17)

The balance of linear momentum takes the form:

ρutt − div(σ) = 0, (x, t) ∈ R× [0, tfin], (18)
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where ρ is the density of the material. Regarding the heat conduction process,

the standard Fourier law is assumed for the heat flux q = −k∇T , where k is

the thermal conductivity. Accordingly, the heat conduction equation reads:

k∇2T = ρcTt + βT0
∂εv

∂t
, (x, t) ∈ R× [0, tfin], (19)

where c is the heat capacity of the material. Eqs. (17), (18) and (19)

represent the system of equations for coupled linear thermo-visco-elasticity

[27, 28].

The weak form corresponding to the equation of linear momentum (18)

is derived by multiplying it by a virtual displacement v and integrating the

result on the domain R. Applying the divergence theorem:

∫
R

ρ ∂ttu · v dx +

∫
R

2

3
DA,αεd(u) : ε(v) dx

−
∫
R

(
Kdiv(u) + β(T − T0)

)
div(v) dx =

∫
Γ

t · v dΓ.

Analogously, the weak form corresponding to the heat conduction partial

differential equation (19) is obtained by multiplying it for a test function s

and integrating the result over R

∫
R

k∇T · ∇s dx +

∫
R

ρc∂tTs dx +

∫
R

βT0 div(∂tu)s dx +

∫
Γ

qns dΓ = 0

where the qn is the imposed normal heat flux ∇T · n = qn imposed on the

Neumann part of the domain.
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4. Finite element formulation

Regarding the finite element formulation, consider a decomposition of the

domain R into a finite number of elements and let {Φu
k}Nk=1 and {ΦT

k }Nk=1 basis

of shape functions. At the element level, the displacement and temperature

are interpolated as:

u(x, t) =
N∑
k=1

Φu
k(x)Uk(t), T (x, t) =

N∑
k=1

ΦT
k (x)Tk(t).

Discretizing the time interval [0, tfin] into 0 = t0 ≤ · · · ≤ tn ≤ tN = tfin where

tn+1 = tn + ∆t the system of equations is:

M
D2

Dt2
Un+1 + Cu,TTn+1 + GDA,αU

n+1 + KuUn+1 = F, (20)

and

C
D

Dt
Tn+1 + CT,u D

Dt
Un+1 + KTTn+1 + Q = 0, (21)

where the global matrices and vectors result from the usual assembling of

matrices at the element level. In particular, M is the mass matrix, Cu,T =

(CT,u)T is the coupling thermo-mechanical matrix, G and Ku are the shear

and bulk matrices and F is the load vector, C is the termal dumping matrix,

KT is the thermal stiffnes matrix and Q is the thermal loading vector.
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The problem of approximating the fractional derivative DA,αU
n+1 in Eq. (20)

is now adressed. Let f(t) be a function defined in an interval [0, tfin] and let

0 = t0 ≤ · · · ≤ tn ≤ tN = tfin be a partition of [0, tfin], where tn+1 = tn + ∆t.

The Grnwald-Letnikov approximation of the fractional derivative Dαf(tn+1)

of order 0 ≤ α ≤ 1 of a f function (see also [9], [30], [19], [5], [29]) reads:

Dαf(t) = (∆t)−α
n∑
j=0

cj+1(α)f(tn+1−j)

= (∆t)−α
(
f(t1), . . . , f(tn+1)

)

cn+1(α)

...

c1(α)

 ,

(22)

where the coefficients cj(α) are defined by the recursive formula:

cj(α) =


(j − 1− α)

j
cj−1(α) j > 1,

1 j = 1.

(23)

Coefficients in Eq. (23) have the properties that cj(α) < cj+1(α) < 0 for

j > 1 and limj→+∞ cj(α) = 0. Notice that the dimensions of vectors in (22)

are increasing with n. Each value f(tn) up to time tn+1 is contribuing to the

final value of Dαf(tn+1), but the influence of the coefficients is weaker in the

past rather than in the present and the initial value f(t0) is multiplied by

cn+1(α), which is tending to zero as n grows. This property of the Grnwald-
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Letnikov approximation is called memory effect.

