
1

A Two-Component Language for Adaptation:
Design, Semantics and Program Analysis

Pierpaolo Degano, Gian-Luigi Ferrari and Letterio Galletta

Abstract—Adaptive systems are designed to modify their behaviour in response to changes of their operational environment. We
propose a two-component language for adaptive programming, within the Context-Oriented Programming paradigm. It has a
declarative constituent for programming the context and a functional one for computing. We equip our language with a dynamic formal
semantics. Since wrong adaptation could severely compromise the correct behaviour of applications and violate their properties, we
also introduce a two-phase verification mechanism. It is based on a type and effect system that type-checks programs and computes,
as an effect, a sound approximation of their behaviour. The effect is exploited at load time to mechanically verify that programs correctly
adapt themselves to all possible running environments.

Index Terms—Adaptive Software, Context Oriented Programming, Formal Methods, Datalog, Functional Programming, Semantics,
Type Systems, Verification

F

1 INTRODUCTION

MODERN software systems are designed to operate
always and everywhere. Their structure is therefore

subject to continuous changes that are unpredictable at de-
sign time. A suitable management of these changes should
maintain the correct behaviour of applications and their
non-functional properties, e.g. quality of service. Effective
mechanisms are thus required to adapt software to changes
of the operational environment, namely the context in which
the application runs.

The notion of context is fundamental for adaptive soft-
ware. It includes any kind of computationally accessible
information coming both from outside (e.g., available de-
vices, code libraries etc. offered by the environment), and
from inside the application boundaries (e.g., its capabilities,
user profiles, etc.). The contents of the context depend
on the architectural model to which software adheres. For
example, in the Cloud Computing paradigm [77], the con-
text contains at least the description of the computational
resources offered by the cloud provider, and also a measure
of the available portion of each resource, and the way
these are partitioned for multi-tenancy. In Service-Oriented
Computing (SOC) [73], software components called services
are equipped with suitable interfaces describing the offered
computational facilities. Standard communication protocols
(e.g. SOAP over HTTP) take care of the interactions between
the parties. The context is then determined by the vari-
ous repositories where services are published, and by the
end-points where services are actually deployed and made
available, as well as by other information about service
level agreement. In the Internet of Things [7], the context

The authors are with the Dipartimento di Informatica, Università di Pisa,
56126 Pisa, Italia
E-mail: {degano,giangi,galletta}@di.unipi.it
Work partially supported by the MIUR Prin Project Security Horizons and
by the Università di Pisa PRA project Through the Fog.
Corresponding author: Letterio Galletta.
Manuscript .

(partially) represents the active space that hosts and is made
of the interacting digital devices, or even physical ones, like
sensors. Each device has its own context.

The development of adaptive systems requires a variety
of design and programming abilities, and it often involves
actions directed at the different collections of hardware and
software resources supplied by the environment. As pointed
out by Baresi et al. [10] and by Kamina et al. [59], traditional
software engineering methodologies adopt a static model
of software development, where the boundaries between
specification and development are rigidly fixed; the inter-
actions with the operational environment are assumed a
priori; and software reconfiguration usually occurs off-line.
This approach has become inadequate, since applications
now run in partially known and ever changing contexts.
Therefore, we agree with Baresi et al. [10] and with Kamina
et al. [59] that an effective development of adaptive software
requires a strong synergy between the methodologies, the
development and analysis tools, primarily programming
languages. Indeed, the design, the development and the
verification of systems can be made more effective if these
are programmed with a special-purpose language, with
high-level constructs for expressing adaptation patterns.
The provided linguistic abstractions impose a good practice
to programmers, with a positive effect on correctness and
modularity, mainly because low level details are masked.
Correctness is made harder to address with standard tech-
niques, because adaptive applications are prone to a new
class of run time errors: a failure may occur because the
running application has not been designed for the actual
hosting context, e.g. when a lacking facility is instead as-
sumed to be available.

In this paper, we propose linguistic mechanisms for
adaptivity, and we discuss the rationale for them; their
static and dynamic semantics; their formal properties and
a way to mechanically verify some of them, in particular
absence of adaptation errors; and a running prototypical
just-in-time compiler. We follow the approach of Context

2

Oriented Programming (COP), proposed by Costanza [34]
as the main paradigm to develop adaptive software in a
modular fashion.

The kernel of our proposal is the two-component lan-
guage MLCoDa. The first constituent is for the context, and
it is the logical language Datalog with negation [29]. The
second component is a core of ML, extended with powerful
primitives for context management and for adaptation. The
name of our language MLCoDa comes from ML and COntext
in DAtalog.

Since adaptive applications may misbehave because at
design time an unknown environment was not considered,
we equip MLCoDa with a static analysis to ensure that this
kind of run time errors never occur, e.g. one arising because
the actual hosting environment lacks a required capability.

The analysis is performed in two phases: a type and
effect system (at compile time) and a control flow analysis
(at load time). When type-checking a program we also
compute an over-approximation of the capabilities that the
application will need at run time. When entering a new
context, before running the program, this abstraction is ex-
ploited to check that the actual context, and those resulting
from its evolution, support the capabilities required by the
application. As discussed later on, this last analysis can only
be done at load time, because at compile time the possible
hosting contexts are still unknown.

Structure of the paper

The next section surveys the main approaches to adaptivity
proposed in the literature, with particular attention to the
Context Oriented Programming paradigm. The main design
choices of MLCoDa are illustrated in Section 3. We justify here
why we keep the context, a Datalog knowledge base, apart
from the applications, expressed as ML programs, enriched
with two main primitives for adaptation. The same section
also presents the programming and the execution models of
MLCoDa, where a predefined API is provided by the virtual
machine of the language, and anticipates the need of a two-
phase static analysis for guaranteeing certain properties of
adaptive software. The main features of the language are
then intuitively introduced in Section 4, through a running
example. The formal semantics for the new primitives of
MLCoDa is in Section 5; we assume here the standard Datalog
semantics. Our type and effect system is in Section 6, along
with the statements of its correctness (Theorem 6.4), entailed
by the following properties: preservation (Theorem 6.1),
progress (Theorem 6.2), and correctness of effects, i.e. that
they over-approximate the run time behaviour (Proposi-
tion 6.3). However, the property of progress holds if adapta-
tion is always possible: Section 7 introduces a Control Flow
Analysis (and its properties, i.e. Theorems 7.1 and 7.2) that
checks effects and guarantees that adaptation never fails.
We also present a worklist algorithm that implements this
load time static analysis. A prototypical implementation of
MLCoDa is briefly presented in Section 8. Section 9 concludes,
briefly compares our work with the literature, discusses the
main limitations of our approach and how to address them
in future work. The Appendix contains all the rules for
the semantics of MLCoDa; the complete logical presentation

of our type and effect system and the full proofs of the
properties of our static analyses. 1

2 ADAPTIVITY IN PROGRAMMING LANGUAGES: A
BRIEF SURVEY

In 2001 IBM released a manifesto [52], that promoted an
overall rethinking of computing systems. Future systems
are demanded to decrease the human involvement and to
increase self-management (autonomic computing [60], [51]).
In this vision a system continuously monitors its own exe-
cution and adapts to its working environment.

The problem of adaptability is one of the hardest re-
search challenges in designing and building autonomic
systems. Since the pioneering work on dynamic software
architectures by Magee and Kramer [65], and the more
recent by Kephart and Chess [60] that propose the standard
architectural style of autonomic elements, a great deal of
work witnesses the importance of this topic in different
research areas of software engineering. Among these we
only mention requirements engineering [21], software ar-
chitecture [45], component-based development [74], formal
foundations [22] and programming languages [80], [38].

A natural way of implementing adaptivity and handling
context-awareness with standard programming languages
consists of modelling the context through a special data
structure, that can answer a fixed number of queries, tested
through if statements. This approach has however at least
two drawbacks. First, the programmer himself is respon-
sible for implementing the data structure and the queries
representing the context. In addition, the adaptation logic
cross-cuts the application logics because the former is of-
ten orthogonal to standard modularisation mechanisms. So
implementing contexts and achieving a good separation
of cross-cutting concerns are not adequately supported by
standard programming languages. Cross-cutting is usually
solved by exploiting special design patterns that encapsu-
late the context-depended behaviour into separate objects.
The context then drives their instantiation. However, these
approaches do not foster the development of automatic
verification tools.

A first linguistic approach to adaptivity is dynamic
Aspect-Oriented Programming [67], [16], [88], for which
many implementations are available [62], [85], as well as
foundational studies [92], [93], [63]. Essentially, this pro-
posal separates and organises orthogonal code in stand-
alone modules, called aspects, by decoupling them from the
application logic. Dynamic Aspect-Oriented Programming
at run time allows one to remove from and to add to
programs also aspects previously unknown, so adapting the
system behaviour. Although Aspect-Oriented Programming
adequately supports dynamic adjustments of programs, it
does not explicitly represent the working environment host-
ing the application. Consequently, programmers themselves
need to implement the context and the mechanisms to
intercept and react to its changes. For this reason, we rather
followed the line briefly discussed next.

Context Oriented Programming (COP) was proposed as
a viable paradigm to developing context-aware software by

1. A preliminary version of Sections 3, 4 and 5 appeared in [41], and
of Section 6 in [40].

3

Costanza and Hirschfeld [35] and by Hirschfeld et al. [49].
It advocates languages with suitable constructs for adapta-
tion to express context-depended behaviour in a modular
manner. In this way adaptivity is built-in, and mechan-
ical verification becomes feasible to assure that program
behaviour keeps its correctness after the adaptation steps.
Furthermore, the code of programs can be optimised by the
compiler or by the virtual machine.

There are two fundamental constructs in the proposed
COP languages: behavioural variations and layers. A be-
havioural variation is a chunk of behaviour that can be
dynamically activated through a dispatching mechanism,
depending on information picked up from the context, so
implementing adaptation. Since multiple behavioural vari-
ations can be active at the same time, the result of their
combination determines the actual program behaviour.

A context is implicitly characterised by a set of layers,
that can be activated and deactivated at run time. Each layer
is a module that includes context dependent behaviours: ac-
tivating/deactivating a layer corresponds to activating/de-
activating the corresponding behavioural variation. One
can simply and intuitively view a layer as an elementary
property, actually as a proposition about the current context.

Since the pioneering work by Costanza [34], a large
number of COP proposals emerged, all satisfying the re-
quirements put by Hirschfeld et al. [49]. Roughly, these char-
acterise the features that any COP language must possess in
order to:

• specify behavioural variations
• group them in well defined and isolated layers
• dynamically activate/deactivate behavioural varia-

tions, depending on the current context
• explicitly and dynamically control the scope of be-

havioural variations

Additionally, Hirschfeld et al. [49] advocate layers to be first-
class objects in the language, allowing them to be bound to
variables, passed as argument to and returned by functions.
This feature is especially required to allow different parts of
a system to communicate and to adapt at run time.

We briefly survey below the most significant design
choices concerning activation mechanisms and behavioural
variation modularisations proposed in the literature.

Usually, the layer activation strategies can be divided in
global or local. In the first case, there exists a unique shared
context and a behavioural variation activation affects the
control-flow of all threads. In the second case, there exist
distinct local contexts, e.g. for groups of threads or objects of
the application, and the activation only affects the behaviour
of the entities that depend on the modified context.

Regarding the extent of variation activation we can
identify two approaches: dynamically scoped activation, the
most common, and indefinite activation. In the first ap-
proach activation is performed by a statement of the form
with(layer){statements; }, which activates layer while
evaluating {statements; }. The activation affects also the
possible nested calls in a stack-wise discipline. A newly
activated layer is pushed on the stack recording the active
layers, and it is popped as soon as its scope expires. In this
way the previous configuration is retrieved. This strategy
allows a programmer to sharply specify which parts of the

program can adapt their behaviour. Following the indefinite
activation strategy, the programmer himself has instead to
specify when a layer is activated or deactivated, through
special statements.

The behavioural variation modularisation depends on the
strategy for layer declaration, either class-in-layer or layer-in-
class. The first strategy denotes declarations where the layer
lexically surrounds the modules for which it defines the
behavioural variations in hand. Actually, layers are encap-
sulated in ad hoc, isolated modules. The second declaration
strategy, instead, supports the declaration of a layer within
the lexical scope of the module it augments, so that the
definition of a module is completely specified.

So far most research efforts in the field of Context-
Oriented Programming have been directed toward the de-
sign and the implementation of concrete languages. The
survey by Salvaneschi et al. [81] discusses in detail the
design of languages, and that by Appeltauer et al. [5]
analyses some implementations. Below, we focus on some
papers that formally study constructs for adaptivity within
COP, in particular those supporting verification.

ContextFJ [32] extends Featherweight Java [54] with lay-
ers, scoped layers activation, and deactivation. Clarke and
Sergey have not considered constructs for expressing in-
heritance and have adopted a class-in-layer strategy [49] to
express behavioural variations. Since layers may introduce
methods not appearing in classes, they have also defined a
static type system ensuring that there exists a binding for
each dispatched method call.

A different model, based on Featherweight Java, is intro-
duced by Hirschfeld et al. [50]. It includes inheritance and
still exploits a class-in-layer strategy. Also in this case, a type
system has been specified to statically prevent erroneous
invocations at run time. The type system of Hirschfeld et
al. [50] is much more restrictive than that of Clarke and
Sergey [32], because it prohibits layers from introducing
new methods that do not exist in the class. This means that
every method defined in a layer has to override a method
with the same name in the class. This restriction is addressed
by Igarashi et al. [53], who introduce a type system han-
dling dynamic layer composition. Furthermore Hirschfeld
et al. [50] has no construct for deactivating a layer, and
Kamina et al. [56] addresses this problem through the so-
called on-demand activation, the semantics of which is given
by extending ContextFJ. The proposed mechanisms activate
all the layers required by the current context, so avoiding
errors due to non-activated, yet required layers. The type
system of ContextFJ is extended by Inoue et al. [55] to
include the main features of JCop [6], a Java-like language.
In particular, it handles first-class layers, their inheritance
and subtyping between layer types. LamFJ [4] is a variant
of ContextFJ that offers most of the different layer activation
mechanisms proposed in the literature and that combines
their effects uniformly. Its new features are called context
change events and event firing expressions, through which one
can express the most common COP activation mechanisms.
The first represents activation and deactivation of layers.
The second are special expressions describing which context
change events are to be fired. Featherweight EventCJ [3] is
another calculus inspired by Featherweight Java, that has
been introduced to formalise event-based layer activation.

4

This mechanism allows activating layers reacting to events
triggered by the environment. The notions of atomic layer,
composite layer and implicit layer activation are added to
Featherweight EventCJ by Kamina et al. [57]. An atomic
layer has the usual form, and is explicitly activated by the
programmer. A composite layer contains a propositional
formula in which ground terms represent other layers (true
when active). The programmer has no control on the activa-
tion of a composite layer, that instead is implicitly activated
when the formula it contains holds.

Contextλ [31] extends the λ-calculus with layer defini-
tion, activation/deactivation and a dispatching mechanism.
However, the expressions of the calculus do not include
higher order behavioural variations. Contextλ is designed
to study the issues deriving from the combination of clo-
sures and the special proceed construct, a sort of super
invocation in object oriented languages [49]. The problem
arises when a proceed appears within a closure that escapes
the context where it was defined. This opens interesting
semantic issues because escaping from a context may cause
the application to live in a context where the required
layers could not be active any longer. In Clarke et al. [31]
several ways to deal with this semantically relevant problem
have been proposed, yet to the best of our knowledge, the
question is still open.

A predecessor of MLCoDa is ContextML [42], that extends
ML with layers, layered expressions, and scoped activation
mechanisms for layers (with and without). It is endowed
with a type and effect system, and effects are model-checked
to enforce communication compliance and security policies.

Cardozo et al. [27] propose a run time verification of
adaptive programs based on dynamic symbolic execution.
Their idea consists of a verification step before activat-
ing/deactivating a layer, in order to check whether adap-
tation is possible. A different approach is discussed by
Cardozo et al. [28], that represents the structure of contexts
as a(n enriched) Petri net. Relying on the dynamics of nets
and on existing verification tools, the authors show how to
analyse properties of the activation state of contexts.

We now focus on how the context is modelled in ap-
proaches outside of the COP paradigm. In some cases, the
context is a computational entity with its own data model,
and rigidly separated from the programming language.
Indeed, some proposals introduce a context manager that
essentially acts as an interface between the application and
the context hosting it. Answering queries of applications is
a main task of a context manager, and thus an application
has to take care of data communication and serialisation.
In Chen et al. [30], Wang et al. [94] and Gu et al. [47], the
context is a collection of ontologies, specified in suitable
description logics. We avoid the problem of different data
representations in the context and in the application [66]
(impedance mismatch), because our two-component lan-
guage has a single data model, implemented by the virtual
machine. Also other proposals, e.g., those by van Wissen et
al. [90] and by David and Ledoux [37] aim at mitigating the
impedance mismatch by representing the context through
objects. However, in these last approaches it may be hard
to make complex queries, involving convoluted deductions.
The Datalog machinery is an asset of our proposal.

There is also a great deal of work on adaptivity in the

event-based and agent-based approaches. Here we do not
discuss either of them, and we only refer the reader to the
paper by Bordini et al. [18] and to Bainomugisha’s PhD
thesis [8].

3 THE DESIGN OF MLCODA

We propose MLCoDa a core functional programming lan-
guage, equipped with linguistic primitives for context-
awareness, coupled with a logic language, for context defi-
nition and management.

Our first goal is the definition of high-level primitives
for describing complex working environments, with com-
ponents taking values on rich domains. Such primitives
could provide non experts with a more intuitive and suc-
cinct notation, fostering early prototyping. The mechanism
selecting the suitable behaviour can be tuned on a rich
variety of values, and not only on the single basis of the
relevant layer being active, as it is often the case with many
implementations.

Secondly, we wish to have high-level linguistic con-
structs to have powerful means to drive adaptation. Even
though behavioural variations are a primary notion in COP,
they are often expressed as (partial) definition of procedures
or classes or methods. In some proposals they are first-
class objects, e.g. in ContextL [35], but in many others
they are not, e.g. in Java-based languages. We propose
higher-order behavioural variations, that in our view may
help programming dynamic adaptation patterns, as well as
reusable and modular code, because they can be bound to
variables, passed to functions, and manipulated with spe-
cific operators. For example, an autonomic element [60] can
take a behavioural variation from the context, and compose
it with existing ones, so offering a further way of adapting
its behaviour (see e.g. the function addDefault in the next
section).

Our third goal is to propose verification mechanisms for
COP languages firmly built on foundational bases. There-
fore, another main contribution of this work is providing
MLCoDa with a two-phase verification mechanism, proved
correct against the expected formal dynamic semantics. Ver-
ified programs are prevented from running when they are
not capable to adapt to the current context and to its possible
modifications. Of course more flexible ways of handling
errors can be defined on top of our analysis, that we do
not discuss in this paper.

3.1 Representing the context

Our first concern in the design of our COP language is
the context, a formal description of the environment where
applications run.

Intuitively, the context is a heterogeneous collection of
data coming from different sources and having different
representations. Some of these data are application inde-
pendent, like those about the hardware capabilities, e.g. the
screen resolution, and about the physical environment, e.g.
the level of noise in the location of the user; other data are
application-dependent like user’s preferences, e.g. accessi-
bility options. Furthermore, the separation between data
coming from inside the application and those coming from

5

outside is a well-established practice. For example, Salehie
et al. [79] advocate distinguishing between what they call
the context and the self. The first identifies the properties
of the operational environment, the second describes the
properties of the application itself.

Following this approach, we split our context in two
coarse parts: the system and the application context. Both
parts are represented and manipulated in a uniform way.
The system context pertains to the environment running
the application, for example to the virtual machine of the
language. It is accessible through a predefined API whose
actual data are only available at run time (see also the
execution model below). The application context stores
specific knowledge of the application, and its contents are
given by programmers. Of course, the application context
can use information from the system context. Therefore,
the actual context of the application at run time results
from combining the system and the application contexts.
Note that we assume programmers to only interact with the
system running the application via the API, that makes code
and data available to them.

It is worth noting that the context influences the shape
and the features of the program input (e.g. from where it is
taken) and how it is processed, but the context is not part of
the input itself. Of course, the context affects also the output
of the application.

A programmer needs tools to access and manipulate all
kind of contextual data in a easy and uniform way. Indeed,
programming the context requires tools and skills different
from those needed for building applications [72], [64]. This
methodological issue, as well as separation of concerns
motivate us to define MLCoDa as a two-component language:
a declarative constituent for programming the context and
a functional one for computing.

The declarative approach allows programmers to ex-
press what information the context has to include, leaving to
the virtual machine how this information is actually collected
and managed. For us, a context is a knowledge base and we
implement it as a Datalog program, following a well-studied
approach (see e.g. Orsi et al. [72], Loke [64], and Alvaro et
al. in a distributed setting [1]). In other words, a context in
MLCoDa is a set of facts that predicate over a possibly rich
data domain, and a set of logical rules that permit to deduce
further implicit properties of the context itself. With this
representation, adaptive programs can query the context by
simply verifying whether a given property holds in it, i.e. by
checking a Datalog goal. Note that deduction in Datalog is
fully decidable in polynomial time [29]. During the needed
deductions relevant information is also retrieved.

Our notion of context conforms to the COSE method-
ology proposed by Kamina et al. [59]. We generalise their
hypotheses over the context to be a set of boolean variables.
Indeed, we represent it as a set of Datalog predicates, the
terms of which are interpreted as contextual data. Accord-
ingly, we also provide mechanisms to create abstractions
for managing the context: Datalog rules allow us to easily
define high level properties by aggregating existing ones
and to extend them by simply adding new definition cases.
Furthermore, our approach can be integrated in the CODA
methodology by Desmet et al. [44] proposed for modelling
context-aware software requirements. In particular, CODA

PROGRAMMER API SYSTEM

APP CONTEXT

ML CODE

PREDICATES

VALUES

FUNCTIONS

DEVICES

STORED DATA

NATIVE CODE

USES IMPLEMENTED BY

WRITES DEFINES PROVIDES

Figure 1. The programming model of MLCoDa

diagrams can be easily mapped into Datalog rules, instead
of decision tables.

3.2 Specifying adaptation

As for programming adaptations, we propose two mech-
anisms. The first is context-dependent binding, a mechanism
through which a programmer declares variables whose
values depend on the context. For that, we introduce the
dlet construct that is syntactically similar to the standard
let, but has additional Datalog goals therein. The variable
declared (called parameter hereafter) may denote different
objects, with different behaviour depending on the different
properties of the current context, which is a major aspect of
adaptivity.

The second mechanism is based on behavioural variations,
the fundamental concept of the COP paradigm. As said
above, a behavioural variation is a chunk of behaviour
that can be activated depending on information picked
up from the context, to dynamically adapt the running
application. Roughly this new construct is a list of pairs
goal.expression, similar to pattern-matching, that alters
the flow of the application depending on the context. When
a behavioural variation is executed, parts of the deployed
code are suitably selected to meet the new requirements.
Behavioural variations have parameters, and they are first-
class values.

We propose mechanisms for adaptation as flexible as
possible but not too flexible. Our choice is supported by
the following methodological principles: (i) “although de-
velopers cannot foresee all changes, they must define the
boundaries the system can evolve within, and the criteria it
will consider in deciding how to evolve. Without defining
these, self-managing systems would soon go out of con-
trol” [10]; (ii) “predictable control of changes of context-
dependent behaviour is also important” [59]. Accordingly,
our constructs require programmers to identify how the
context may change, and to set up the alternatives to be used
at run time. Nevertheless, our behavioural variations can be
manipulated and composed at run time to build new ones,
but always in a type-safe way and within the boundaries
defined at design time.

3.3 Programming and execution models

We now discuss our programming model, displayed in Fig-
ure 1 (the labels USES and IMPLEMENTED BY extend down-
wards to all unlabelled arrows). We assume that the virtual
machine of the language provides its users with a a pre-
defined API, that offers a collection of (the signatures of)
system variables, values, functions and predicates, e.g. the

6

COMPILER

OBJ CODE

APP CONTEXT

APPROX

SYSTEM
LIBS

SYS CONTEXT

CODE

CONTEXT

APPROX

EXEC

APP CONTEXT

ML CODE

LINKING IF VERIFICATION OK

Figure 2. Execution model of MLCoDa

functions and predicates for interacting with an accelerom-
eter of the device running the application. Recall that the
context is split in two parts: the system and the application
contexts. The first is made available to the application by
the API, and it is thus implemented by the virtual machine,
while the the programmer fills in the application context.
Obviously, programs acquire information about the system
context through system predicates, but we stress that the
actual values holding therein are only available at run time.
In this paper we are not interested in the actual form of the
API and so we do not further detail it.

In our execution model, shown in Figure 2, the compiler
produces a triple (C, e,H), where C is the application con-
text, e is the program object code andH is an approximation
of e, used to verify properties about the program. Here, we
are specifically interested in checking whether an applica-
tion will adapt to all the contexts that may arise at run time.
Therefore, we will record in H all the actions performed
by e on the context that will host it. More precisely, H will
contain (a superset of) all the queries and of all the updates
possibly carried out by e. Given such a triple, at load time
the virtual machine performs a linking and a verification
phase. The linking phase resolves system variables and links
the application and the system contexts, thus obtaining the
initial context that, of course, is checked for consistency in
the logical terminology. Note that linking itself makes a first
step of adaptation, because it enables the application to use
the capabilities of the hosting system, be they resources,
data or code. In the spirit of Proof-Carrying code [69] and
of the Java Bytecode Verifier [78], the verification phase
exploits the approximation H to check that the program e
will adapt to all the contexts that may occur at run time. If
both phases succeed, program evaluation begins, otherwise
in this basic model it is aborted. Our verification machinery
borrows from those by Skalka et al. [83] and by Bartoletti
et al. [14], in that we construct an abstraction of program
behaviour through a type and effect system and then we use
the abstraction to check properties of the code. Indeed, those
approaches use a machinery based on a linear time model-
checking, whereas ours differs in two aspects. First, our
verification cannot be completed at compile time because
contexts are only known at load time. Secondly, we do not
model-check abstractions, but we use them to construct a
graph which describes how the initial context changes over
time.

4 A GUIDED TOUR OF MLCODAFEATURES

In this section we illustrate and discuss the main features
of MLCoDa through a running example, with some aspects
typical of the Internet of Things. Consider a smartphone
application implementing a multimedia guide to museums.
First a user registers at a desk and gets credentials; he then
uses them and connects to the museum Intranet to down-
load the guide application for his smartphone. The Intranet
provides communication facilities and hosts a website, with
a page for each exhibit with relevant information, e.g.
videos documenting a recent restoration. First, we briefly
overview the functionalities of the application and then
we discuss some snippets of code. For readability, in the
examples below we use a sugared syntax for MLCoDa(but
the specification of the context is in standard Datalog [72]).
The functional component extends a core of ML and inherits
most of its constructs and behaviour. The full definition
of the syntax of MLCoDa is in Figure 3, while that of the
semantics of its functional component is in Appendix A
(again, the semantics of Datalog is standard).

4.1 A Multimedia Guide for Museums
We assume the museum has a wireless infrastructure ex-
ploiting different technologies, like WiFi, Bluetooth, Irda or
RFID. Each exhibit is equipped with a wireless adapter and
a QR code that are only used to supply the guide with the
URL of the exhibit. The way this URL is retrieved depends
on the visitor’s smartphone capabilities. For example, the
URL is directly downloaded by Bluetooth, if such a device
is available; otherwise if the smartphone has a camera and
a QR decoder, the guide can decode it and retrieve the URL.

There are tickets with different prices, depending on the
profile provided by the visitor during registration; e.g. if
he is a European citizen over 65, the reduced fare applies.
After buying the ticket, the visitor can set some preferences,
including accessibility options. For example, a user can
choose to only have textual information or to have all texts
read by a speech synthesiser. The guide then supplies the
user with the tour, taking into account his preferences and
information about the physical environment acquired by the
sensors of his smartphone.

4.2 The Context
The most important design choice in the development of a
context-aware application is deciding what the context is.
As argued in Section 3 the context is split in a part for the
system and another for the application.

As for the system context, Datalog predicates and facts
represent properties and capabilities of devices. For exam-
ple, the system predicate headphones tests whether head-
phones are plugged in the smartphone. If this is the case,
the fact

headphone(plugged)

will hold in the system context. To check a particular feature
of a device, a programmer simply queries the context by the
standard Datalog machinery, and needs not to care about
any low-level native code to interact with hardware.

Note that predicates not only represent devices (and
their implementations), but also provide the programmer

7

with an interface for interacting with the software services
offered by the system.

Besides system predicates that are independent of the
specific application, the programmer specifies the application
context.

In our example, the multimedia guide stores and ac-
cesses data about the user’s profile, preferences and accessi-
bility options. For instance, if the user prefers to display all
information as text or he declares to be blind, either of the
following facts will hold in the application context

user_prefer(text_only)
user_acc_opt(blind)

So far, our predicates are simply facts. However, the defi-
nition of aggregated data, their retrieval and tests on them
may require some deductions, because the contextual infor-
mation comes from different sources. To this aim, Datalog
clauses and its deduction machinery are clearly an asset of
our proposal.

Predicates only text and only speech concern which
media provide the user with the information required:

only_text() ← user_prefer(text_mode).
only_text() ← user_acc_opt(deaf).
only_text() ← level_noise(x),

x > noise_threshold,
¬ headphones(plugged).

only_speech() ← speech_synthesizer(on),
user_prefer(speech_mode).

only_speech() ← user_acc_opt(blind).

The predicate only text holds whenever the user only
wants textual information or if he declared hearing impair-
ments. Note that in the third clause, we use the system pred-
icate level noise that encapsulates a routine computing
the level of noise in the room where the smartphone is. We
assume that this routine, as well as the headphone predicate
are supplied by the API. Note that measuring the level of
noise may require complex operations, like interacting with
the microphone and executing a numerical algorithm. We
check if the value returned by level noise exceeds the
given noise threshold. Resolving a goal containing the
predicate only text requires then a non trivial deduction
in Datalog, consisting of several steps, each for the above
mentioned operations.

We list below more clauses, part of the application con-
text of our example.

video(hd) ← screen_quality(hd),
supported_codec(H.264),
¬ battery_level(low).

...
use_qrcode(x) ← user_prefer(qr_code),

qr_decoder(x),
device(camera).

use_qrcode(x) ← qr_decoder(x),
device(camera),
¬ device(irda),
¬ device(rfid_reader),
¬ device(bluetooth).

direct_comm() ← device(irda).
direct_comm() ← device(bluetooth).
direct_comm() ← device(rfid_reader).

The HD video format, defined in the first clause, requires
the smartphone to support high definition, to run a codec,
and to have enough battery power. The others predicates
describe capabilities of the smartphone for retrieving URLs.
The first predicate holds when the smartphone can decode
QR codes; the second one if direct communication is pos-
sible. Most of the predicates used above are given by the
system through its API, e.g. device.

4.3 The application behaviour

We now discuss the two main constructs of MLCoDa, context-
dependent binding and behavioural variations. They are used to
program how applications adapt to changes in the context.

4.3.1 Context-dependent binding
Assume that the GUI of the multimedia guide gets an addi-
tional text label to display information about exhibits, unless
the user prefers no textual information. This is implemented
as follows

dlet txt_label = getLabel ()
when ← ¬only_speech() in

(* other code *)

If the parameter txt label is referred to in a context
where only speech() does not hold, the function getLabel
is called and binds the returned value to the current occur-
rence of txt label. Note that getLabel is not called when
txt label is declared, but when it is used, similarly to a
call-by-name evaluation. To better illustrate this mechanism,
consider the following snippet of code in ML, that adds
components to the main window of the application

fun setMainWindow window =
(* create and set menu *)
addComp window txt_label;
addComp window vcanvas;
(* add other components *)

If the goal ¬only speech() holds in the context where
setMainWindow is running, then getLabel() is evaluated
and the returned value bound to txt label. Otherwise, an
adaptation error occurs, because txt label gets no value:
our load time analysis will detect this kind of run time error.

We now exemplify the multiple declaration of a pa-
rameter representing the canvas where the guide will dis-
play videos. Different kinds of canvas can be selected,
depending on the quality (e.g. high or low) of videos
to reproduce and on the smartphone capabilities. Below,
the parameter vcanvas gets a multiple declaration, and
the appropriate one will be selected when the above
addComp window vcanvas is run (the second dlet is nested
in the first one)

dlet vcanvas = getHDCanvas ()
when ← video(hd), ¬only_text() in
dlet vcanvas = getLowQualityCanvas ()

when ← video(low), ¬only_text() in
(* other code *)

For simplicity, in the snippet above, we used twice the
predicate ¬only text(). A more economic implementation
can be obtained by resorting to higher-order or nested
behavioural variations, illustrated in the next paragraph.

8

We now discuss the main difference between our
context-dependent binding and standard dynamic binding.
Consider the following snippet of code

(* definition of setMainWindow & vcanvas *)

fun createMainWindow () =
(* create window *)
setMainWindow window
(* other code *)

where the function setMainWindow is defined be-
fore the declarations of the parameter vcanvas and
then it is applied in the body of the function
createMainWindow. Assume your smartphone can repro-
duce high-definition videos and that the current con-
text grants the goal video(hd),¬ only text(), but not
video(low),¬ only text(). Now, call createMainWindow,
which in turn calls setMainWindow: the parameter vcanvas
is bound to the value returned by getHDCanvas. With
dynamic binding, vcanvas would instead be bound to the
value returned by getLowQualityCanvas.

4.3.2 Behavioural variations
The other main feature to express context-dependency is
that of behavioural variation, which alters the application flow
depending on the context. Roughly this new construct is
a list of guarded expressions goal.expression enclosed
by curly brackets (the dot separates the guard from the
expression). It is similar to pattern-matching, but with goals
instead of patterns. Additionally, behavioural variations
may have parameters to which they are applied, similarly
to functions.

As an example, consider the following behavioural vari-
ation url (according to the syntax of Figure 3, the function
will have a dummy argument “ ” omitted here)

fun getExhibitData () =
let url = {
← direct_comm().

let c = getChannel () in
receiveData c,

← use_qrcode(decoder), camera(cam).
let p = take_picture cam in

decode_qr decoder p }
in

getRemoteData #url

Intuitively, the list of pairs goal.expression is visited in
textual order, and the goals evaluated at run time through
a query on the context. The first expression whose goal
holds is then selected (other subsequent goals may hold,
but the expressions they guard are ignored; we shall come
back on the evaluation order in the conclusion). If no goal
holds, then a run time error occurs: the application cannot
adapt, because the current context does not enjoy a desired
property, e.g. it lacks a required capability. Following the
usual COP terminology, we call this mechanism dispatching.

Depending on the smartphone capabilities, the be-
havioural variation above retrieves the URL of an exhibit
page. If communication with the exhibit adapter is direct,
the application reads the URL through the channel returned
by getChannel; otherwise, the smartphone takes a picture
of the QR code and decodes it. Note that in this second case
the variables decoder and cam will be assigned the handles

of the decoder and the one of the camera deduced by the
Datalog machinery. These handles are used by the functions
take picture and decode qr to interact with the actual
smartphone resources.

The behavioural variation (bound to) url is applied be-
fore invoking the function getRemoteData (for readability,
here we use a simplified syntax for behavioural variation
application represented by #; for details see Section 5).

As a further example of behavioural variation, consider
the function getRemoteData that connects to the website
and downloads the page of the exhibit:

fun getRemoteData url =
(* other code *)
← ¬only_speech().
(* other code *)
let img = {
← orientation(landscape),
sscreen(large),
supported_media(png).
getImg(url + "/" +

iname + "-large.png"),
← orientation(portrait),
sscren(small),
supported_media(svg).
getImg(url + "/" +

iname + "-small.svg")
(* other code *)

}
in
(* other code *)

The actual downloaded data depend on the preference of
the user and on the display capability of the smartphone.

It is worth noting that behavioural variations are values,
so we can write code that manipulates them. This allows
programmers to implement adaptation patterns they think
more appropriate for their applications and write more
modular and extensible code.

To manipulate behavioural variations we equip MLCoDa
with the binary operator ∪ that extends the cases over which
a behavioural variation is defined by concatenating the lists
of pairs goal.expression of another behavioural variation.
As an example of behavioural variation concatenation, let
True be the goal always true, and consider the function

fun addDefault bv dv =
bv ∪ { True. dv }

It takes as arguments a behavioural variation bv (with no
parameter) and a value dv, and extends bv by adding
a default case which is always selected when no other
case apply. Note in passing that this function implements
a sort of “extensible” programs pattern. In particular, the
above addDefault allows MLCoDa programmers to easily
implement the standard notion of basic behaviour in COP
languages.

4.3.3 Context updates
Besides the features that describe and query the context,
and those that adapt program behaviour, MLCoDa is also
equipped with constructs that update the context by adding
facts, tell, and removing them, retract.

For example, the function below inserts in the context
the fact returned by getCheckedOption with the argument
accRadioButton:

9

fun setAccessibilityOpt () =
tell (getCheckedOption accRadioButton)

As it will be clearer later on, the type of getCheckedOption
will record that it returns either fact user acc opt(deaf)
or user acc opt(blind). Thereby, it is possible to pre-
dict how the context will be affected by the function
setAccessibilityOpt (same if retract replaces tell).

Note that tell and retract belong to the functional
component of MLCoDa, and they can be used neither in
the context description nor in the goals within dlet and
within behavioural variations. This implies that querying
the context, i.e. making deductions, has no side-effects. Fur-
thermore, with these constructs the programmer can insert
or remove facts of the application context, only. Instead,
the system context can only be updated through the API
provided, so it is possible to prevent the programmer from
driving the system in an invalid state, e.g. by inhibiting
access to a hardware device if the battery level is too low.

4.4 Adaptation failures
An application can fail to adapt to a context, both because
the programmer assumed at design time the presence of
functionalities that the current system context lacks, or
because of programming errors. This is a new class of run
time errors that we call adaptation failures.

In MLCoDa this may happen when some crucial facts
turn out to be unexpectedly false in the current context,
e.g. because they have been removed. In this case a pa-
rameter in a context-dependent binding cannot be resolved
or a behavioural variation gets stuck, i.e. the dispatching
mechanism finds no viable alternative to run and fails.
The common reason is that the goals occurring in these
constructs do not hold.

Back to our example, consider the function
setMainWindow. While evaluating it, addComp is called
twice, with the parameters txt label (in the first call)
and vcanvas (in the second one). Assume that the context
satisfies neither goals in the declarations of vcanvas,
so it cannot be resolved and a run time error occurs.
The dispatching mechanism fails, e.g., while evaluating
getExhibitData on a smartphone without wireless
technology and QR decoder. Of course, no context will ever
satisfy the goals of the behavioural variation url. So when
url is applied, no case can be selected.

An overly conservative approach to avoid these run time
errors could be disallowing code that fails to run under any
possible context. Our proposal tries to detect whether an
application will be able to adapt to its execution context
right before running in it. To do that we equip MLCoDa with a
two-phase static analysis: one at compile time and the other
one at load time.

At compile time we associate a type and an effect with an
expression e. The type is (almost) standard, and the effect
is an over-approximation of the actual run time behaviour
of e, and abstractly represents the changes and the queries
performed on the context during its evaluation.