With this set up, the fractional-thermal derivative DA,αU
n+1 is approximated

as:

DA,αU
n+1 = A(Tm)(∆t)−α(Tm)

(
Un+1 + Fm

T Un
)
,

where m ≤ n is a discrete history variable depending on the current time tn

and temperature T n, taking values m0 < m1 < · · · < mk, defined recursively

as m0 = 0 and:

mk =


mk−1 if |T n − T n−1| < δ,

n otherwhise

and the operator Fm
T U, collecting the displacement history up to time n, is

given by:

Fm
T U =


n∑

j=m

cn+2−j(α(Tm))Uj if m < n

0 if m = n .

(24)

.

Notice that the last term in the sum (24) is c2(α(Tm))Un, because the

coefficient c1(α(Tm)) = 1 is associated to the unknown vector Un+1. When

the process begins, the sum starts to pile up following the Gnwald approx-

imation with material functions A(T 0) and α(T 0) evaluated at the starting

temperature T 0, untill the condition |T n − T n−1| > δ is verified. After that

moment, the history variable m is set equal to n and the process restarts

19



with new material parameters A(T n) and α(T n).

When the process is adiabatic, i.e. the temperature is constant during

time, then m = 0 for all tn and A = A(T0), α = α(T0), so that the approxi-

mation of the thermal-fractional derivative DA,αU
n+1 reduces to ADαUn+1,

which is exactly the usual Gnwald-Letnikov approximation:

ADαUn+1 = A(∆t)−α
[
U1| . . . |Un+1

]

cn+1(α)

...

c1(α)

 .

This implies that the displacement history must be stored in a matrix whose

number of columnsis progressively increasing and represents the memory of

the material. In numerical treatment, the number of columns of the matrix

is given by the number of timesteps of the problem and the matrix is initial-

ized to be equal to the zero matrix, then each column is replaced with the

displacement solution at the previous timestep.

5. Numerical examples

In this section, several experiments in one and two dimensions are consid-

ered to test the new thermo-visco-elastic model which has been introduced

in this work.
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5.1. Free vibrations of a visco-elastic 1D rod

In this example, the problem of finding the vertical displacement u(x)

of a one dimensional visco-elastic vibrating rod of lenght L clamped at its

ends u(0) = u(L) = 0 is considered, being subjected to an initial sinusoidal

prerturbation u0(x) = sin(πx) at time t = 0 and then left free to its own

vibration without any external force or traction imposed. The motion of the

rod is governed by the following equation which has to be solved in space

0 ≤ x ≤ L and time 0 ≤ t ≤ Tf :

ρutt −
∂

∂x

(
A

Γ(1− α)

∫ t

0

(t− s)−αuxt(s) ds

)
= 0, (25)

where ρ is the linear density of the rod and A > 0 and 0 ≤ α ≤ 1 are visco-

elastic material parameters. Notice that for α = 0 this problem reduces to

the usual wave equation in one dimension for a linear elastic rod:

ρutt − Auxx = 0.

In the limit case α = 0, the mechanical energy of the system is given by:

E(t) =
1

2

∫ L

0

[
ρ

(
∂u

∂t

)2

+

(
∂u

∂x

)2
]

dx.

A global property of the solution of this problem when α = 0 is that Ė(t) = 0,

i.e. the mechanical energy is conserved. Every numerical method applied to

solve this problem must be able to represent this global property of the
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solution in the linear elastic limit α = 0. Let h be the spatial mesh size, N

the number of vertices of the mesh and {Φa(x)}Na=1 a basis of linear triangular

lagrangian shape functions, then the global N×N mass and stiffness martices

M, K are explicitely given by the tridiagonal matrices:

M = ρ



2h

3

h

6
. . . 0

h

6

2h

3
. . . 0

...
...

. . .
...

0 0 . . .
2h

3


, K = A



2

h
−1

h
. . . 0

−1

h

2

h
. . . 0

...
...

. . .
...

0 0 . . .
2

h


.

The nodal displacement vector is given by U = (U1, . . . ,UN)T and the

differential system arising from the FE discretization is:

M
D2U

Dt2
+ KDαU = 0.