At load time we exploit the effect computed by the type
system to build a graph which describes how the context
may change at run time. Visiting the graph we can detect if
the queries of the application at run time may fail. Here we

only use graphs for this purpose, but other properties can be
analysed on them, e.g. security and access control. Also, we
can single out specific points in the code in which to insert
calls to suitable routines for error handling.

For example, consider the function getExhibitData.
Its computed type is unit

H1−−→ τd where τd is
the type of the value returned by the applica-
tion of getRemoteData. The annotation H1 is
ask G1 ⊗ ask G2 ⊗ fail, where G1 =← direct comm()
and G2 =← use qrcode(decoder), camera(cam) are the
goals of url (for readability, here we use a simplified syntax
for type annotations; for details see Section 6). Intuitively,
H1 says that one between G1 or G2 must be satisfied by
the context in order to successfully apply the function
getExhibitData, otherwise a failure occurs. At load time
our static analysis ensures us that at least one among G1

and G2 will hold in the context.
As a further example, consider the function

setAccessibilityOpt. Its type is unit H2−−→ unit where the
annotation H2 is
tell(user acc opt(deaf)) + tell(user acc opt(blind))

means that setAccessibilityOpt modifies the context
by adding either fact yielded by getCheckedOption, i.e.
user acc opt(deaf) or user acc opt(blind).

We conclude this section with a short remark on how we
positively addressed the quest for a flexible and controlled
adaptivity posed by Baresi et al. [10] and by Salehie and
Tahvildari [79]. In our proposal, the APIs, the system and
the application contexts define the adaptation boundaries
at design time. At run time, behavioural variations auto-
matically adapt the application to the actual needs of the
working environment within the boundaries.

5 THE SYNTAX AND THE SEMANTICS OF MLCODA

As discussed above, MLCoDa consists of two components:
Datalog with negation to describe the context and a core
of ML extended with COP features. Its abstract syntax
(in Figure 3) and a glimpse of the structural operational
semantics follow (the full definition is in Appendix A).

5.1 Syntax

Context component

The syntax of Datalog is the standard one [29] and it is
displayed in Figure 3 (left). As usual, we assume to have the
following sets: Var (ranged over by x, y, ...) for variables,
Const (ranged over by c, n, ...) for constants and Predicate
(ranged over by P, ...) for predicate symbols.

As usual in Datalog [29], a term is a variable x or a
constant c; an atom A is a predicate symbol p applied to
a list of terms; a literal is a positive or a negative atom; a
clause is composed by a head, i.e. an atom, and a body, i.e.
a possibly empty sequence of literals; a fact is a clause with
an empty body and a goal is a clause with empty head.

A Datalog program is a finite set of facts and clauses.
In the following we assume that each Datalog program is
safe [29], i.e. it satisfies the following requirements: (i) each
fact is ground; (ii) each variable occurring in the head of a
clause must occur in the body of the same clause; and (iii)

10

Syntax of Datalog component

x ∈ Var c ∈ Const p ∈ Predicate

T ::= x | c T ∈ Term
A ::= p(T1, . . . , Tn) A ∈ Atom
L ::= A | ¬A L ∈ Literal
R ::= A← B. R ∈ Clause
B ::= ε | L,B B ∈ ClauseBody
F ::= A← ε F ∈ Fact
G ::= ← L1, . . . , Ln. G ∈ Goal

Syntax of functional component

x̂ ∈DynVar (Var ∩DynVar = ∅) C,Cp ∈ Context
Va ::=G.e | G.e,Va
v ::=c | λfx.e | (x){Va} | F
e ::=v | x | x̂ | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 |

dlet x̂ = e1 whenG in e2 | tell(e1) | retract(e1) |
e1 ∪ e2 | #(e1, e2)

Figure 3. Syntax of MLCoDa

each variable occurring in a negative literal must also occur
in a positive literal of the same clause.

Following the usual Datalog terminology, we classify
predicates into extensional and intensional. The former rep-
resent concrete context objects, like resources, users prefer-
ences and data. The latter describe relationships among, and
properties about context objects. For instance, the predicate
user prefer of Section 4 is extensional, because it describes
a user preference; while only text is intensional, because it
expresses a property of the context by composing properties
of the users and of the objects therein. As usual extensional
predicates can occur only in facts. Thus in a clause A ← B,
the head A only contains intensional predicates, and the
body B may contain all kinds of predicates, if non-empty.
We can easily ensure this requirement by a syntactic analysis
of a program.

To deal with negation, we assume our world to be closed
and we only admit stratified programs [29].

Application component
The functional part inherits most of the ML constructs, and
its syntax is in Figure 3 (right).

In addition to the usual values, ours include Datalog
facts F and behavioural variations. Also, we introduce the
set x̂ ∈ DynVar of parameters, i.e., variables assuming values
depending on the properties of the running context (Var
are standard variables). Our COP constructs include be-
havioural variations (x){Va}, each consisting of a variation
Va with argument x. A variation is a list of expressions ei
guarded by Datalog goals Gi of the form G1.e1, . . . , Gn.en.
The variable x can freely occur in the expressions ei. At run
time, the first goal Gi satisfied by the context determines the
expression ei to be selected (dispatching). The dlet construct
implements the context-dependent binding of a parameter
x̂ to a variation Va . The tell/retract constructs update the
context by asserting/retracting facts. The append operator
e1 ∪ e2 dynamically concatenates behavioural variations, so
providing a further adaptation mechanism. The application
of a behavioural variation #(e1, e2) applies e1 to its argu-
ment e2. To do so, the dispatching mechanism is triggered
to query the context and to select from e1 the expression to
run, if any.

5.2 Semantics of MLCoDa

We now endow MLCoDa with a small-step operational se-
mantics. Recall that the evaluation of a program only starts
after the virtual machine has completed the linking and

verification phases. After these phases the expression is
closed, because it has no free variables, whereas parameters
may be left free.

For the Datalog evaluation we adopt the top-down stan-
dard semantics for stratified programs [29]. Given a context
C and a goal G, C � Gwith θ means that there exists a
substitution θ, replacing constants for variables, such that
the goal G is satisfied in the context C .

The MLCoDa semantics is inductively defined for expres-
sions with no free variables, but possibly with free param-
eters. These will take a value in an environment ρ, i.e. a
function mapping parameters to variations DynVar → Va .
In the following we update this environment through the
standard operator

ρ[b/x](y) =

{
b if y = x

ρ(y) otherwise

A transition ρ ` C, e → C ′, e′ says that in the envi-
ronment ρ, the expression e is evaluated in the context C
and reduces to e′ changing the context C to C ′. We assume
that the initial configuration is ρ0 ` C, es where ρ0 contains
the bindings for all system parameters, and C results from
the linking of the system context C and of the application
context Cp, as illustrated in Figure 2.

Most of the semantics rules are inherited from ML.
Figure 4 only shows those for our new constructs, and we
briefly comment on them below. The complete list of rules
is in the Appendix A.

The rules for tell(e)/retract(e) evaluate the expression
e until it reduces to a fact F (rule (TELL1)/(RETRACT1)).
Then, the evaluation yields the unit value () and a new
context C ′, obtained from C by adding/removing the
fact F (rule (TELL2)/(RETRACT2)). The following example
shows the reduction of a tell construct, where we apply
the function getAccessibilityOpt of the previous section
to unit, assuming that getCheckedOption returns the fact
user acc opt(blind).

ρ `C, setAccessibilityOpt ()→
C, tell(getCheckedOption accRadioButton)→∗

C, tell(user acc opt(blind))→
C ∪ {user acc opt(blind)}, ()

The rules (DLET1) and (DLET2) that handle the construct
dlet, and the rule (PAR) for parameters implement our
context-dependent binding. To simplify the technical devel-
opment we assume here that e1 contains no parameters. The

11

(TELL1)
ρ ` C, e→ C ′, e′

ρ ` C, tell(e)→ C ′, tell(e′)

(TELL2)

ρ ` C, tell(F)→ C ∪ {F}, ()

(RETRACT1)
ρ ` C, e→ C ′, e′

ρ ` C, retract(e)→ C ′, retract(e′)

(RETRACT2)

ρ ` C, retract(F)→ C\{F}, ()

(DLET1)
ρ[G.e1, ρ(x̂)/x̂] ` C, e2 → C ′, e′2

ρ ` C, dlet x̂ = e1 whenG in e2 → C ′, dlet x̂ = e1 whenG in e
′
2

(DLET2)

ρ ` C, dlet x̂ = e1 whenG in v → C, v

(PAR)
ρ(x̂) = Va dsp(C, Va) = (e, {−→c /−→y })

ρ ` C, x̂→ C, e{−→c /−→y }

(APPEND1)
ρ ` C, e1 → C ′, e′1

ρ ` C, e1 ∪ e2 → C ′, e′1 ∪ e2

(APPEND2)
ρ ` C, e2 → C ′, e′2

ρ ` C, (x){Va1} ∪ e2 → C ′, (x){Va1} ∪ e′2

(APPEND3)
z fresh

ρ ` C, (x){Va1} ∪ (y){Va2} → C, (z){Va1{z/x}, Va2{z/y}}

(VAAPP1)
ρ ` C, e1 → C ′, e′1

ρ ` C, #(e1, e2)→ C ′,#(e′1, e2)

(VAAPP2)
ρ ` C, e2 → C ′, e′2

ρ ` C, #((x){Va}, e2)→ C ′,#((x){Va}, e′2)

(VAAPP3)
dsp(C, Va) = (e, {−→c /−→y })

ρ ` C, #((x){Va}, v)→ C, e{v/x, −→c /−→y }

Figure 4. Semantic rules of the new constructs for adaptation of MLCoDa

rule (DLET1) extends the environment ρ by appending G.e1

in front of the existing binding for x̂. Then, e2 is evaluated
under the updated environment. Notice that the dlet does
not evaluate e1 but only records it in the environment.
The rule (DLET2) is standard: the dlet reduces to the value
eventually computed by e2.

The (PAR) rule looks for the variation Va bound to x̂ in ρ.
Then we introduce a mechanism to dynamically resolve pa-
rameters and behavioural variations, that we call dispatching
mechanism following the standard COP terminology. The
dispatching mechanism is defined below as the function dsp
which selects the expression to which x̂ reduces:

dsp(C, (G.e,Va)) =

{
(e, θ) if C � Gwith θ

dsp(C, Va) otherwise

dsp(C, G.e) =

{
(e, θ) if C � Gwith θ

fail otherwise

The dispatching mechanism inspects a variation from left
to right to find the first goal G satisfied by C , under a
substitution θ that binds the variables of G. If this search
succeeds, the results are the corresponding expression e
and θ. Then x̂ reduces to e θ, i.e. to e whose variables
are bound by θ. Instead, if the dispatching matching fails
because no goal holds, the computation gets stuck because
the program cannot adapt to the current context. Here,
the dispatching mechanism has a fixed evaluation order,
that can be made more flexible by assigning weights to
alternative pairs G.e, as briefly discussed in the conclusions.
As an example of context-dependent binding consider the
function setMainWindow defined in Section 4 and apply
it to a value w. Assume the environment ρ binds the

parameters txt label and vcanvas as done in Section 4.
Furthermore, assume that context C satisfies the goals
← ¬only speech() and ← video(hd),¬only text() but
not← video(low),¬only text().

ρ ` C, setMainWindoww →∗

C, addCompw txt label; addCompw vcanvas; e→
C, addCompw (getLabel()); addCompw vcanvas; e→∗

C, addCompw vcanvas; e→
C, addCompw (getHDCanvas()); e→∗ C, e

In the computation from the second to the third config-
uration, we retrieve the binding for txt label and apply
dsp to C and ρ(txt label)

dsp(C, ρ(txt label)) =

dsp(C,← ¬only speech().getLabel()) = (getLabel(), ∅).

The same happens in the step from the fourth to the fifth
configuration: we apply dsp to C and ρ(vcanvas) obtaining
getHDCanvas() and the empty substitution ∅.

The rules for e1∪e2 sequentially evaluate e1 and e2 until
they reduce to behavioural variations (rules (APPEND1, 2)).
Then, they are concatenated together by renaming bound
variables to avoid name captures (rule (APPEND3)). As an
example of behavioural variation concatenation, consider
the function addDefault of Section 4. In the following
computation we apply addDefault to p = (x){G1.c1, G2.x}
and to c2 (c1, c2 constants):

ρ `C, addDefault p c2 →
C, (x){G1.c1, G2.x} ∪ (w){True.c2} →
C, (z){G1.c1, G2.z, T.c2}

12

The rules for behavioural variation application #(e1, e2)
evaluate the sub-expressions until e1 reduces to (x){Va}
(rule (VAAPP1)) and e2 to a value v (rule (VAAPP2)). Then
the rule (VaApp3) invokes the dispatching mechanism to
select the relevant expression e from which the computation
proceeds after v replaces x. Also in this case the computa-
tion gets stuck, if the dispatching mechanism fails. As an
example consider the function getExhibitData and apply
it to unit. The computation is

ρ ` C, getExhibitData ()→∗

C, getRemoteData#(u, ())→∗

C, getRemoteData(receiveDatan)

(∗ n is returned by getChannel ∗)

If the context C satisfies the goal ← direct comm(), in the
computation from the second to the third configuration, the
dispatching mechanism selects the first expression of the
behavioural variation u (the one bound to url in the body
of the function getExhibitData).

6 TYPE AND EFFECT SYSTEM

We now associate an MLCoDa expression with an annotated
type and an abstraction, called history expression. During
the verification phase the virtual machine uses this history
expression to ensure that the dispatching mechanism will
always succeed at run time. First, we briefly present history
expressions and then the rules of our type and effect system.

6.1 History Expressions

History Expressions [14] are a basic process algebra used to
soundly abstract the set of execution histories that a pro-
gram may generate. Here, history expressions approximate
the sequence of actions that a program may perform over
the context at run time, i.e., asserting/retracting facts and
asking if a goal holds, as well as how behavioural variations
will be “resolved”.

The syntax of history expressions is the following

H ::= ε | h | µh.H | H1 +H2 | H1 ·H2 |
tell F | retract F | ∆

∆ ::= ask G.H ⊗ ∆ | fail

The empty history expression ε abstracts programs which
do not interact with the context; µh.H represents possi-
bly recursive functions, where h is the recursion variable;
the non-deterministic sum H1 + H2 stands for the condi-
tional expression if -then-else; the concatenation H1 ·H2 is
for sequences of actions that arise, e.g., while evaluating
applications; the “atomic” history expressions tell F and
retract F are for the analogous expressions of MLCoDa; ∆ is
an abstract variation, defined as a list of history expressions,
each element Hi of which is guarded by an ask Gi, so
mimicking our dispatching mechanism.

Given a context C , the behaviour of a closed history
expression H (i.e. with no free variables) is formalised by
the transition system inductively defined in Figure 5. A
transition C,H → C ′, H ′ means that H reduces to H ′ in the
context C and yields the context C ′. Most rules are similar

to the ones of Bartoletti et al. [14], and below we briefly
comment on them.

The rules for sequence H1 · H2 reduces H1 up it be-
comes ε and then the overall expression reduces to H2.
The recursion µh.H reduces to the body H substituting
µh.H for the recursion variable h. The sum H1 + H2 non-
deterministically reduces to the history expression resulted
from the reduction of either H1 or H2. An action tell F
reduces to ε and yields a context C ′ where the fact F has just
been added; similarly for retract F . The rules for ∆ scan the
abstract variation and look for the first goalG satisfied in the
current context; if this search succeeds, the overall history
expression reduces to that history expression H guarded
by G; otherwise the search continues on the rest of ∆. If no
satisfiable goal exists, the stuck configuration fail is reached,
representing that the dispatching mechanism fails.

As a matter of fact, history expressions can also be seen
as specifying context-fee languages, e.g. µh.(ε + tell F · h ·
retract F) defines the language of balanced parenthesis.

Note that differently from Degano et al. [42] here we are
not concerned about the sequence of actions carried out from
the initial context, but in which contexts can be reached start-
ing from it. For this reason, here the transition system has
no labels and we introduce no language-theoretic semantics,
as done by Degano et al. [42], although easily doable.

6.2 Types and Effects

We give in Figure 6 a logical presentation of a type and effect
system for MLCoDa. For keeping the formal development
easy we only consider monomorphic types and effects, and
we assume that our Datalog is typed, i.e. each predicate
has a fixed arity and a type. Many papers exist on this
topic, and one can follow, e.g., a light version of the type
system proposed by Mycroft and O’Keefe [68]. From here
onwards, we simply assume that there exists a Datalog
typing function γ that given a goal G returns a list of pairs
(x, type-of-x), for all the variables x of G (γ is used e.g. in
the rule TVARIATION in Figure 6).

6.2.1 Type judgements
The rules of our type and effect systems have the usual type
environment Γ binding the variables of an expression:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty environment and Γ, x : τ
denotes an environment having a binding for the variable
x (x not occurring in Γ).

Additionally, we introduce the parameter environment
K that maps a parameter x̂ to a pair consisting of a type
and an abstract variation ∆. The information in ∆ is used to
resolve the binding for x̂ at run time. Formally:

K ::= ∅ | K, (x̂, τ,∆)

where ∅ denotes the empty environment and K, (x̂, τ,∆)
denotes an environment having a binding for the parameter
x̂ (x̂ not occurring in K).

Our typing judgements have the form Γ; K ` e : τ .H ,
expressing that in the environments Γ and K the expression
e has type τ and effect H .

13

C, ε ·H → C, H

C, H1 → C ′, H ′1
C, H1 ·H2 → C ′, H ′1 ·H2 C, µh.H → C,H[µh.H/h]

C,H1 → C ′, H ′1
C,H1 +H2 → C ′, H ′1

C,H2 → C ′, H ′2
C,H1 +H2 → C ′, H ′2 C, tell F → C ∪ {F}, ε C, retract F → C\{F}, ε

C � G

C, ask G.H ⊗∆→ C, H

C 2 G
C, ask G.H ⊗∆→ C, ∆

Figure 5. Semantics of History Expressions

The syntax of types is

τc ∈{int, bool, unit, . . .} φ ∈ ℘(fact)

τ ::=τc | τ1
K|H−−−→ τ2 | τ1

K|∆
===⇒ τ2 | factφ

We have basic types (int, bool, unit), functional types,
behavioural variations types, and facts. Some types are
annotated to support our static analysis. In the type factφ
the set φ soundly contains the facts that an expression can be
reduced to at run time (see the rules of the semantics (TELL2)

and (RETRACT2)). In the type τ1
K|H−−−→ τ2 associated with a

function f , the environment K is a precondition needed to
apply f . Here, K stores the types and the abstract variations
of parameters occurring inside the body of f . The history
expression H is the latent effect of f , i.e. the sequence of
actions which may be performed over the context during the

function evaluation. Analogously, in the type τ1
K|∆

===⇒ τ2
associated with the behavioural variation bv = (x){Va},
K is a precondition for applying bv and ∆ is an abstract
variation representing the information that the dispatching
mechanism uses at run time to apply bv.

We now introduce the orderings vH ,v∆,vK on H ,
∆ and K , respectively (often omitting the indexes when
unambiguous). We define H1 v H2 iff ∃H3 such that
H2 = H1 +H3; ∆1 v ∆2 iff ∃∆3 such that ∆2 = ∆1 ⊗∆3,
(note that we assume fail ⊗ ∆ = ∆, so ∆2 has a single
trailing term fail); K1 v K2 iff ((x̂, τ1, ∆1) ∈ K1 implies
(x̂, τ2, ∆2) ∈ K2 ∧ τ1 ≤ τ2 ∧ ∆1 v ∆2).

6.2.2 Typing rules
The most interesting rules of our type and effect system are
in Figure 6. All the rules are collected in Appendix A. A few
comments are in order.

We have rules for subtyping and subeffecting (Figure 6,
top). As expected these rules say that the subtyping relation
is reflexive (rule (SREFL)); that a type factφ is a subtype of a
type factφ′ whenever φ ⊆ φ′ (rule (SFACT)); that functional
types are contravariant in the types of arguments and co-
variant in the type of the result and in the annotations (rule
(SFUN)); analogously for the types of behavioural variations
(rule (SVA)).

The rule (TSUB) allows us to freely enlarge types
and effects by applying the subtyping and subeffecting
rules. The rule (TFACT) says that a fact F has type
fact annotated with the singleton {F} and empty ef-
fect. The rule (TTELL)/(TRETRACT) asserts that the ex-
pression tell(e)/retract(e) has type unit, provided that

the type of e is factφ. The overall effect is obtained by
concatenating the effect of e with the nondeterministic
summation of tell F/retract F where F is any of the
facts in the type of e. For example, consider the body
of the function setAccessibilityOpt of Section 4. We
know that the function getCheckedOption (call it e1)
returns either fact user acc opt(deaf) (call it F1) or
user acc opt(blind) (call it F2). Now, call e2 the applica-
tion of e1 to accRadioButton. The type of e2 is fact{F1, F2},
and its effect is H , which is the latent effect of e1. So
the overall type of tell(e2) will be unit and its effect
H · (tell F1 + tell F2).

Rule (TPAR) looks for the type and the effect of
the parameter x̂ in the environment K . For example,
consider what happens when type-checking the applica-
tion addComp window vcanvas in the body of function
setMainWindow in Section 4. Assume that addComp has type
window t

Ha−−→ component t
Hb−−→ unit and empty effect,

window has type component t and empty effect and that
the binding for vcanvas in K is (component t, ∆) where

∆ =ask ← video(hd),¬only text(). H1⊗
ask ← video(low),¬only text(). H2 ⊗ fail .

The application addComp window vcanvas thus has type
unit and effect ∆ ·Ha ·Hb.

In the rule (TVARIATION) we guess an environment K ′

and the type τ1 for the bound variable x. We determine
the type for each subexpression ei under K ′ and the envi-
ronment Γ extended by the type of x and of the variables
−→yi occurring in the goal Gi (recall that the Datalog typing
function γ returns a list of pairs (z, type-of-z) for all variable
z of Gi). Note that all subexpressions ei have the same type
τ2. We also require that the abstract variation ∆ results
from concatenating ask Gi with the effect computed for
ei. The type of the behavioural variation is annotated by
K ′ and ∆. For example, consider the behavioural varia-
tion defined in the body of function getExhibitData of
Section 4 (call it bv1). Assume that the unused argument

has type unit and that the two cases of this behavioural
variation have type τ and effect H1 and H2, respectively,
under the environment Γ, : unit (goals have no variables)
and the guessed environment K ′. Hence, the type of bv1

will be unit
K′|∆

===⇒ τ with ∆ = ask direct comm().H1 ⊗
ask use qr code(), camera(on).H2⊗fail and the effect will
be empty.

The rule (TVAPP) type-checks behavioural variation ap-
plications and reveals the role of preconditions. As expected,

14

(SREFL)

τ ≤ τ

(SFACT)
φ ⊆ φ′

factφ ≤ factφ′

(SFUN)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ H v H ′

τ1
K|H−−−→ τ2 ≤ τ ′1

K′|H′−−−−→ τ ′2

(SVA)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ ∆ v ∆′

τ1
K|∆

===⇒ τ2 ≤ τ ′1
K′|∆′

====⇒ τ ′2

(TSUB)
Γ; K ` e : τ ′ . H ′ τ ′ ≤ τ H ′ v H

Γ; K ` e : τ . H

(TFACT)

Γ; K ` F : fact{F} . ε

(TTELL)
Γ; K ` e : factφ . H

Γ; K ` tell(e) : unit . H ·

∑
F∈φ

tell F

(TRETRACT)

Γ; K ` e : factφ . H

Γ; K ` retract(e) : unit . H ·

∑
F∈φ

retract F

(TPAR)
K(x̂) = (τ, ∆)

Γ; K ` x̂ : τ .∆

(TVARIATION)
∀i ∈ {1, . . . , n}

γ(Gi) = −→yi : −→τi Γ, x : τ1,
−→yi : −→τi ;K ′ ` ei : τ2 . Hi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆

===⇒ τ2 . ε

(TVAPP)

Γ; K ` e1 : τ1
K′|∆

===⇒ τ2 . H1 Γ; K ` e2 : τ1 . H2 K ′ v K
Γ; K ` #(e1, e2) : τ2 . H1 ·H2 ·∆

(TAPPEND)

Γ; K ` e1 : τ1
K′|∆1

====⇒ τ2 . H1 Γ; K ` e2 : τ1
K′|∆2

====⇒ τ2 . H2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . H1 ·H2

(TDLET)

Γ,−→y :
−→̃
τ ; K ` e1 : τ1 . H1 Γ; K, (x̂, τ1, ∆′) ` e2 : τ2 . H2

Γ; K ` dlet x̂ = e1 whenG in e2 : τ2 . H2

where γ(G) = −→y :
−→̃
τ

if K(x̂) = (τ1, ∆) then ∆′ = G.H1 ⊗∆
else (if x̂ /∈ K then ∆′ = G.H1 ⊗ fail)

Figure 6. Typing rules for new constructs

e1 is a behavioural variation with parameter of type τ1 and
e2 has type τ1. We get a type if the environment K ′, which
acts as a precondition, is included in K according to v.
The type of the behavioural variation application is τ2, i.e.
the type of the result of e1, and the effect is obtained by
concatenating the ones of e1 and e2 with the history expres-
sion ∆, occurring in the annotation of the type of e1. For

example, consider bv1 above, that has type unit
K′|∆

===⇒ τ .
Assume to have the environments Γ and K , under which
we wish to type-check the expression #(bv1, ()). If K ′ v K ,
its type is τ and its effect is ask direct comm().H1 ⊗
ask use qr code(), camera(on).H2 ⊗ fail .

The rule (TAPPEND) asserts that two expressions e1,e2

with the same type τ , except for the abstract variations
∆1,∆2 in their annotations, and effectsH1 andH2, are com-
bined into e1∪e2 with type τ , and concatenated annotations
and effects. More precisely, the resulting annotation has
the same precondition of e1 and e2 and abstract variation
∆1 ⊗ ∆2, and effect H1 · H2. For example, consider again

the above bv1; its type int
K′|∆

===⇒ τ ; the body of the function
addDefault of Section 4. Let bv2 = (w){True.y}, and let its

type be unit
K′|∆′

====⇒ τ and its effect be H2. Then the type of

bv1 ∪ bv2 is unit
K′|∆⊗∆′

======⇒ τ and the effect is H2. The type

of addDefault is unit
K′|∆

===⇒ τ → τ → unit
K′|∆⊗∆′

======⇒ τ .
The rule (TDLET) requires that e1 has type τ1 in the

environment Γ extended with the types for the variables −→y
of the goal G. Also, e2 has to type-check in an environment
K extended with information for parameter x̂. The type and
the effect for the overall dlet expression are those of e2.

6.2.3 Formal results
Our type and effect system is sound with respect to the
operational semantics. To concisely state our results, it is
convenient to introduce the following technical definition.

Definition 6.1 (Type of dynamic environment). Given the
type and parameter environments Γ and K , we say that
the dynamic environment ρ has type K under Γ (in sym-
bols Γ ` ρ : K) iff dom(ρ) ⊆ dom(K) and ∀x̂ ∈
dom(ρ) . ρ(x) = G1.e1, . . . , Gn.en K(x̂) = (τ, ∆) and
∀i ∈ {1, . . . , n} . γ(Gi) = −→yi : −→τi Γ,−→yi : −→τi ;K ` ei : τ ′ .Hi

and τ ′ ≤ τ and
⊗

i∈{1,...,n}Gi.Hi v ∆.

15

The soundness of our type and effect system easily
derive from the following results (the proofs are in Ap-
pendix A).

Theorem 6.1 (Preservation). Let es be a closed expression; and
let ρ be a dynamic environment such that dom(ρ) includes the
set of parameters of es and such that Γ ` ρ : K . If Γ; K ` es :
τ . Hs and ρ ` C, es → C ′, e′s then Γ; K ` e′s : τ . H ′s and
C,Hs →∗ C ′, H for some H v H ′s.

The Progress Theorem below assumes that the effect
H does not reach fail , i.e. that the dispatching mechanism
succeeds at run time. We take care of ensuring this property
in Section 7. Hereafter we write ρ ` C, e 9 to intend
that there exist no C ′ and e′ such that ρ ` C, e → C ′, e′;
similarly C, Hs 9+ C ′, fail means that no computation of
H in C reaches a failure.

Theorem 6.2 (Progress). Let es be a closed expression such that
Γ;K ` es : τ . Hs; and let ρ be a dynamic environment such
that dom(ρ) includes the set of parameters of es, and such that
Γ ` ρ : K . If ρ ` C, es 9 ∧ C, Hs 9+ C ′, fail then es is a
value.

The following corollary ensures that the history ex-
pression obtained as an effect of e over-approximates the
actions that may be performed over the context during the
evaluation of e.

Proposition 6.3 (Over-approximation). Let es be a closed
expression. If Γ;K ` es : τ . Hs ∧ ρ ` C, es →∗ C ′, e′,
for some ρ such that Γ ` ρ : K , then Γ;K ` e′ : τ . H ′s and
there exists a sequence of transitions C, Hs →∗ C ′, H ′ for some
H ′ v H ′s.

The following theorem ensures the correctness of our
approach.

Theorem 6.4 (Correctness). Let es be a closed expression such
that Γ;K ` es : τ . Hs; let ρ be a dynamic environment such
that dom(ρ) includes the set of parameters of es, and that Γ `
ρ : K ; finally let C be a context such that C,Hs 9+ C ′, fail .
Then either the computation of es terminates yielding a value
(ρ ` C, es →∗ C ′′, v) or it diverges, but it never gets stuck.

We defined an inference algorithm for MLCoDa [39]. We
followed the approach proposed by Tang and Jouvelot [86],
whose idea is to carry out the inference in two steps: the first
computes the type of an expression ewith no annotation, the
second one reconstructs the annotations and the effect of e.

7 LOAD TIME ANALYSIS

As noted at the end of Section 4, an adaptive application
may fail when executed in an environment not considered
at design time, e.g. not offering the required resources. Our
load time analysis aims at detecting this new class of run
time errors.

In the execution model of MLCoDa the compiler pro-
duces a triple (Cp, ep, Hp) made of the application context,
the object code and an effect over-approximating how the
application ep interacts with the context (see Section 3).
Using this triple, the virtual machine of MLCoDa performs
a linking and verification phases at load time. During the
linking phase, system variables are resolved and the initial

context C is constructed, combining Cp and the system
context, provided that the two are not contradictory. Still,
the application is “open” with respect to its parameters.
This calls for the verification phase: we check whether the
application adapts to all evolutions of C that may occur at
run time, i.e., that all dispatching invocations will always
succeed. Only programs which pass this verification phase
will be run. To do that efficiently and to pave the way for
checking further properties (see the conclusions), we build
a graph G describing the possible evolutions of the initial
context, exploiting the history expression Hp. Technically,
we compute G through a static analysis, specified in terms of
Flow Logic [71], a declarative approach borrowing from and
integrating many classical static techniques [36], [48], [75],
[61]. The distinctive feature of Flow Logic is to separate the
specification of the analysis from its actual computation. Intu-
itively, the specification describes when its results, namely
analysis estimates, are acceptable, i.e. sound with respect to
the dynamic semantics. Formally, a specification consists
of a set of clauses defining the acceptability relationship
of estimates. Furthermore, Flow Logic provides us with
a methodology to define a correct and efficient analysis
algorithm, by reducing the specification to a constraint
satisfaction problem. Below, we specify our analysis in a
logical form and then we define an algorithm for it.

7.1 Specification of the Analysis

Here, we introduce our analysis of history expression and
define the notion of validity on them. Intuitively, a history
expression is valid for an initial context if the dispatching
mechanism always succeeds.

To support the formal development, we assume that
history expressions are labelled from a given set of Lab. Ac-
tually, the labels can be mechanically attached, in injection
with the nodes in the abstract syntax tree of H . Formally:

H ::= � | εl | hl | (µh.H)l | tell F l | retract F l |
(H1 +H2)l | (H1 ·H2)l | ∆

∆ ::=(ask G.H ⊗ ∆)l | fail l

We introduce for technical reasons a new empty history
expression � which is unlabelled. This is because our anal-
ysis is syntax-driven, and we need to distinguish when the
empty history expression comes from the syntax (εl) and
when it is instead obtained by reduction in the semantics
(�). The semantics of history expressions is accordingly mod-
ified, and Figure 7 displays it (apart from labels and �, this
semantics and the old one clearly coincide). Furthermore,
without loss of generality, we assume that all the bound
variables occurring in a history expression are distinct. To
keep trace of the history expression (µh.H l1

1)l2 where the
a bound variable hl is introduced, we shall use a suitable
function, called K.

A result of the analysis is a pair of functions
Σ◦,Σ• : Lab→ ℘(Context ∪ {>}) where > is the distin-

guished “failure” context representing a dispatching failure.
For each label l, the set Σ◦(l) over-approximates the set of
contexts that may arise before evaluating H l (call it pre-set);
Σ•(l) over-approximates the set of contexts that may result
from the evaluation of H l (call it post-set).

16

C, (� ·H)l → C, H C, εl → C, � C, tell F l → C ∪ {F}, � C, retract F l → C\{F}, �

C,H1 → C ′, H ′1

C, (H1 +H2)l → C ′, H ′1

C,H2 → C ′, H ′2

C, (H1 +H2)l → C ′, H ′2

C, H1 → C ′, H ′1

C, (H1 ·H2)l → C ′, (H ′1 ·H2)l

C, (µh.H)l → C,H[(µh.H)l/h]

C � G

C, (ask G.H ⊗∆)l → C, H

C 2 G
C, (ask G.H ⊗∆)l → C, ∆

Figure 7. New semantics of History Expressions

We define the specification of our analysis through the
validity relation

� ⊆ AE ×H

where AE = (Lab → ℘(Context ∪ {>}))2 is the domain
of the results of the analysis and H the set of history
expressions. We write (Σ◦,Σ•) � H l, when the pair (Σ◦,Σ•)
is an acceptable analysis estimate for the history expression
H l. The notion of acceptability will then be used in Defini-
tion 7.2 to check whether H , hence the expression e it is an
abstraction of, will never fail in a given initial context C .

In Figure 8 we give the set of inference rules that
inductively define the validity relation �. Now, we briefly
comment on them. In the description below, we denote with
E the estimate (Σ◦,Σ•), and we omit immaterial labels.

The rule (ANIL) says that every pair of functions is an
acceptable estimate for the semantic empty history expres-
sion �. The estimate E is acceptable for the syntactic εl if the
pre-set is included in the post-set (rule (AEPS)). By the rule
(ATELL), E is acceptable if for all contexts C in the pre-set,
the contextC∪{F} is in the post-set. The rule (ARETRACT) is
similar. The rules (ASEQ1) and (ASEQ2) handle the sequen-
tial composition of history expressions. The rule (ASEQ1)
states that (Σ◦,Σ•) is acceptable for H = (H l1

1 ·H
l2
2)l if it is

valid for both H1 and H2. Moreover, the pre-set of H1 must
include that of H and the pre-set of H2 includes the post-set
of H1; finally, the post-set of H includes that of H2. The rule
(ASEQ2) states that E is acceptable for H = (� · H l2

1)l if it
is acceptable for H1 and the pre-set of H1 includes that of
H , while the post-set of H includes that of H1. By the rule
(ASUM), E is acceptable for H = (H l1

1 + H l2
2)l if it is valid

for H1 and H2; the pre-set of H is included in the pre-sets of
H1 and H2; and the post-set of H includes both those of H1

and H2. The rules (AASK1) and (AASK2) handle the abstract
dispatching mechanism. The first states that the estimate E
is acceptable for H = (askG.H l1

1 ⊗ ∆l2)l, provided that,
for all C in the pre-set of H , if the goal G succeeds in C
then the pre-set of H1 includes that of H and the post-set of
H includes that of H1. Otherwise, the pre-set of ∆l2 must
include the one of H and the post-set of ∆l2 is included in
that of H . The rule (AASK2) requires > to be in the post-set
of fail . By the rule (AREC) E is acceptable for H = (µh.H l1

1)l

if it is acceptable for H l1
1 and the pre-set of H1 includes that

of H and the post-set of H includes that of H1. The rule
(AVAR) says that a pair (Σ◦,Σ•) is an acceptable estimate
for a variable hl if the pre-set of the history expression
introducing h, namely K(h), is included in that of hl, and
the post-set of hl includes that of K(h).

7.1.1 Validity and Viability

We are now ready to introduce when an estimate for a
history expression is valid for an initial context.

Definition 7.1 (Valid analysis estimate). Given H l and an
initial context C , we say that a pair (Σ◦,Σ•) is a valid anal-
ysis estimate for H and C iff C ∈ Σ◦(lp) and (Σ◦,Σ•) � H l.

The following theorems state the correctness of our
approach. The first guarantees that there exists a minimal
valid analysis estimate. Its existence is proved by showing
that the set of acceptable analyses forms a Moore family [71].

Theorem 7.1 (Existence of solutions). Given H l and an initial
context C , the set {(Σ◦,Σ•) | (Σ◦,Σ•) � H l} of the acceptable
estimates of the analysis for H l and C is a Moore family; hence,
there exists a minimal valid estimate.

We have a standard subject reduction theorem, saying
that the information recorded by a valid estimate is correct
with respect to the operational semantics of history expres-
sions.

Theorem 7.2 (Subject Reduction). Let H l be a closed history
expression such that (Σ◦,Σ•) � H l.
If for all C ∈ Σ◦(l) such that C,H l → C ′, H ′l

′
then (Σ◦,Σ•) �

H ′l
′

and Σ◦(l) ⊆ Σ◦(l
′) and Σ•(l

′) ⊆ Σ•(l).

Now we can define when a history expression Hp is
viable for an initial context C , i.e. when it passes the
verification phase. In the following definition, let lfail(H)
be the set of labels of the fail sub-terms in H :

Definition 7.2 (Viability). Let Hp be an history expression
and C be an initial context. We say that Hp is viable for C
if there exists the minimal valid analysis estimate (Σ◦,Σ•)
such that ∀l ∈ dom(Σ•)\lfail(Hp), > /∈ Σ•(l).

Below we illustrate how viability is checked using a couple
of examples. Consider the following history expression Ha

((tell F 1
1 · (retract F 2

2 · (ask F8.retract F
3
5 ⊗ fail4)5)6)7+

(ask F5.retract F
8
8 ⊗ (ask F3.retract F

9
4 ⊗ fail10)11)12)13

and the initial context C = {F2, F5, F8}, consisting of facts
only. For each label l occurring in Ha, Figure 9 shows the
corresponding values of Σ1

◦(l) and Σ1
•(l), respectively. Since

Σ1
• does not contain >, Ha is viable for C .