In Fig. 4 are shown the evolution in space and time of the numerical solution

of the adimensionalized Eq. (25) for two different values α = 0 and α = 0.2

using a central difference time integration scheme. The parameters used for

the simulation are Ns = 100 spatial nodes and Nt = 200 temporal nodes.

Fig. 5 shows the evolution over time of the solution u(1/2, t) for different val-

ues of the fractional exponent α = {0, 0.1, 0.2, 0.3}. The Grnwald-Letnikov

approximation of the fractional derivative DαU is used, this leads to the

formation of a (pseudo-load or forcing) vector Fn which represents the dis-

lacement history up to the current time. This residual load vector has the
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effect of dissipating the mechanical energy of the system, according to the

memory effect of the material.

Figure 4: Spatio-temporal plot of the numerical solution of the adimensionalized fractional
visco-elastic wave equation for different exponents of the fractional derivative α = 0 (linear
elastic case) and α = 0.2.

Figure 5: Temporal evolution of the numerical solution of the vertical displacement
u(1/2, t) in the 1D fractional visco-elastic wave equation for different exponents of the
fractional derivative α = 0 (solid line) and α = 0.1, 0.2 and 0.3 (dashed line).
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5.2. Temperature behavior of the relaxation modulus

One of the fundamental tests used to characterize the visco-elastic time-

dependent behavior of a polymer is the creep (and creep recovery) test. In a

creep test, a constant stress σ0 is applied quasi-statically to a uniaxial tensile

bar at zero time and held constant, as shown in the schematic Fig. 6. The

strain, under the constant load, increases with time up to a constant value

ε0. A specimen of size H×L is clamped on the bottom side and a traction F

is applied on the top of the beam so that σ0 = ||F||. The inertia of the beam

is neglected. The variation of the Young’s modulus with temperature can be

Figure 6: Schematic representation of a creep test.

determined from relaxation and creep tests conducted at different constant

temperatures. Material parameters α(T ) and A(T ) have been experimentally

found for a polymeric material, namely Etlylene Vynil Acetate at different

temperatures and are taken from [4] as they are reported in Table 1. A
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specimen of lateral size L = 0.02 m and vertical size H = 0.08 m is subjected

to a constant traction σ0 = 500 N on the top size. During the process, the

temperature is held constant T = T0. The Young’s modulus is evaluated as:

E(t) = σ0/εy(t).

Since this process is adiabatic, the Grnwald-Letnikov approximation of the

fractional derivative is employed with constant coefficients α and A. Numer-

ical results of the relaxation curves as a function of time E(t, T ) obtained

for different constant temperatures are reported in Fig. 7 in a log log scale

and are in good agreement with the experimental ones in Fig. 1. Input pa-

rameters for the simulation are the Poisson coefficient ν = 0.29, the Young

modulus E = 3500 MPa, the bulk modulus K = E/3(1 − 2ν) and the con-

stant traction imposed at the upper side of the specimen is σ0 = 500 N.

The input values of temperatures and corresponding fractional parameters

obtained from a best fitting in [4] are reported in Table 1. It is worth noting

that, as expected experimentally there is a change in the slope of the curves

due to different temperatures, which is a thermo-rehologically complex be-

haviour of the material. In particular the elastic modulus E(t, T ) experiences

a phase transition due to the variation of temperature which the proposed

model is able to predict.

25



Table 1: Identified parameters from [4] α and A used in tne numerical simulations of
uniaxial relaxation tests at different temperatures.

T0 α A [Pa sα]

−28 ◦C 0.16810 182.7
−18 ◦C 0.10150 52.63

0 ◦C 0.05566 23.55
40 ◦C 0.07417 4.668
60 ◦C 0.06542 1.544
100 ◦C 0.04179 0.9276

Figure 7: Numerical results obtained from the simulations of the relaxation modulus E
(left) and vertical component of the strain εy versus time for EVA specimen at different
temperatures obtained for fixed temperatures −28 ◦C,−18 ◦C, 0 ◦C, 40 ◦C, 60 ◦C, 100 ◦C.