17

(ANIL)

(Σ◦,Σ•) � �

(AEPS)
Σ◦(l) ⊆ Σ•(l)

(Σ◦,Σ•) � εl

(ATELL)
∀C ∈ Σ◦(l) C ∪ {F} ∈ Σ•(l)

(Σ◦,Σ•) � tell F l

(ARETRACT)
∀C ∈ Σ◦(l) C\{F} ∈ Σ•(l)

(Σ◦,Σ•) � retract F l

(ASEQ1)
(Σ◦,Σ•) � H l1

1 (Σ◦,Σ•) � H l2
2 Σ◦(l) ⊆ Σ•(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (H l1
1 ·H

l2
2)l

(ASEQ2)
(Σ◦,Σ•) � H l2

2 Σ◦(l) ⊆ Σ•(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (� ·H l2
2)l

(ASUM)
(Σ◦,Σ•) � H l1

1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦,Σ•) � H l2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (H l1
1 +H l2

2)l

(AASK1)
∀C ∈ Σ◦(l) (C � G =⇒ (Σ◦,Σ•) � H l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l))

(C 2 G =⇒ (Σ◦,Σ•) � ∆l2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l))

(Σ◦,Σ•) � (askG.H l1 ⊗∆l2)l

(AASK2)
> ∈ Σ•(l)

(Σ◦,Σ•) � fail l

(AREC)
(Σ◦,Σ•) � H l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦,Σ•) � (µh.H l1)l

(AVAR)
K(h) = (µh.H l1)l

′
Σ◦(l) ⊆ Σ◦(l

′) Σ•(l
′) ⊆ Σ•(l)

(Σ◦,Σ•) � hl

Figure 8. Specification of the analysis for History Expressions

Now consider the following history expression that fails
to pass the verification phase, when put in the same initial
context C used above:

H ′a = ((tell F 1
1 ·retract F 2

2)3+(ask F3.retract F
5
4⊗fail

6)4)7

Indeed H ′a is not viable because the goal F3 does not hold
in C , and this is reflected by the occurrences of > in Σ2

•(4)
and Σ2

•(10) as shown in Figure 10.

Now we exploit the result of the above analysis to build
the evolution graph G, that describes how the initial context
C evolves at run time. The virtual machine can use G to
study how the application interacts with and affects the
context.

In the following let Fact∗ and Lab∗ be the set of facts
and the set of labels occurring in Hp, the history expression
under verification. Intuitively, G is a direct graph, the nodes
of which are the set of contexts reachable from an initial
context C , while running Hp. There is an arc between two
nodes C1 and C2 if C2 is obtained from C1 through telling
or removing a fact F .

Definition 7.3 (Evolution graph). Let H be a history expres-
sion, C be an initial context, and (Σ◦,Σ•) be a valid analysis
estimate.
The evolution graph of C is G = (N,A), where

N =
⋃

l∈Lab∗
(Σ◦(l) ∪ Σ•(l))

A = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗ such that
C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧
((C1 = C2 \ {F}) ∨ (C2 = C1 \ {F}) ∨ (C2 = >))}

As examples of evolution graphs consider the context C
and the history expressions Ha and H ′a introduced above.

Figure 9 depicts the evolution graph of C for Ha, where the
node > is not reachable, showing Ha viable for C . Instead,
in the evolution graph of C for H ′a, displayed in Figure 10,
the node > is reachable, showing H ′a not viable for C (for
readability, we labelled arcs with the performed actions).

Here we simply exploit evolution graphs to detect
adaptation failures, and if there is one, the application is
prevented to run. A more advanced usage is to visit the
graph and single out which behavioural variation will never
rise adaptation errors. All the other behavioural variation
can be instrumented to contain a call to suitable recovery
mechanisms. Other properties can also be checked on evo-
lution graphs, among which security policies to enforce [17],
or properties concerning a correct usage of contextual re-
sources.

7.2 Analysis Algorithm
The idea underlying the algorithm that computes the valid
estimates consists in reformulating the analysis specification
as a constraint satisfaction problem: its minimal solution
yields the minimal valid analysis estimate.

7.2.1 Constraint generation
Given a history expression H we generate constraints of the
form E ⊆ X ∈ SC where E is a set-expression and X a
variable, both denoting sets of contexts. Intuitively, the set
denoted by E is constrained to be a subset of the set X .

To formalise the analysis as a constraint satisfaction
problem, we first define the syntax of set-expressions and
their semantics (Definition 7.4); then we introduce the
function C [] : H → SC that generates constraints from a
history expression (Definition 7.5); furthermore we define
the constraints satisfaction relation �sc⊆ AE × SC saying

18

Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F1, F5, F8}} {{F1, F5}}
4 ∅ ∅
5 {{F1, F5, F8}} {{F1, F5}}
6 {{F1, F2, F5, F8}} {{F1, F5}}
7 {{F2, F5, F8}} {{F1, F5}}
8 {{F2, F5, F8}} {{F2, F5}}
9 ∅ ∅
10 ∅ ∅
11 ∅ ∅
12 {{F2, F5, F8}} {{F2, F5}}
13 {{F2, F5, F8}} {{F1, F5},{F2, F5}}

{F2, F5, F8}

{F1, F2, F5, F8} {F2, F5}

{F1, F5, F8}

{F1, F8}

tell F1 ask F5 ∧ retract F8

retract F2

ask F8 ∧ retract F5

Figure 9. The analysis result (top) and the evolution graph (bottom) for
the context C = {F2, F5, F8} and the history expression Ha.

Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {>}
5 ∅ ∅
6 {{F2, F5, F8}} {>}
7 {{F2, F5, F8}} {{F1, F5, F8},>}

{F2, F5, F8}

{F1, F2, F5, F8} >

{F1, F5, F8}

tell F1 ask F3

retract F2

Figure 10. The analysis result (top) and the evolution graph (bottom) for
the context C = {F2, F5, F8} and the history expression H′a

when a set of constraints is satisfied by an analysis estimate
(Definition 7.6); finally, we prove that the valid estimates of
the analysis (Definition 7.1) coincide with the solutions of
the constraint system (Theorem 7.3).

Let H be the history expression to be analysed, and let
Goal∗, Fact∗ and Lab∗ be the goals, the facts and the labels

occurring in H , respectively; furthermore, let Context∗ be
the set of all contexts that may be generated from the initial
context C by asserting and retracting the facts in Fact∗.
Note that all the sets above are finite. Our set-expressions
are defined as

X ∈ SetV ar C ∈ Context∗ G ∈ Goals∗ F ∈ Facts∗

E ::=X | {>} | {C} | E t F | E \ F |
E � G | E 2 G | E1 ⇒ E2

where X is a variable; {>} is the singleton containing the
failure context; the expression E t F (E \ F , respectively)
denotes the set of contexts of E where we have added
(removed, respectively) the fact F to each element; the
expression E � G (E 2 G, respectively) denotes the subset
of E containing only the contexts satisfying (not satisfying,
respectively) the goal G; the expression E1 ⇒ E2 is a
conditional expression: intuitively, the result is either empty
if the set E1 is such, otherwise it is E2.

The idea underlying our representation is based on the
fact that the analysis is syntax-driven. Consequently, the
labels relevant for computing the estimates of the analysis
are those in Lab∗, and the contexts occurring therein are
those belonging to Context∗. Since Lab∗ is finite, we can
represent a function Σ: Lab∗ → ℘(Context∗∪{>}) through
a set of variables. The value of each variable is intended to
be the set of contexts associated with a given label. To make
this link manifest, we define SetV ar as

SetV ar = { Σ̂◦(l) | l ∈ Lab∗ } ∪ { Σ̂•(l) | l ∈ Lab∗ }

For the sake of clarity, we also subscript variables with ◦
and • to indicate to which element of analysis estimate the
variable refers.

The meaning of a set-expression is formalised as follows.

Definition 7.4 (Set-expression semantics). Given an analysis
estimate (Σ◦,Σ•) the semantics of set expressions is given
by the function J K : E → AE → ℘(Context∗∪{>}) defined
as

JΣ̂◦(l)K(Σ◦,Σ•) = Σ◦(l)

JΣ̂•(l)K(Σ◦,Σ•) = Σ•(l)

J{>}K(Σ◦,Σ•) = {>}
J{C}K(Σ◦,Σ•) = {C}
JE t F K(Σ◦,Σ•) = {C ∪ {F} | C ∈ JEK(Σ◦,Σ•)}
JE \ F K(Σ◦,Σ•) = {C \ {F} | C ∈ JEK(Σ◦,Σ•)}
JE � GK(Σ◦,Σ•) = {C ∈ JEK(Σ◦,Σ•) | C � G}
JE 2 GK(Σ◦,Σ•) = {C ∈ JEK(Σ◦,Σ•) | C 2 G}

JE1 ⇒ E2K(Σ◦,Σ•) =

{
JE2K(Σ◦,Σ•) if JE1K(Σ◦,Σ•) 6= ∅
∅ otherwise

Given a history expression H , the function C [] : H →
SC generates the desired set of constraints, mimicking the
specification rules in Figure 8.

Definition 7.5 (Constraints generation). Given a history
expression H l and an initial context C , the set of constraints

19

for H l and C is S = {{C} ⊆ Σ̂◦(l)} ∪ C
[
H l
]
, where the

function C [] : H→ SC is inductively defined as follow

C [�] = ∅

C
[
εl
]

= {Σ̂◦(l) ⊆ Σ̂•(l)}

C
[
tell F l

]
= {Σ̂◦(l) t F ⊆ Σ̂•(l)}

C
[
retract F l

]
= {Σ̂◦(l) \ F ⊆ Σ̂•(l)}

C
[
(H l1

1 ·H
l2
2)l
]

= C [H1] ∪ C [H2]∪

{Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
(H l1

1 +H l2
2)l
]

= C [H1] ∪ C [H2]∪

{Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l),

Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
(µh.H l1)l

]
= C [H] ∪ {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}

C
[
hl
]

= {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)} K(h) = (µh.H)l1

C
[
(askG.H l1 ⊗∆l2)l

]
=

C [H] ∪ C [∆] ∪ {Σ̂◦(l) � G⇒ Σ̂◦(l) ⊆ Σ̂◦(l1),

Σ̂◦(l) � G⇒ Σ̂•(l1) ⊆ Σ̂•(l),

Σ̂◦(l) 2 G⇒ Σ̂◦(l) ⊆ Σ̂◦(l2),

Σ̂◦(l) 2 G⇒ Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
fail l

]
= {>} ⊆ Σ̂•(l)

In the following, it is convenient to assume that C
[
H l
]

also
includes {C} ⊆ Σ̂◦(l).

By using the semantics of set-expressions, we define the
relationship �sc⊆ AE × SC specifying when an analysis
estimate (Σ◦,Σ•) satisfies a set of constraints

Definition 7.6 (Constraints satisfaction). Given an analysis
estimate (Σ◦,Σ•) and a set of constraints sc ∈ SC, the
relation �sc is defined as

(Σ◦,Σ•) �sc sc ⇐⇒
∀E1 ⊆ E2 ∈ sc JE1K(Σ◦,Σ•) ⊆ JE2K(Σ◦,Σ•)

The following theorem ensures that the formulations of
the analysis given in Definitions 7.1 and 7.6, are equivalent,
i.e. the solutions of the set constraints C [H] are valid analy-
sis estimates and vice versa.

Theorem 7.3. Let H be a history expression and let (Σ◦,Σ•) be
an analysis estimate, then

(Σ◦,Σ•) � H ⇐⇒ (Σ◦,Σ•) �sc C [H]

As an example, consider the history expression Hp =
(tell F 1

1 · retract F 2
2)3 and the initial context C =

{F2, F3, F5}, made of facts only. The table at the top of
Figure 11 shows the constraints generated for each subterm
of Hp, whose union gives the constraints for Hp. For the
subterm tell F 1

1 we generate Σ̂◦(1) t F1, the set of contexts
where the fact F1 is added to each element of Σ̂◦(1), so
mimicking the premise of the rule (ATELL). Analogously, for
the subterm retract F 2

2 : the constraint Σ̂◦(2) \ F2 records

that the fact F2 is removed from each element of Σ̂◦(2))
(see the premise of the rule (ARETRACT)). The constraints
in the last row correspond to the preconditions of the
rule (ASEQ1). Additionally, they include the constraint
{F2, F3, F5} ∈ Σ̂◦(3) as required by the definition of
valid estimate (Definition 7.1). The valid analysis estimate
displayed at the bottom of Figure 11 is a solution to the
constraints for Hp.

7.2.2 Constraint solution

To solve a system of constraints we define the worklist
algorithm in Figure 12, by instantiating the general schema
of Nielson et al. [70] (Chapter 6). Given a set of constraints
S , it produces as solution an assignment E (represented
as an array) for the variables occurring in the constraints.
The algorithm uses three data structures: the list W which
records the constraints to be further elaborated; the array E ,
indexed by variables, which represents the current (partial)
solution; and the array A which stores for each variable
which are the constraints its value influences.

In the first step we initialise our data structures. At the
end of this stepW stores the constraint {C} ⊆ X , put on the
initial context C ; E gets the value ∅ for each element; each
element X of A contains the constraints where X occurs in
the left-hand side.

In the second step of the algorithm we compute the
solution by stepwise refining E ; at the end of the execution
E stores the minimal solution of the constraints in S . In
each iteration we extract a constraint E ⊆ X from W
and compute the value of E (stored in new) in the current
solution E through the semantic function J K. Note that for
readability we assume an implicit type coercion from the
array E to an analysis estimate (Σ◦, Σ•). If the value new is
not included in the assignment for the variable X , i.e. the
constraint is not satisfied, we update its value by adding
the one of E (E [X] ∪ new). Changing the value for variable
X may affect the satisfiability of the constraints E′ ⊆ X ′,
in which X occurs in E′. For this reason, we add to W all
the constraints A[X]. The algorithm terminates when W is
empty, i.e. when all the constraints are satisfied.

Figure 13 shows the iterations of the algorithm to solve
the constraints in Figure 11. After the initialisation (iteration
0),W contains the constraint {C} ⊆ Σ̂◦(3), the array E gets
∅ for all elements andA is initialised as shown at the bottom
of Figure 13. After the iteration 1, we have that {C} ⊆ Σ̂◦(3)
is removed fromW , E [Σ̂◦(3)] includes the context C and the
constraint Σ̂◦(3) ⊆ Σ̂◦(1) is inserted intoW . The algorithm
terminates at the iteration 6 whenW becomes empty.

Our algorithm inherits the correctness and the properties
from the general schema, as stated by the following theo-
rem:

Theorem 7.4. Let H be a history expression of size n and let h
be the height of the complete lattice ℘(Context∗ ∪ {>}). The
algorithm in Figure 12 terminates and computes the minimal
solution of the constraints C [H] in time O(h · n).

The complexity of our algorithm depends on the value
of height h of ℘(Context∗ ∪ {>}). We conjecture that h
is not a constant, and that it can instead be bound from
above by a function in the size n of the history expression.

20

Subterms of Hp Constraints
tell F 1

1 { Σ̂◦(1) t F1 ⊆ Σ̂•(1) }
retract F 2

2 { Σ̂◦(2) \ F2 ⊆ Σ̂•(2) }
(tell F 1

1 · retract F 2
2)3 { Σ̂◦(3) ⊆ Σ̂◦(1), Σ̂•(1) ⊆ Σ̂◦(2),

Σ̂•(2) ⊆ Σ̂•(3), {F2, F3, F5} ∈ Σ̂◦(3) }

1 2 3
Σ◦ {{F2, F3, F5}} {{F1, F2, F3, F5}} {{F2, F3, F5}}
Σ• {{F1, F2, F3, F5}} {{F1, F3, F5}} {{F1, F3, F5}}

Figure 11. The constraints (on top) and their solution (on bottom) for the history expression Hp = (tell F 1
1 · retract F 2

2)3 and the context C =
{F2, F3, F5}.

Input: A set S of constraints E1 ⊆ X1, . . . , En ⊆ Xn
Output: The least solution E

Step 1: Initialization ofW , E and A;

W := ∅;
for Xi do A[Xi] = ∅;
;

for E ⊆ X ∈ S do
E [X] := ∅;
for X′ ∈ vars(E) do
A[X′] := A[X′] ∪ {E ⊆ X};

end

if E = {C} then
W := W ∪ {E ⊆ X};

end

Step 2: Iteration (updating W and E);

whileW = {E ⊆ X} ∪W ′ do
W := W ′;
new := JEK E ;

if new * E [X] then
E [X] := E [X] ∪ new;

for E′ ⊆ X′ ∈ A[X] do

W := W ∪ {E′ ⊆ X′};
end

end

Figure 12. The worklist algorithm to solve constraints over set-
expression

If the value of h is large, the algorithm may perform
many iterations before converging to the solution. However,
several approaches have been proposed to keep efficient
the execution of the algorithm in practice, e.g. based on
widening operators [19].

8 A PROTOTYPICAL COMPILER

This section summarises the ideas underlying the ongoing
implementation of our language as an extension of F#,2 a
dialect of ML. Presently, we only have preliminary results

2. http://fsharp.org

for the implementation of the two-step static analysis of
Sections 6 and 7. The type system is under implementation,
and we are using F# type providers; the implementation of the
CFA is more standard. Instead, all the MLCoDa constructs
have been fully implemented.3 The choice of F# alleviates
the effort of re-implementing all the well-known constructs,
mainly because we could exploit the metaprogramming
facilities of F#, such as code introspection, quotation and
reflection. Additionally, the F# compiler is stable and gen-
erates optimised bytecode; it is officially supported by Mi-
crosoft and fully integrated inside the .NET environment 4

(and Mono,5 its open-source counterpart). F# applications
can readily run on all platforms (computers or mobile
devices) supported by CLR [20] (or Mono) and can exploit
all the features provided, including a vast collection of
libraries and modules, and also a just-in-time mechanism
for compiling to native code. Since MLCoDa is implemented
as a standard .NET library, no modifications are needed
either to the compiler or to the underlying run time. This
is a plus because it lowers the complexity of deploying
and maintaining applications; it preserves the compatibility
with other language extensions. Finally, the learning cost is
minimised for a user of a functional language like F# or ML,
who only needs training on the specific aspects of adaptivity
and possibly on Datalog.

The independence of the development of the context
from that of the application is well supported by .NET
through the notion of assemblies. They work just as modules
and offer us a natural way to separate the code for the two
components of MLCoDa. In practice, a requirements engineer
writes a bunch of Datalog sources that are ahead-of-time
translated to .NET code using our compiler ypc built on
the YieldProlog library.6 In this way, the interaction and
the data exchange between the application and the context
is easy because the .NET type system is uniformly used
everywhere. The problem of impedence mismatch [66] is
thus completely avoided.

The application programmer instead writes F# code, an-
notating the functions which use MLCoDa extensions with an
attribute called Coda.Code. This code is compiled through
the standard compiler fsharpc because the operations

3. https://github.com/vslab/fscoda
4. http://www.microsoft.com/net
5. http://www.mono-project.com/
6. https://github.com/vslab/YieldProlog

http://fsharp.org
https://github.com/vslab/fscoda
http://www.microsoft.com/net
http://www.mono-project.com/
https://github.com/vslab/YieldProlog

21

Iteration W Σ̂◦(1) Σ̂◦(2) Σ̂◦(3) Σ̂•(1) Σ̂•(2) Σ̂•(3)

0 {C} ⊆ Σ̂◦(3) ∅ ∅ ∅ ∅ ∅ ∅
1 ���

��{C} ⊆ Σ̂◦(3) Σ̂◦(3) ⊆ Σ̂◦(1) ∅ ∅ C ∅ ∅ ∅
2 ((((

((
Σ̂◦(3) ⊆ Σ̂◦(1) Σ̂◦(1) t F1 ⊆ Σ̂•(1) C ∅ C ∅ ∅ ∅

3 ((((
((((Σ̂◦(1) t F1 ⊆ Σ̂•(1) Σ̂•(1) ⊆ Σ̂◦(2) C ∅ C C1 ∅ ∅

4 ((((
((

Σ̂•(1) ⊆ Σ̂◦(2) Σ̂◦(2) \ F2 ⊆ Σ̂•(2) C C1 C C1 ∅ ∅
5 (((

((((
(

Σ̂◦(2) \ F2 ⊆ Σ̂•(2) Σ̂•(2) ⊆ Σ̂•(3) C C1 C C1 C2 ∅
6 ((((

((
Σ̂•(2) ⊆ Σ̂•(3) ∅ C C1 C C1 C2 C2

C = {F2, F3, F5}, C1 = {F1, F2, F3, F5}, C2 = {F1, F3, F5}

Σ̂◦(1) Σ̂◦(2) Σ̂◦(3) Σ̂•(1) Σ̂•(2) Σ̂•(3)

Σ̂◦(1) t F1 ⊆ Σ̂•(1) Σ̂◦(2) \ F2 ⊆ Σ̂•(2) Σ̂◦(3) ⊆ Σ̂◦(1) Σ̂•(1) ⊆ Σ̂◦(2) Σ̂•(2) ⊆ Σ̂•(3) ∅

Figure 13. The iterations of the worklist algorithm to solve constraints in Figure 11 (top) and the content of the corresponding array A (bottom).

needed to adapt the application to contexts are transparently
handled by our run time support. In particular, MLCoDa-
specific constructs are just-in-time replaced by their F# im-
plementation when they are about to run. This translation
step is performed as a single pass. The just-in-time compiler
identifies and picks up the quotations representing the
source code in order to visit the abstract syntax tree. The
generation of the new code is directly performed during
the visit taking advantage of some tracking of the envi-
ronment. Indeed, the MLCoDa constructs cannot be imple-
mented through macro-expansion because their translation
depends on the scope chain and thus it requires keeping an
additional symbol table for parameters.