5.3. The role of truncation in the Grnwald-Letnikov fractional derivative

In this numerical example, the role of truncation in the approximation

of the fractional derivative using the Grnwald-Letnikov is investigated. The

relaxation test is the same as in the previous example conducted for con-

stant temperatures T0 = −28◦C,−18◦C, 0◦C with a timestep ∆t = 0.1 s and

T = 80000 s, which is enough to ensure the stationary convergence of the

relaxation process. A parametric study is made by changing the memory
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horizon Th to assess the effect of truncation of the fractional derivative.

The memory horizon is varied as Th = 20000 s, 40000 s. The first part

of the process up to time Th follows the Grnwald-Letnikov method. After

that, the visco-elastic dynamics at current time t is calculated by using the

hystory from time t − Th up to time t, instead of considering all the values

of the displacement history from t = 0 to t as follows:

ADαUn+1 = A(∆t)−α
[
Un−Nh | . . . |Un+1

]

cNh+1(α)

...

c1(α).

 .

The effect of approximating the visco-elastic process in the range [t − Th, t]

of the displacement filed history is displayed in Fig. 8 in which the solution

obtained with the full Grnwald-Letnikov approximation is compared with

the solution obtained with a truncation with a memory horizon Th for the

displacement history. The advantage of truncating the approximation of the

displacement history is to reduce the computational cost of the simulation.

As shown in Fig. 8 this has an effect on the accuracy of the asymptotic

solution for large time horizons.

5.4. Heat transfer in coupled thermo-visco-elastic dynamics

The numerical setup for this example is taken from [37]. Let R = [0, L]×

[0, H] be a square domain in R2 occupied in its undeformed configuration

by a visco-elastic material in a state of plane strain. The displacement u =
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Figure 8: Solution of the relaxation problem for temperatures T0 = −28◦C,−18◦C, 0◦C
obtained with the full Grnwald-Letnikov approximation (solid lines) and with a truncation
of the displacement history of Th = 40000 s (dot dashed lines) and Th = 20000 s (dashed
lines) .

(ux, uy)
T is such that ux is zero on the right hand side. Loading is provided by

a transient thermal analysis in which the left side has an imposed temperature

Tleft = 1 K (all the quantities are adimensionalized as in [37]), which is

suddenly applied at time zero and held constant. The other normalized

parameters are the Young modulus E = 100 Pa, the Poisson coefficient ν =

0.4995, the thermo-elastic coupling factor αT = 0.25, the initial temperature

T0 = 0 K, the thermal conductance k = 10 W/(m2K), the heat capiacity

c = 1, and the density ρ = 0.1 Kg/m3, see [37]. The governing problem to

be solved in R× [0, tfin] is:
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−div(σ(u, T )) = 0 (26)

ρc
∂T

∂t
+ T0βdiv

(
∂u

∂t

)
= k∇2T. (27)

The thermal stress σ is given by:

σ = AGDA,αε+ (Kε+ β(T − T0)) I,

where DA,α is the fractional-thermal derivative describing the thermal re-

laxation behavior is induced by the heat conduction equation. An Euler

backward scheme for the time integration of the thermal problem has been

adopted, in which the timestep is ∆t = 0.005. Given the temperature T n at

the previous time tn, let mk ≤ n be the current value of the thermal clock.

The visco-elastic problem consists in: find the current displacement un+1,

such that for all test function v holds:∫
R

(
(∆t)−α(Tmk )A(Tmk)G +KI

)
ε(un+1) : ε(v) dx =

∫
R

βT ndiv(v) dx−∫
R

(∆t)−α(Tmk )A(Tmk)G

(
n∑

j=mk

cn+2−j(α(Tmk))(uj)

)
: ε(v) dx.

Then, given un+1, solution of the previous problem, the temperature at the
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current time T n+1 is such that, for each test function s:

∫
R

ρc
un+1 − un

∆t
s dx +

∫
R

k∇T n+1 · ∇s dx +

∫
R

βT0div

(
un+1 − un

∆t

)
s dx.

For the simulation P2 lagrangian triangular elements have been used to ap-

proximate the displacement field and P1 lagrangian trianguar elements have

been used to approximate temperature.

5.4.1. Case I: Fractional visco-elastic parameters A = E, α = {0, 0.1, 0.25}

In this first example, the material parameters for the fractional derivative

are taken as A = E fixed and the fractional exponent is varied as α =

{0, 0.1, 0.25}. In Fig. 9, the contour plots of temperature T (x, y, t) and

the horizontal component σx(x, y, t) of the stress tensor for the initial and

final time are shown. Temperature is diffusing linearly inside the region

from the left lateral side of the square. In Fig. 11, the spatial evolution

of the temperature profile and thermal stress component σxx are plotted

along the central line of the square {y = H/2} for subsequent times in the

thermo-elastic case (α = 0). In Fig. 11, the spatial evolution of the thermal

stress component σxx along the central line of the square {y = H/2} is

shown for subsequent times and for different values of the fractional exponent

α = 0.1, 0.25.
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Figure 9: Contour plots of the horizontal component σxx of the stress at initial and final
time (α = 0).

Figure 10: Contour plots of the temperature T at initial and final time (α = 0).

5.4.2. Case II: Fractional visco-elastic parameters A, α temperature depen-

dent

In this example, the material functions A(T ) and α(T ) are considered as

functions of temperature T as:
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Figure 11: Numerical results of the spatial evolution of the temperature T (left) and
stress component σxx (right) along the line {y = H/2} at different normalized times for
the elastic limit α = 0.

Figure 12: Numerical simulation of the the spatial evolution of the stress component σxx
along the line {y = H/2} at different normalized times for different values of the fractional
exponent α = {0.1, 0.25}.

A(T ) =


10E if T ≤ T ∗,

0.1E if T > T ∗
, α(T ) =


0.05 if T ≤ T ∗,

0.25 if T > T ∗
. (28)

32



where T ∗ = 0.5. The temporal evolution of the stress component σxx is

shown in Fig. 13 for three points in the square domain R = [0, L] × [0, H],

respectively P1 = (L/4, H/2), P2(L/2, H/2) and P3 = (3L/4, H/2) for the

cases α = 0, A = E (thermo-elastic case) and for α and A as in Eq. (29).

Figure 13: Numerical solution of the temporal evolution of the horizontal component σxx
of the stress on different points P1 = (L/4, H/2), P2(L/2, H/2) and P3 = (3L/4, H/2) of
the square domain R = [0, L]× [0, H] for the thermo-elastic case α = 0, A = E (left) and
for α and A as in Eq. (29) (right).
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6. Conclusions

A novel finite element computational framework for the simulation of cou-

pled thermo-visco-elasticity problems in thermo-rehologically complex mate-

rials with memory has been proposed. The visco-elastic constitutive law is

based on fractional calculus. Fractional calculus and the theory of Mittag-

Leffler special functions allow an accurate description of the time relaxation

behaviour of the material. The fractional parameters of the model are as-

sumed to be temperature dependent. An internal material clock has therefore

been introduced to model the thermo-rheological complexity of materials in

which the classical time-temperature superposition principle does not apply.

The model is able to represent the phase transition experienced by the relax-

ation modulus as a function of temperature. The numerical treatment of the

fractional derivative has been done via the Grnwald-Letnikov approximation

which leads to an additional load vector which represents the memory of

the material in the discretized system of equations resulting from the finite

element formulation.

The poposed model has been implemented in the finite element software

FreeFem++ [36] and has been used to solve numerically various test cases,

namely: (i) the free vibrations of a visco-elastic rod; (ii) creep tests; (iii)

heat transfer in coupled thermo-visco-elastic dynamics. The proposed model

has been validated against creep and relaxation tests conducted at different

temperatures on EVA, a real visco-elastic material which is a polymer used

as encapsulant for solar cells. With the present computational tool avail-
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able, further developments may regard the simulation of thermo-visco-elastic

phenomena observed in experiments, opening the possibility to accurately

simulate with the finite element method any arbitrary rheologically complex

material for any application and problem geometry.
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