We are currently experimenting on MLCoDa and its im-
plementation through concrete case studies; preliminary re-
sults are in Canciani et al. [26], which presents a simulator of
an e-Healthcare system of a pediatric hospital, under devel-
opment in cooperation with a small group of professionals.
Besides evaluating the expressivity in handling contexts and
in writing applications, we expect to experiment on the
feasibility and effectiveness of our two-step analysis. We
plan to implement additional case studies and to perform
further benchmarks comparing our proposal with others in
the literature [81], [5].

9 CONCLUDING REMARKS

We presented a language-based approach to adaptive pro-
gramming, within the Context-Oriented Programming par-
adigm. Crucial to our proposal is the two-component core
language MLCoDa. The first component is specially designed
for declaratively modelling the context. The second con-
stituent extends a core of ML with high-level constructs for
adaptation.

We also proposed a programming and an execution
model. The programming model is characterised by a pre-
defined API that we assume to be provided by the virtual
machine. Our execution model is characterised by a linking
and a verification phase. The linking phase enables the
application to use the capabilities of the hosting system.
The verification phase guarantees that the application will
indeed adapt to the current context.

In more detail, our static verification technique for
MLCoDa consists of two phases: in the first, a type and

effect system type-checks programs and computes a sound
abstraction of their behaviour. The second phase occurs
right after linking the application to the hosting system.
This load time analysis uses the program abstraction to
verify that the dispatching mechanism of the application
will always succeed.

We have implemented MLCoDa as an extension of F# and
we are currently working on an efficient implementation of
our two static analyses based on the type and effect infer-
ence algorithm [39]. Also, we have started experimenting on
our language considering some applications.7 Preliminary
results confirm that the expressivity of Datalog helps in
designing and handling the context in a flexible and suc-
cinct way: the deduction machinery of Datalog permits to
compute the needed properties of the current context on
need, avoiding the programmer to explicitly enumerate the
relevant ones. Furthermore one can naturally write compact
adaptive code in a functional style, by using our constructs.
In particular contextual binding through dlet, and the
capability of passing behavioural variations as parameters.

9.1 Discussion and Future Work

We briefly discuss below the main differences of MLCoDa
with respect to those proposals in the literature close to ours.

Almost all the calculi surveyed in Section 2 represent
a context as a stack of active layers, while ours is a
knowledge base, that offers primitives for easily storing
and retrieving contextual data through Datalog queries.
As noted in Section 4, solving these queries may require
complex deductions, involving nested predicates and also
API routines. While our dispatching mechanism checks
properties of structured data, in most cases layers carry no
data. However, Appeltauer et al. [5] discuss stateful layers,
which are endowed with a notion of store.

In the literature behavioural variations are often imple-
mented as partially defined methods, not first-class, as they
are in MLCoDa. The most notable exception is ContextL [35],
that is based on Common Lisp, from which it inherits higher-
order features.

Many of the above adaptive languages include a
proceed construct, a sort of super invocation in object

7. https://github.com/vslab/fscoda

https://github.com/vslab/fscoda

22

oriented languages [49], typically used for composing active
behavioural variations. This construct is related to the idea
of representing the context as a stack of layers, and it
is unclear whether it makes sense to introduce a similar
construct also in a full-fledged declarative context as ours.
Nevertheless, one could add to MLCoDa a construct similar
to call-next-method [89], in order to run the next case with a
goal satisfied, within the active behavioural variation.

In MLCoDa a fact asserted through a tell holds until it
is explicitly retracted. An alternative would be using the
construct with that imposes a scope on the context modifi-
cations. Of course, scoping can be achieved by a disciplined
use of tell and retract, with no changes to our static
analysis. In a previous work of ours [42], we addressed this
issue, and considered also the without construct, also from
the static analyses viewpoint.

Our behavioural variation as lists of guarded expressions
are close to predicated generic functions [89]. These functions
are methods defined by cases that are selected on the basis of
predicates implemented as LISP functions. Our dispatching
mechanism is therefore similar to theirs, except that ours is
guaranteed to always terminate.

We deal with the values of variables that change from
a context to another through a notion of dynamic context-
dependent binding. This problem has been faced by von
Löwis at al. [91] who propose a mechanism of dynamic vari-
ables inside PyContext. These variables are Python objects,
manipulated by special setter and getter methods, the value
of which is set upon entering a context and restored while
leaving it, in a stack-like way. In PyContext the scoping
is kept static, and only the value bound to variables is
dynamically determined. This differs from our approach
because our parameters are dynamically scoped and need
no special operations to be accessed. Tanter [87] proposes a
more general solution in which values, not only variables,
depend on the context. The mechanisms that manipulate
contextual values can be implemented in a suitable library
or directlty in the interpreter of the language. These features
also allow scoping side-effects within a certain context. Our
dynamic context-dependent binding can be implemented by
Tanter’s mechanisms, so it turns out to be a special case of
his.

Other papers in the literature share our view of having
distinct formalisms for specifying the context and the ap-
plications. Among these, the language Javanese [58] supplies
primitives for declaring a context and its properties in a log-
ical manner through a temporal logic. In Javanese the context
represents properties of the system that are “activated by an
action and held active until another action that deactivates
it occurs”. This is similar to our vision where the system
running an application is part of the context and where
a fact inserted into context holds until explicitly retracted.
Also Subjective-C [46] is equipped with a domain-specific
language for specifying the contents of what is called a set
of contexts. A context of Subjective-C is just a single property
holding in the working environment of an application, be-
having much like our facts. Similarly, a context is activated
when particular circumstances occur in the environment.
Furthermore, Subjective-C proposes constructs for specifying
relationships and constraints over contexts, e.g. inclusion
and conflict. This approach is very similar to ours, and

Datalog can also express these kinds of relations through
logical rules.

Note that our approach loosely integrates a functional
and a logical language differently from the tight integration
offered by the standard functional logic programming (see,
e.g. Bellia et al. [15] and Antoy and Hanus [2]). In this
paper, the logical and the functional part are kept apart,
and are only connected by the dispatching mechanism; our
extended ML and Datalog (and the context) work in a sort
of master/slave fashion.

In the current setting, the context is only updated by
the applications, either by tell/retract or by invoking
functions provided by the system API. More generally,
the context can evolve independently of the applications,
emitting events to signal the changes [3], [8] — implicitly
representing the presence of many different applications
sharing the same context. The major extensions to MLCoDa
for supporting these aspects include at least the ability of
handling the concurrency between the context evolution
and the running application, as well as primitives for react-
ing and adapting to events. The definition of an enhanced
dynamic semantics requires minor modifications, also for
managing the non-determinism due to the unknown order
in which events show up. However, non-determinism may
cause the history expressions computed at compile time to
explode in size, making our analysis less effective. Further
investigation is needed to devise techniques for reducing the
search space, while maintaining the required expressivity.

As already mentioned, the present version of our dis-
patching mechanism has a fixed evaluation order, and the
first case with a goal satisfied is selected, regardless if more
cases can be taken. A more flexible approach would require
Datalog to return a list of weights for all the expressions
whose goals hold. The dispatching mechanism would be
then parametrised on an adaptation policy that determines
the best case. Also, Datalog rules could be defined to assign
weights dynamically, e.g. using Bayesian learning tech-
niques [9].

History expressions adapt the history effects by Skalka
and Smith [84] and Skalka et al. [83] making them an
intermediate verification language for analysing different
program properties. They have been used for checking
secure web service compositions [13], [12], [33] and re-
source usages [14], both within functional languages and
in Java [11]. The approach taken here is typical of static
program analysis [70]. A different, methodological one con-
sists of writing programs at different level of abstractions,
to be gradually refined, and expressed through specification
languages. Then properties are proved at the suitable level.
A typical example are the greybox specifications by Büchi
and Weck [23], that have been used for proving properties
of object oriented languages [82] and of web services [76].

Future work will address security issues, that are par-
ticularly relevant when applications move along different
working environments. Modern programming languages
include explicit primitives to specify and enforce security
policies, that are not fully adequate for adaptive software.
This is because they are mainly defensive and based on a
threat model that is known a priori and does not change
over time. These assumptions hold no longer when taking

23

context-awareness into account. Combining security and
context-awareness requires to address two somehow con-
flicting aspects. On the one side, security requirements may
reduce the adaptivity of software. On the other side, new
highly dynamic security mechanisms are needed to scale
up to adaptive software [95], [25]. A first investigation on
this issues is in Bodei et al. [17], where MLCoDa is extended
to enforce security policies on the context modifications. An
extension of our static analysis can detect potential violation
of the required security policies, and also drive program
instrumentation to prevent these to occur. This is a first
example of a more sophisticated usage of evolution graphs.

We also plan to handle quantitative aspects of appli-
cations and contexts, by defining suitable extensions of
Datalog and of History Expressions, see e.g. Degano et
al. [43]. Also a more logically oriented verification tech-
nique is worth studying, in the style of Skalka et al. [83]
and Bartoletti et al. [14]. Finally, it is worth investigating
the integration of our static verification mechanism with a
dynamic one, like those proposed by Calinescu et al. [24]
and by Cardozo et al. [27].

ACKNOWLEDGMENT

The authors are deeply indebted with the anonymous re-
viewers for their invaluable comments and suggestions that
greatly helped us to improve the presentation of our work.

REFERENCES

[1] Peter Alvaro, WilliamR. Marczak, Neil Conway, JosephM. Heller-
stein, David Maier, and Russell Sears. Dedalus: Datalog in time
and space. In Oege de Moor, Georg Gottlob, Tim Furche, and
Andrew Sellers, editors, Datalog Reloaded, volume 6702 of Lecture
Notes in Computer Science, pages 262–281. Springer Berlin Heidel-
berg, 2011.

[2] Sergio Antoy and Michael Hanus. Functional logic programming.
Commun. ACM, 53(4):74–85, April 2010.

[3] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara.
Featherweight EventCJ: a core calculus for a context-oriented
language with event-based per-instance layer transition. COP ’11,
pages 1:1–1:7, New York, NY, USA, 2011. ACM.

[4] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. Uni-
fying multiple layer activation mechanisms using one event se-
quence. In Proceedings of 6th International Workshop on Context-
Oriented Programming, COP’14, pages 2:1–2:6, New York, NY, USA,
2014. ACM.

[5] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke,
and Michael Perscheid. A comparison of context-oriented pro-
gramming languages. In International Workshop on Context-Oriented
Programming, COP ’09, pages 6:1–6:6, New York, USA, 2009. ACM.

[6] Malte Appeltauer, Robert Hirschfeld, and Jens Lincke. Declarative
layer composition with the JCop programming language. Journal
of Object Technology, 12(2):4:1–37, June 2013.

[7] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet
of things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[8] Engineer Bainomugisha. Reactive method dispatch for Context-
Oriented Programming. PhD thesis, Comp. Sci. Dept., Vrije Uni-
versiteit Brussel, 2012.

[9] David Barber. Bayesian Reasoning and Machine Learning. Cambridge
University Press, 2012.

[10] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward
open-world software: issue and challenges. Computer, 39(10):36–
43, Oct 2006.

[11] Massimo Bartoletti, Gabriele Costa, Pierpaolo Degano, Fabio Mar-
tinelli, and Roberto Zunino. Securing Java with local policies.
Journal of Object Technology, 8(4):5–32, 2009.

[12] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari.
Planning and verifying service composition. Journal of Computer
Security, 17(5):799–837, 2009. abridged version in Proc. of CSFW
2005, IEEE Press, 211-223.

[13] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and
Roberto Zunino. Semantics-based design for secure web services.
IEEE Trans. Software Eng., 34(1):33–49, 2008.

[14] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and
Roberto Zunino. Local policies for resource usage analysis. ACM
Trans. Program. Lang. Syst., 31(6), 2009.

[15] Marco Bellia, Pierpaolo Degano, and Giorgio Levi. The call by
name semantics of a clause language with functions. In K. L.
Clatk and S.-A. Tärnlund, editors, Logic Programming, volume 16
of APIC Studies in Data Processing, pages 281–295. Academic Press,
London, 1982.

[16] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus
Ostermann. Virtual machine support for dynamic join points.
In Proceedings of the 3rd International Conference on Aspect-oriented
Software Development, AOSD ’04, pages 83–92, New York, NY, USA,
2004. ACM.

[17] Chiara Bodei, Pierpaolo Degano, Letterio Galletta, and Francesco
Salvatori. Linguistic Mechanisms for Context-aware Security. In
Gabriel Ciobanu and Dominique Méry, editors, 11th International
Colloquium on Theoretical Aspects of Computing, ICTAC 2014, volume
8687 of Lecture Notes in Computer Science. Springer, 2014.

[18] Rafael H. Bordini, Mehdi Dastani, Jrgen Dix, and Amal El Fallah
Seghrouchni. Multi-Agent Programming: Languages, Tools and Appli-
cations. Springer Publishing Company, Incorporated, 1st edition,
2009.

[19] François Bourdoncle. Efficient chaotic iteration strategies with
widenings. In Dines Bjørner, Manfred Broy, and IgorV. Pottosin,
editors, Formal Methods in Programming and Their Applications,
volume 735 of Lecture Notes in Computer Science, pages 128–141.
Springer Berlin Heidelberg, 1993.

[20] Don Box and Chris Sells. Essential .NET: The Common Language
Runtime. Microsoft .NET Development Series. Addison Wesley,
2002.

[21] Greg Brown, Betty H. C. Cheng, Heather Goldsby, and Ji Zhang.
Goal-oriented specification of adaptation requirements engineer-
ing in adaptive systems. In Proceedings of the 2006 international
workshop on Self-adaptation and self-managing systems, pages 23–29,
New York, NY, USA, 2006. ACM.

[22] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto
Lluch Lafuente, and Andrea Vandin. A conceptual framework for
adaptation. In Juan Lara and Andrea Zisman, editors, Fundamental
Approaches to Software Engineering, volume 7212 of LNCS, pages
240–254. Springer, 2012.

[23] Martin Büchi and Wolfgang Weck. The greybox approach: When
blackbox specifications hide too much, 1999. Turku Centre for
Computer Science, Technical Report No 297.

[24] Radu Calinescu, Carlo Ghezzi, Marta Z. Kwiatkowska, and Raf-
faela Mirandola. Self-adaptive software needs quantitative verifi-
cation at runtime. Commun. ACM, 55(9):69–77, 2012.

[25] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sam-
pemane, and M. Mickunas. Towards security and privacy for
pervasive computing. In Mitsuhiro Okada, Benjamin C. Pierce,
Andre Scedrov, Hideyuki Tokuda, and Akinori Yonezawa, editors,
Software Security — Theories and Systems, volume 2609 of Lecture
Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg,
2003.

[26] Andrea Canciani, Pierpaolo Degano, Gian-Luigi Ferrari, and Let-
terio Galletta. A context-oriented extension of F#. In FOCLASA
2015, volume to appear of EPTCS, 2015.

[27] Nicolás Cardozo, Laurent Christophe, Coen De Roover, and Wolf-
gang De Meuter. Run-time validation of behavioral adaptations.
In Proceedings of 6th International Workshop on Context-Oriented
Programming, COP’14, pages 5:1–5:6, New York, NY, USA, 2014.
ACM.

[28] Nicolás Cardozo, Sebastián González, Kim Mens, Ragnhild
Van Der Straeten, Jorge Vallejos, and Theo D’Hondt. Semantics
for consistent activation in context-oriented systems. Information
and Software Technology, 58(0):71 – 94, 2015.

[29] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always
wanted to know about Datalog (and never dared to ask). IEEE
Trans. on Knowl. and Data Eng., 1(1):146–166, March 1989.

[30] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for
context-aware pervasive computing environments. The Knowledge
Engineering Review, 18(03):197–207, 9 2003.

[31] Dave Clarke, Pascal Costanza, and Éric Tanter. How should
context-escaping closures proceed? In International Workshop on

24

Context-Oriented Programming, COP ’09, pages 1:1–1:6, New York,
NY, USA, 2009. ACM.

[32] Dave Clarke and Ilya Sergey. A semantics for context-oriented
programming with layers. In International Workshop on Context-
Oriented Programming, COP ’09, pages 10:1–10:6, New York, NY,
USA, 2009. ACM.

[33] Gabriele Costa, Pierpaolo Degano, and Fabio Martinelli. Modular
plans for secure service composition. Journal of Computer Security,
20(1):81–117, 2012.

[34] Pascal Costanza. Language constructs for context-oriented pro-
gramming. In In Proceedings of the Dynamic Languages Symposium,
pages 1–10. ACM Press, 2005.

[35] Pascal Costanza and Robert Hirschfeld. Language Constructs for
Context-oriented Programming: An Overview of ContextL. In
Proceedings of the 2005 Symposium on Dynamic Languages, DLS ’05,
pages 1–10, New York, NY, USA, 2005. ACM.

[36] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977.
ACM.

[37] Pierre-Charles David and Thomas Ledoux. Wildcat: a generic
framework for context-aware applications. In Proceedings of the
3rd international workshop on Middleware for pervasive and ad-hoc
computing, pages 1–7, New York, NY, USA, 2005. ACM.

[38] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario
Pugliese. A language-based approach to autonomic computing.
In Bernhard Beckert, Ferruccio Damiani, FrankS. Boer, and Mar-
celloM. Bonsangue, editors, Formal Methods for Components and
Objects, volume 7542 of Lecture Notes in Computer Science, pages
25–48. Springer Berlin Heidelberg, 2013.

[39] Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta. A
two-step type and effect inference for a context-aware language.
submitted for publication, availabe at http://www.di.unipi.it/
∼galletta/Inference.pdf.

[40] Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta. A
Two-Phase Static Analysis for Reliable Adaptation. In Dimitra
Giannakopoulou and Grenoble Gwen Salaün, editors, 12th Interna-
tional Conference on Software Engineering and Formal Methods, SEFM
2014, volume 8702 of Lecture Notes in Computer Science, pages 347–
362. Springer, 2014.

[41] Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta. A
two-component language for cop. In Proceedings of 6th International
Workshop on Context-Oriented Programming, COP’14, pages 6:1–6:7,
New York, NY, USA, 2014. ACM.

[42] Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and Gian-
luca Mezzetti. Types for coordinating secure behavioural varia-
tions. In Marjan Sirjani, editor, Coordination Models and Languages -
14th International Conference, COORDINATION 2012, volume 7274
of Lecture Notes in Computer Science, pages 261–276. Springer, 2012.

[43] Pierpaolo Degano, Gian-Luigi Ferrari, and Gianluca Mezzetti. On
quantitative security policies. In Victor Malyshkin, editor, Parallel
Computing Technologies, volume 6873 of Lecture Notes in Computer
Science, pages 23–39. Springer Berlin Heidelberg, 2011.

[44] Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang
De Meuter, and Theo D’Hondt. Context-oriented domain anal-
ysis. In Boicho Kokinov, DanielC. Richardson, ThomasR. Roth-
Berghofer, and Laure Vieu, editors, Modeling and Using Context,
volume 4635 of Lecture Notes in Computer Science, pages 178–191.
Springer Berlin Heidelberg, 2007.

[45] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increas-
ing system dependability through architecture-based self-repair.
In Rogério Lemos, Cristina Gacek, and Alexander Romanovsky,
editors, Architecting Dependable Systems, volume 2677 of LNCS,
pages 61–89. Springer, 2003.

[46] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz,
Jean-Christophe Libbrecht, and Julien Goffaux. Subjective-c. In
Brian Malloy, Steffen Staab, and Mark van den Brand, editors,
Software Language Engineering, volume 6563 of Lecture Notes in
Computer Science, pages 246–265. Springer Berlin Heidelberg, 2011.

[47] T. Gu, X.H. Wang, H.K. Pung, and D.Q. Zhang. An ontology-based
context model in intelligent environments. In Proceedings of com-
munication networks and distributed systems modeling and simulation
conference, volume 2004, pages 270–275, 2004.

[48] Nevin Heintze. Set-based analysis of ML programs. In Proceedings

of the 1994 ACM conference on LISP and functional programming, LFP
’94, pages 306–317, New York, NY, USA, 1994. ACM.

[49] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented programming. Journal of Object Technology,
7(3):125–151, March 2008.

[50] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara.
ContextFJ: a minimal core calculus for context-oriented program-
ming. In Proceedings of the 10th international workshop on Foundations
of aspect-oriented languages, pages 19–23. ACM, 2011.

[51] Markus C. Huebscher and Julie A. McCann. A Survey of Au-
tonomic Computing, Degrees, Models, and Applications. ACM
Comput. Surv., 40(3):1–28, August 2008.

[52] IBM. An architectural blueprint for autonomic computing. Tech-
nical report, June 2006.

[53] Atsushi Igarashi, Robert Hirschfeld, and Hidehiko Masuhara. A
type system for dynamic layer composition. In FOOL 2012,
page 13, 2012.

[54] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. ACM Trans.
Program. Lang. Syst., 23(3):396–450, 2001.

[55] Hiroaki Inoue, Atsushi Igarashi, Malte Appeltauer, and Robert
Hirschfeld. Towards type-safe JCop: A type system for layer
inheritance and first-class layers. COP’14, pages 7:1–7:6, New
York, USA, 2014. ACM.

[56] Tetsuo Kamina, Tomoyuki Aotani, and Atsushi Igarashi. On-
demand layer activation for type-safe deactivation. COP’14, pages
4:1–4:7, New York, NY, USA, 2014. ACM.

[57] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. A
core calculus of composite layers. In Proceedings of the 12th
Workshop on Foundations of Aspect-oriented Languages, FOAL ’13,
pages 7–12, New York, NY, USA, 2013. ACM.

[58] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. A
unified context activation mechanism. In Proceedings of the 5th
International Workshop on Context-Oriented Programming, COP’13,
pages 2:1–2:6, New York, NY, USA, 2013. ACM.

[59] Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara, and Tet-
suo Tamai. Context-oriented software engineering: A modularity
vision. MODULARITY ’14, pages 85–98, New York, NY, USA,
2014. ACM.

[60] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, 2003.

[61] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press, Inc., Boca Raton, FL, USA,
1st edition, 2009.

[62] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and WilliamG. Griswold. An Overview of AspectJ. In
JørgenLindskov Knudsen, editor, ECOOP 2001 — Object-Oriented
Programming, volume 2072 of Lecture Notes in Computer Science,
pages 327–354. Springer Berlin Heidelberg, 2001.

[63] Jay Ligatti, David Walker, and Steve Zdancewic. A type-theoretic
interpretation of pointcuts and advice. Science of Computer Pro-
gramming, 63(3):240 – 266, 2006.

[64] Seng W. Loke. Representing and reasoning with situations for
context-aware pervasive computing: a logic programming per-
spective. Knowl. Eng. Rev., 19(3):213–233, September 2004.

[65] Jeff Magee and Jeff Kramer. Dynamic structure in software
architectures. SIGSOFT Softw. Eng. Notes, 21(6):3–14, October 1996.

[66] Erik Meijer, Wolfram Schulte, and Gavin Bierman. Programming
with circles, triangles and rectangles. In In XML Conference and
Exposition, 2003.

[67] Mira Mezini and Klaus Ostermann. Conquering aspects with
caesar. In Proceedings of the 2Nd International Conference on Aspect-
oriented Software Development, AOSD ’03, pages 90–99, New York,
NY, USA, 2003. ACM.

[68] Alan Mycroft and Richard A. O’Keefe. A polymorphic type system
for Prolog. Artificial Intelligence, 23(3):295 – 307, 1984.

[69] George C. Necula and Peter Lee. Safe, untrusted agents using
proof-carrying code. In Giovanni Vigna, editor, Mobile Agents and
Security, volume 1419 of Lecture Notes in Computer Science, pages
61–91. Springer Berlin Heidelberg.

[70] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer, 1st ed. 1999. corr. 2nd printing,
1999 edition, 2005.

[71] Hanne Riis Nielson and Flemming Nielson. Flow logic: A multi-
paradigmatic approach to static analysis. In TorbenÆ. Mogensen,
David A. Schmidt, and I.Hal Sudborough, editors, The Essence

http://www.di.unipi.it/~galletta/Inference.pdf
http://www.di.unipi.it/~galletta/Inference.pdf

25

of Computation, volume 2566 of Lecture Notes in Computer Science,
pages 223–244. Springer Berlin Heidelberg, 2002.

[72] Giorgio Orsi and Letizia Tanca. Context modelling and context-
aware querying. In Oege Moor, Georg Gottlob, Tim Furche, and
Andrew Sellers, editors, Datalog Reloaded, volume 6702 of Lecture
Notes in Computer Science, pages 225–244. Springer, 2011.

[73] Mike P. Papazoglou and Dimitrios Georgakopoulos. Introduction:
Service-oriented computing. Commun. ACM, 46(10):24–28, October
2003.

[74] Christian Peper and Daniel Schneider. Component engineering
for adaptive ad-hoc systems. In Proceedings of the 2008 interna-
tional workshop on Software engineering for adaptive and self-managing
systems, pages 49–56, New York, NY, USA, 2008. ACM.

[75] Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[76] Hridesh Rajan, Jia Tao, Steve M. Shaner, and Gary T. Leavens.
Tisa: A language design and modular verification technique for
temporal policies in web services. In ESOP 2009, York, UK, March
22-29, 2009. Proceedings, volume 5502 of Lecture Notes in Computer
Science, pages 333–347. Springer, 2009.

[77] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy
and survey of cloud computing systems. In Proceedings of the 2009
Fifth International Joint Conference on INC, IMS and IDC, NCM ’09,
pages 44–51, Washington, DC, USA, 2009. IEEE Computer Society.

[78] Eva Rose. Lightweight bytecode verification. J. Autom. Reason.,
31(3-4):303–334, January 2004.

[79] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans. Auton. Adapt.
Syst., 4(2):14:1–14:42, May 2009.

[80] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-
oriented programming: A programming paradigm for autonomic
systems. CoRR, abs/1105.0069, 2011.

[81] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. An anal-
ysis of language-level support for self-adaptive software. ACM
Trans. Auton. Adapt. Syst., 8(2):7:1–7:29, July 2013.

[82] Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Mod-
ular verification of higher-order methods with mandatory calls
specified by model programs. In Richard P. Gabriel, David F.
Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Mon-
treal, Quebec, Canada, pages 351–368. ACM, 2007.

[83] Christian Skalka, Scott Smith, and David Van Horn. Types and
trace effects of higher order programs. Journal of Functional
Programming, 18(2):179–249, 2008.

[84] Christian Skalka and Scott F. Smith. History effects and verifica-
tion. In Programming Languages and Systems: Second Asian Sympo-
sium, APLAS 2004, Taipei, Taiwan, November 4-6, 2004. Proceedings,
volume 3302 of Lecture Notes in Computer Science, pages 107–128.
Springer, 2004.

[85] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat.
AspectC++: An aspect-oriented extension to the C++ program-
ming language. CRPIT ’02, pages 53–60, Darlinghurst, Australia,
Australia, 2002. Australian Computer Society, Inc.

[86] Yan Mei Tang and Pierre Jouvelot. Effect systems with subtyping.
In Proceedings of the 1995 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’95,
pages 45–53, New York, NY, USA, 1995. ACM.

[87] Éric Tanter. Contextual values. In Proceedings of the 2008 Symposium
on Dynamic Languages, DLS ’08, pages 3:1–3:10, New York, NY,
USA, 2008. ACM.

[88] Éric Tanter. Expressive scoping of dynamically-deployed aspects.
In Proceedings of the 7th International Conference on Aspect-oriented
Software Development, AOSD ’08, pages 168–179, New York, NY,
USA, 2008. ACM.

[89] Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang
De Meuter, Theo D’Hondt, and Kim Mens. Predicated generic
functions. In Benoı̂t Baudry and Eric Wohlstadter, editors, Software
Composition, volume 6144 of Lecture Notes in Computer Science,
pages 66–81. Springer Berlin Heidelberg, 2010.

[90] Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kielmann,
and Henri Bal. ContextDroid: an expression-based context frame-
work for Android. In Proceedings of PhoneSense 2010, 2010.

[91] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented programming: Beyond layers. In Proceedings of the 2007
International Conference on Dynamic Languages: In Conjunction with

the 15th International Smalltalk Joint Conference 2007, ICDL ’07,
pages 143–156, New York, NY, USA, 2007. ACM.

[92] David Walker, Steve Zdancewic, and Jay Ligatti. A Theory of
Aspects. SIGPLAN Not., 38(9):127–139, August 2003.

[93] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
Semantics for Advice and Dynamic Join Points in Aspect-oriented
Programming. ACM Trans. Program. Lang. Syst., 26(5):890–910,
September 2004.

[94] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. Ontology based
context modeling and reasoning using OWL. In Pervasive Comput-
ing and Communications Workshops, 2004. Proceedings of the Second
IEEE Annual Conference on, pages 18–22. Ieee, 2004.

[95] K. Wrona and L. Gomez. Context-aware security and secure
context-awareness in ubiquitous computing environments. In XXI
Autumn Meeting of Polish Information Processing Society, 2005.

Pierpaolo Degano has been a full professor of
computer science since 1990 and he has been
with the Department of Computer Science at the
University of Pisa since 1993. He is member
of the Editorial Board of Theoretical Computer
Science, of two sub-series in the Monographs
& Texts in Theoretical Computer Science and
of Mondo Digitale; he served as editor of many
special issues of scientific journals and of con-
ference proceedings. Pierpaolo Degano is a co-
founder, and since 2012 chairman, of the IFIP

TC1WG1.7 on Theoretical Foundations of Security Analysis and Design,
also he a member of the board of directors of the Microsoft Research-
University of Trento Center for Computational and Systems Biology.
His research interests are broadly in Programming Languages, and
include security of concurrent and mobile systems, systems biology,
semantics and concurrency, methods and tools for program verification
and evaluation, and programming tools.

Gian Luigi Ferrari received the PhD degree in
computer science from the University of Pisa,
where he is Full Professor at the Department
of Computer Science since 2011. His present
research interests include formal methods for
software engineering, program analysis, security
for service oriented applications and program-
ming languages design for pervasive software
systems.

Letterio Galletta received the PhD degree in
Computer Science from the University of Pisa in
2014. His research activity ranges mainly from
programming languages to static analyses for
checking correctness and safety of programs.
His current research interests include program-
ming languages for adaptive software, type and
effect systems and language-based security.

26

APPENDIX

MLCODA SEMANTICS

Below we list all the rules of the MLCoDa SOS semantics.

(PAR)
ρ(x̂) = V a dsp(C, V a) = (e, {−→c /−→y })

ρ ` C, x̂→ C, e{−→c /−→y }

(TELL1)
ρ ` C, e→ C ′, e′

ρ ` C, tell(e)→ C ′, tell(e′)

(TELL2)

ρ ` C, tell(F)→ C ∪ {F}, ()

(RETRACT1)
ρ ` C, e→ C ′, e′

ρ ` C, retract(e)→ C ′, retract(e′)

(RETRACT2)

ρ ` C, retract(F)→ C\{F}, ()

(DLET1)
ρ[G.e1, ρ(x̂)/x̂] ` C, e2 → C ′, e′2

ρ ` C, dlet x̂ = e1 whenG in e2 → C ′, dlet x̂ = e1 whenG in e
′
2

(DLET2)

ρ ` C, dlet x̂ = e1 whenG in v → C, v

(APPEND1)
ρ ` C, e1 → C ′, e′1

ρ ` C, e1 ∪ e2 → C ′, e′1 ∪ e2

(APPEND2)
ρ ` C, e2 → C ′, e′2

ρ ` C, (x){V a1} ∪ e2 → C ′, (x){V a1} ∪ e′2

(APPEND3)
z fresh

ρ ` C, (x){V a1} ∪ (y){V a2} → C, (z){V a1{z/x}, V a2{z/y}}

(IF1)
ρ ` C, e1 → C ′, e′1

ρ ` C, if e1 then e2 else e3 → C ′, if e′1 then e2 else e3

(IF2)

ρ ` C, if true then e2 else e3 → C, e2

(IF3)

ρ ` C, if false then e2 else e3 → C, e3

(LET1)
ρ ` C, e1 → C ′, e′1

ρ ` C, let x = e1 in e2 → C ′, let x = e′1 in e2

(LET2)

ρ ` C, let x = v in e2 → C, e2{v/x}

(APP1)
ρ ` C, e1 → C ′, e′1

ρ ` C, e1 e2 → C ′, e′1 e2

(APP2)
ρ ` C, e2 → C ′, e′2

ρ ` C, (λfx.e) e2 → C ′, (λfx.e) e
′
2

(APP3)

ρ ` C, (λfx.e) v → C, e{v/x, (λfx.e)/f}

(VAAPP1)
ρ ` C, e1 → C ′, e′1

ρ ` C, #(e1, e2)→ C ′,#(e′1, e2)

(VAAPP2)
ρ ` C, e2 → C ′, e′2

ρ ` C, #((x){V a}, e2)→ C ′,#((x){V a}, e′2)

(VAAPP3)
dsp(C, V a) = (e, {−→c /−→y })

ρ ` C, #((x){V a}, v)→ C, e{v/x, −→c /−→y }

27

TYPE AND EFFECT SYSTEM
Below we list all the typing rules of the type and effect system for MLCoDa.

(STCONST)
τc ≤ τc

(SFACT)
φ ⊆ φ′

factφ ≤ factφ′

(SFUN)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ H v H ′

τ1
K|H−−−→ τ2 ≤ τ ′1

K′|H′−−−−→ τ ′2

(SVA)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ ∆ v ∆′

τ1
K|∆

===⇒ τ2 ≤ τ ′1
K′|∆′

====⇒ τ ′2

(TCONST)

Γ; K ` c : τc . ε

(TFACT)

Γ; K ` F : fact{F} . ε

(TVAR)
Γ(x) = τ

Γ; K ` x : τ . ε

(TIF)
Γ; K ` e1 : bool . H1 Γ; K ` e2 : τ . H2 Γ; K ` e3 : τ . H3

Γ; K ` if e1 then e2 else e3 : τ . H1 · (H1 +H2)

(TLET)
Γ; K ` e1 : τ1 . H1 Γ;x : τ1, K ` e2 : τ2 . H2

Γ; K ` let x = e1 in e2 : τ2 . H1 ·H2

(TTELL)
Γ; K ` e : factφ . H

Γ; K ` tell(e) : unit . H ·

∑
F∈φ

tell F

(TRETRACT)

Γ; K ` e : factφ . H

Γ; K ` retract(e) : unit . H ·

∑
F∈φ

retract F

(TABS)

Γ, x : τ1, f : τ1
K′|H−−−→ τ2;K ′ ` e : τ2 . H

Γ; K ` λfx.e : τ1
K′|H−−−→ τ2 . ε

(TVARIATION)
∀i ∈ {1, . . . , n}

γ(Gi) = −→yi : −→τi Γ, x : τ1,
−→yi : −→τi ;K ′ ` ei : τ2 . Hi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆

===⇒ τ2 . ε

(TAPPEND)

Γ; K ` e1 : τ1
K′|∆1

====⇒ τ2 . H1 Γ; K ` e2 : τ1
K′|∆2

====⇒ τ2 . H2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . H1 ·H2

(TVAPP)

Γ; K ` e1 : τ1
K′|∆

===⇒ τ2 . H1 Γ; K ` e2 : τ1 . H2 K ′ v K
Γ; K ` #(e1, e2) : τ2 . H1 ·H2 ·∆

(TPAR)
K(x̂) = (τ, ∆)

Γ; K ` x̂ : τ .∆

(TAPP)

Γ; K ` e1 : τ1
K′|H3−−−−→ τ2 . H1 Γ; K ` e2 : τ1 . H2 K ′ v K

Γ; K ` e1 e2 : τ2 . H1 ·H2 ·H3

(TSUB)
Γ; K ` e : τ ′ . H ′ τ ′ ≤ τ H ′ v H

Γ; K ` e : τ . H

(TDLET)

Γ,−→y :
−→̃
τ ; K ` e1 : τ1 . H1 Γ; K, (x̂, τ1, ∆′) ` e2 : τ2 . H2

Γ; K ` dlet x̂ = e1 whenG in e2 : τ2 . H2

where γ(G) = −→y :
−→̃
τ

if K(x̂) = (τ1, ∆) ∆′ = G.H1 ⊗∆
else if x̂ /∈ K ∆′ = G.H1 ⊗ fail

28

Properties of the Type and Effect System

Below we prove Theorem 6.1, Theorem 6.2 and Corol-
lary 6.3. We start giving some lemmas and definitions useful
for the proofs formal development.

Definition A.1 (Capture avoiding substitutions). Given the
expression e, e′ and the variable x we define e{e′/x} as
following

c{e′/x} = c

F{e′/x} = F

(λfx
′.e){e′/x} = λfx

′.e{e′/x}
if f 6= x ∧ x′ 6= x ∧ f, x′ /∈ FV (e′)

(x′){G1.e1, . . . , Gn.en}{e′/x} =

(x′){G1.e1{e′/x}, . . . , Gn.en{e′/x}}
if x 6= x′ ∧ x ∈

⋃
i∈{1,...,n}

FV (Gi)∧{x′} ∪ ⋃
i∈{1,...,n}

FV (Gi)

 ∩ FV (e′) = ∅

x{e′/x} = e′

x′{e′/x} = x′ if x 6= x′

(e1 e2){e′/x} = e1{e′/x} e2{e′/x}
(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}
(if e1 then e2 else e3){e′/x} =

if e1{e′/x} then e2{e′/x} else e3{e′/x}
(tell(e)){e′/x} = tell(e{e′/x})
(retract(e)){e′/x} = retract(e{e′/x})
(e1 ∪ e2){e′/x} = e1{e′/x} ∪ e2{e′/x}
#(e1, e2){e′/x} = #(e1{e′/x}, e2{e′/x})
(let x′ = e1 in e2){e′/x} = let x′ = e1{e′/x} in e2{e′/x}

if x 6= x′ ∧ x′ ∈ FV (e′)

(dlet x̂ = e1 whenG in e2){e′/x} =

dlet x̂ = e1{e′/x}whenG in e2{e′/x}
if x /∈ FV (G) ∧ FV (G) ∩ FV (e′) = ∅.

Lemma A.1. If Γ ` ρ : K and K v K ′ then Γ ` ρ : K ′.

Proof. The thesis follows from Definition 6.1 and that ofK v
K ′.

In the following we denote with Kx̂ = K\(x̂, τ,∆)

Lemma A.2. Given K and a parameter x̂

1) if x̂ /∈ K then K v Kx̂, (x̂, τ, ∆) for all τ and ∆
2) if K(x̂) = (τ, ∆) then K v Kx̂, (x̂, τ1, ∆1 ⊗∆) for

all τ ≤ τ1, ∆1

Proof. The thesis follows by using the definition of K v
K ′.

Lemma A.3. If Γ ` ρ : K and G and e are such that γ(G) =
−→y : −→τ and Γ,−→y : −→τ ;K ` e : τ . H

1) for all x̂ /∈ dom(ρ) then Γ ` ρ[G.e/x̂] :
Kx̂, (x̂, τ, askG.H)

2) if ρ(x̂) = G′1.e
′
1, . . . G

′
n.e
′
n and K(x̂) = (τ, ∆) then

Γ ` ρ[G.e, ρ(x̂)/x̂] : Kx̂, (x̂, τ, askG.H ⊗∆).

Proof. The thesis follows by using the definition 6.1 and that
of K v K ′.

Lemma A.4. If Γ;K ` e : τ .H and Γ′ andK ′ are permutation
of Γ and K respectively, then Γ′;K ′ ` e : τ . H .

Proof. Straightforward induction on typing derivations.

Lemma A.5 (Weakening).

1) if Γ;K ` e : τ . H and x is a variable x /∈ dom(Γ)
then Γ, x : τ ′;K ` e : τ . H for some τ ′.

2) if Γ;K ` e : τ . H and x̂ is a parameter x̂ /∈ dom(K)
then Γ;K, (x̂, τ ′,∆) ` e : τ . H for some τ ′ and ∆.

Proof. By a standard induction on the depth of the deriva-
tions.

Lemma A.6 (Inclusion).

1) If Γ;K ` e : τ .H and Γ ⊆ Γ′ then Γ′;K ` e : τ .H
2) If Γ;K ` e : τ . H and K v K ′ then Γ;K ′ ` e :

τ . H

Proof.

1) Since Γ ⊆ Γ′ there exists a set of binding {x1 :
τ1, . . . , xn : τn} ⊆ Γ′ such that Γ, x1 : τ1, . . . , xn :
τn = Γ′, so by applying n times Lemma A.5 the
thesis holds.

2) Similar to previous case.

Lemma A.7 (Canonical form). If v is a value such that

1) Γ;K ` v : τc . H then v = c

2) Γ;K ` v : τ1
K′|H′−−−−→ τ2 . H then v = λfx.e

3) Γ;K ` v : τ1
K′|∆

===⇒ τ2 . H then v = (x){V a}
4) Γ;K ` v : fact{F1,...,Fm}.H then v ∈ {F1, . . . , Fm}

Proof.

1) Values can only have four forms: c, (x){V a}, λfx.e
and F . If v has type τc the only rule which we can
apply is (TCONST) hence v = c.

2) Follow from a reasoning similar to (1)
3) Follow from a reasoning similar to (1)
4) The fact type with annotations {F1, . . . , Fn} can be

only deduced by applying the (TSUB) rule, starting
from a type annotated with a singleton set {F}
for some F ∈ {F1, . . . , Fn}. So this type can be
obtained by (TFACT) rule only, hence v = F .

Lemma A.8 (Decomposition Lemma).

1) If Γ;K ` λfx.e : τ1
K′|H−−−→ τ2 .H

′ and K ′ v K then

Γ, x : τ1, f : τ1
K′|H−−−→ τ2;K ` e : τ2 . H

2) If Γ;K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆

===⇒ τ2 . H
′

and K ′ v K and ∆ =
⊗

i∈{1,...,n} ask Gi.Hi then

29

∀i ∈ {1, . . . , n} Γ, x : τ1,
−→yi : −→τi ;K ` ei : τ2 . Hi

where −→yi : −→τi = γ(Gi)

Proof.

1) By the premise of the rule (TABS) we know that Γ, x :

τ1, f : τ1
K′|H−−−→ τ2;K ′ ` e : τ2 . H . Since, K ′ v K ,

the thesis follows by Lemma A.6.
2) By the premise of the rule (TVARIATION) we know

that ∀i ∈ {1, . . . , n} Γ,−→yi : −→τi ;K ′ ` ei : τ2.Hi and
−→yi : −→τi = γ(Gi) and ∆ =

⊗
i∈{1,...,n} ask Gi.Hi.

Since K ′ v K the thesis follows by Lemma A.6(2).

Lemma A.9 (Substitution). If Γ, x : τ ′;K ` e : τ . H and
Γ;K ` v : τ ′ . ε then Γ, x : τ ′;K ` e{v/x} : τ . H .

Proof. By induction on the depth of the typing derivation,
and then by cases on the last rule applied.

• rule (TTELL)
By the premise of the rule we know that Γ, x :
τ ′;K ` e : factφ . H

′ holds. By using the induction
hypothesis we can claim that Γ;K ` tell(e{v/x}) :
τ . H and by Definition A.1 we can conclude that
Γ;K ` (tell(e)){v/x} : τ . H .

• rule (TRETRACT)
Similar to the case (TTELL)

• rule (TAPPEND)
By the premise of the rule we know that Γ, x :

τ ′;K ` ei : τ1
K′|∆i

====⇒ τ2 . Hi for i ∈ {1, 2}
holds. By the inductive hypothesis we can claim that
Γ;K ` e1{v/x} ∪ e2{v/x} : τ . H holds. By Defini-
tion A.1 we conclude Γ;K ` (e1 ∪ e2){v/x} : τ .H .

• rule (TVAPP)
By the premise of the rule we know that Γ, x :

τ ′;K ` e1 : τ1
K′|∆

===⇒ τ2 . H1 and Γ, x : τ ′;K ` e2 :
τ1.H2 andK ′ v K . By using the induction hypothe-
sis we can claim that Γ;K ` #(e1{v/x}, e2{v/x}) :
τ . H holds and by Definition 6.1 we can conclude
that Γ;K ` #(e1, e2){v/x} : τ . H .

• rule (TVARIATION)
By the premise of the rule (TVARIATION) we know
that ∀i ∈ {1, . . . , n} Γ, x : τ ′, x′ : τ1,

−→yi :
−→τi ;K ′ ` ei : τ2 . Hi where −→yi : −→τi = γ(Gi),
∆ =

⊗
i∈{1,...,n} ask Gi.Hi. By Lemma A.4 ∀i ∈

{1, . . . , n} Γ, x′ : τ1,
−→yi : −→τi , x : τ ′;K ′ `

ei : τ2 . Hi. By using the induction hypothe-
sis and the rule (TVARIATION) we can claim that
Γ;K ` (x′){G1.e1{v/x}, . . . , Gn.en{v/x}} : τ .
H and by Definition A.1 we conclude Γ;K `
(x′){G1.e1, . . . , Gn.en}{v/x} : τ . H .

• rule (TDLET)
By the precondition of the rule (TDLET) we know
that Γ, x : τ ′,−→y : −→τ ;K ` e1 : τ1 . H1 and Γ, x :
τ ′;K, (x̂, τ1, ∆) ` e2 : τ . H2 with −→y : −→τ = γ(G).
By Lemma A.4 Γ,−→y : −→τ , x : τ ′;K ` e1 : τ1 . H1.
By using the induction hypothesis we can claim
that Γ;K ` dlet x̂ = e1{v/x}whenG in e2{v/x} :
τ . H2 and by Definition A.1 Γ;K ` (dlet x̂ =
e1 whenG in e2){v/x} : τ . H2.

• rule (TCONST), (TFACT), (TDVAR) Since e{v/x} = e
by Definition A.1 the result Γ;K ` e : τ . H is
immediate, when e = c, e = F and e = x̂.

• The other cases are standard.

Lemma A.10. If Γ, x : τ ′;K ` e : τ . H and z is a variable
such that z /∈ FV (e) and z does not occur in Γ then Γ, z :
τ ′;K ` e{z/x} : τ . H .

Proof. Similar to that of Lemma A.9

Lemma A.11. If Γ;K ` v : τ . H then Γ;K ` v : τ . ε

Proof. In the typing derivation for the judgement Γ;K ` v :
τ . H there is a subderivation with conclusion Γ;K ` v :
τ ′ . ε for some τ ′. This conclusion is obtained by applying
one of typing rules for values. Since v is a value we can
obtain Γ;K ` v : τ . H from this conclusion by applying
only the rule (Tsub) to enlarge the type and the effect. So we
can make a new derivation that simulates the first one but
where we enlarge only the type but not the effect. In this
way we constructed a derivation for the judgement Γ;K `
v : τ . ε.

Lemma A.12. If Γ;K ` v : τ .H then there exist H1, . . . ,Hn

such that H = ε+ Σni=1Hi

Proof. In the typing derivation for the judgement Γ;K ` v :
τ . H there is a subderivation with conclusion Γ;K ` v :
τ ′ . ε for some τ ′. This conclusion is obtained by applying
one of typing rules for values. Since v is a value we can
obtain Γ;K ` v : τ . H from this conclusion by applying
only the rule (Tsub) to enlarge the type and the effect. Then
the thesis follows by the definition of v.

Lemma A.13. If Γ;K ` v : τ . H then for all K ′ we have that
Γ;K ′ ` v : τ . H .

Proof. By induction of the depth typing derivation.

Lemma A.14. If C,H →∗ C ′, H ′ then

1) C,H ·H ′′ →∗ C ′, H ′ ·H ′′ for all H ′′

2) ∀ C such that C 6� Gj for j ∈ {1, . . . , i − 1} and C �
Gi and Hi = H , it is C,

⊗
k∈{1,...,n} askGk.Hk →∗

C ′, H ′.

Proof. Item (1) is immediate by applying the rule for sum-
mation. Item (ii) follows by induction on the length of the
computation C,H →∗ C ′, H ′, applying the rule for ·.

The proof of the following three properties follows im-
mediately by definition v and of the semantics of history
expressions.

Property A.15. Let H be a history expression then ε ·H = H .

Property A.16. Let H1, H2, H3 be history expressions, then it
holds (H1 +H2) ·H3 = H1 ·H3 +H2 ·H3.

Property A.17. If H v H ′ then H ·H ′′ v H ′ ·H ′′.

Theorem 6.1 (Preservation). Let es be a closed expression; and
let ρ be a dynamic environment such that dom(ρ) includes the
set of parameters of es and such that Γ ` ρ : K . If Γ; K ` es :

30

τ . Hs and ρ ` C, es → C ′, e′s then Γ; K ` e′s : τ . H ′s and
C,Hs →∗ C ′, H for some H v H ′s.

Proof. By induction on the depth of the typing derivation
and then by cases on the last rule applied.

In the proof we implicitly use the fact that H v H for
each H (except for the case TSUB).

• rule (TVARIATION) or (TCONST) or (TFACT) or (TABS)
or (TVAR)
In this case we know that es is a value (or a vari-
able in the case (TVAR)), then for no e′s it holds
ρ ` C, es → C ′, e′s, so the theorem holds vacuously.

• rule (TTELL)
We know that es = tell(e′) for some e′ and also by
the (TTELL) premise that Γ;K ` e′ : factφ .H holds
and Hs = H ·

∑
F∈φ tell F . We have only two rules

by which ρ ` C, es → C ′, e′s can be derived.

– rule (TELL1)
We know that e′ is an expression and e′s =
tell(e′′) and ρ ` C, e′ → C ′, e′′ and there is
in our derivation a subderivation with conclu-
sion Γ;K ` e′ : factφ . H . By the induction
hypothesis Γ;K ` e′′ : factφ . H

′′ and that
C, H →? C ′, H for some H v H ′′. By using
the rule (TTELL) we can conclude that Γ;K `
e′s : unit . H ′s and H ′s = H ′′ ·

∑
F∈φ tell F .

Lemma A.14 now suffices for establishing that
C,H ·

∑
F∈φ tell F →? C ′, H ·

∑
F∈φ tell F

and by Property A.17 H ·
∑
F∈φ tell F v H ′′ ·∑

F∈φ tell F .
– rule (TELL2)

We now that e′ = F , e′s = () and C ′ =
C ∪ {F}. We have to prove that Γ;K ` e′s :
unit . H ′s, but from the rule (TCONST) we
know that this holds with H ′s = ε. It re-
mains to show that C,Hs →∗ C ′, H ′s. From
Lemma A.12 we know Hs = ε + Σni=1Hi.
Then, C, (ε + Σni=1Hi) · ΣF∈φtell F → C, ε ·
ΣF∈φtell F → ΣF∈φtell F → C, tell F →
C ∪ {F}, ε = C ′, H ′s.

• rule (TRETRACT)
Similar to (TTELL) rule (retract substitutes tell)

• rule (TAPPEND)

We know es = e1 ∪ e2 and τ = τ1
K′|∆1⊗∆2

=======⇒ τ2 and
Hs = H1 ·H2, and also by the premise of (TAPPEND)

that Γ;K ` e1 : τ1
K′|∆1

====⇒ τ2 . H1 and Γ;K ` e2 :

τ1
K′|∆2

====⇒ τ2 .H2 hold. There are three rules only by
which ρ ` C, es → C ′, e′s can be derived.

– rule (APPEND1)
We know that e1 and e2 are not values and
e′s = e′1 ∪ e2. By applying the induction

hypothesis Γ;K ` e′1 : τ1
K′|∆1

====⇒ τ2 . H
′
1

with C,H1 →∗ C ′, H for some H v H ′1. By
applying the (TAPPEND) rule we can conclude

that Γ;K ` e′1∪e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2.H
′
1 ·H2.

The thesis follows by applying Lemma A.14
and Property A.17.

– rule (APPEND2)
We know that e′s = (x){V a1} ∪ e′2. By ap-
plying the induction hypothesis Γ;K ` e′2 :

τ1
K′|∆2

====⇒ τ2 . H
′
2 with C, H2 →∗ C ′, H for

some H v H ′2. By the rule (TVARIATION) we

know that Γ;K ` (x){V a1} : τ1
K′|∆1

====⇒
τ2 . ε and by applying the rule (TAPPEND)
we can claim that Γ;K ` (x){V a1} ∪ e′2 :

τ1
K′|∆1⊗∆2

=======⇒ τ2 . ε · H ′2 = H ′2 = H ′s by
the Property A.15. By Lemma A.12 we know
H1 = (ε+Σni=1Hi), then C,Hs = C,H1 ·H2 →
C, ε·H2 → C,H2 →∗ C ′, H , proving the thesis
since H v H ′s.

– rule (APPEND3)
We know that es is

(x){G1.e1, . . . , Gn.en}∪(y){G′1.e′1, . . . , G′m.e′m}

and that e′s is

(z){G1.e1{z/x}, . . . , Gn.en{z/y},
G′1.e

′
1{z/y}, . . . , G′m.e′m{z/x}}.

By the premise of the rule (TVARIATION), we
also know that ∀i ∈ {1, . . . , n} we have
Γ, x : τ1,

−→yi : −→τi ;K ′ ` ei : τ2 . Hi and
∀j ∈ {1, . . . ,m} we have Γ, y : τ1,

−→yj :
−→τj ;K ′ ` e′j : τ2 .Hj . By Lemma A.10 it holds
that ∀i ∈ {1, . . . , n} Γ, z : τ1,

−→yi : −→τi ;K ′ `
ei{z/x} : τ2 . Hi and ∀j ∈ {1, . . . ,m}
Γ, z : τ1,

−→yj : −→τj ;K ′ ` e′j{z/x} : τ2 . Hj .
So by applying the rule (TVARIATION) for all
judgements indexed by i and j we can con-

clude that Γ;K ` e′s : τ1
K′|∆1⊗∆2

=======⇒ τ2 . ε =
H ′s. By applying twice Lemma A.12 we have
Hj = (ε + Σni=1Hi) for j ∈ {1, 2}. Then, the
thesis follows because C,Hs = C,H1 ·H2 →∗
C,H2 → C, ε.

• rule (TVAPP)

We know that Γ;K ` e1 : τ1
K′|∆

===⇒ τ2 . H1, Γ;K `
e2 : τ1 . H2 and K ′ v K hold by (TVAPP) premises.
There are three rules only by which ρ ` C, es →
C ′, e′s can be derived.

– rule (VAPP1)
We know that e′s = #(e′1, e2). By the induction

hypothesis Γ;K ` e′1 : τ1
K′|∆

===⇒ τ2 . H
′
1 with

C,H1 →∗ C ′, H for someH v H ′1. By (TVAPP)
rule we have Γ;K ` e′s : τ2 . H

′
1 · H2 · ∆.

By Lemma A.14 we can conclude C,H1 ·H2 ·
∆→∗ C ′, H ·H2 ·∆ and the thesis follows by
Property A.17.

– rule (VAPP2)
We know that e′s = #((x){V a}, e′2). By using
Lemma A.11 we have Γ;K ` (x){V a} :

τ1
K′|∆

===⇒ τ2.ε and by the induction hypothesis
Γ;K ` e′2 : τ1 . H

′
2 with C, H2 →∗ C ′, H for

some H v H ′2. By (TVAPP) and Property A.15
Γ;K ` e′s : τ2 . ε ·H ′2 ·∆ = H ′2 ·∆ holds. By
Lemma A.12 we have H1 = (ε+Σni=1Hi), then

31

C,H1 ·H2 ·∆→ C, ε ·H2 ·∆→ C,H2 ·∆. By
Lemma A.14 we have C,H2 ·∆→∗ C ′, H ·∆
and Property A.17 proves the thesis.

– rule (VAPP3)
We know that es = #((x){V a}, v) where
V a = G1.e1, . . . , Gn.en, e′s = ej{v/x, −→c /−→y }
for j ∈ {1, . . . , n} and ρ ` C, es → C, e′s.
From our hypothesis and from Lemma A.8(2)
we have that for all i ∈ {1, . . . , n} it holds
Γ, x : τ1,

−→yi :
−→
ti ;K ` ei : τ2 . Hi. By

Lemma A.11 we also know that Γ;K ` v :
τ1 . ε. So by Lemma A.9 we have that for
i ∈ {1, . . . , n} Γ;K ` ei{v/x,−→τ /−→y } : τ .Hi.
By Lemma A.12 we haveHj = ε for j ∈ {1, 2},
thenC,H1·H2·∆→ C, ε·H2·∆→ C,H2·∆→
C, ε · ∆ → C,∆. The thesis follows by using
Lemma A.14.

• rule (TDLET)
If the last rule in the derivation is (TDLET) we
know that there is a subderivation with conclusions
γ(G) = −→y : −→τ and Γ,−→y : −→τ ;K ` e1 : τ1 . H1 and
Γ;Kx̂, (x̂, τ1 ∆′) ` e2 : τ . H and ∆′ = askG.H1

when x̂ /∈ dom(K) or ∆′ = askG.H1 ⊗ ∆ when
K(x̂) = (τ1, ∆). There are two rules by which
ρ ` C, es → C ′, e′s can be derived.

– rule (DLET1)
We know that e′s = dlet x̂ = e1 whenG in e

′
2

and ρ′ ` C, e2 → C ′, e′2 with ρ′ =
ρ[G.e1, ρ(x̂)/x̂]. By Lemma A.1 Γ ` ρ : K ′

with K ′ = Kx̂, (x̂, τ, ∆′) and by Lemma A.2
we know that Γ ` ρ′ : K ′. So by induc-
tion hypothesis Γ;K ′ ` e′2 : τ . H ′ with
C,H →∗ C ′, H for some H v H ′. The judge-
ment Γ;K ` e′s : τ . H ′ follows by applying
the rule (TDLET).

– rule (DLET2)
We know that e′s = v and ρ `
C, es → C, e′s. By hypothesis we know that
Γ;Kx̂, (x̂, τ1, ∆′) ` v : τ . H and by the
Lemma A.13 we have Γ;K ` v : τ . H and
the thesis follows by choosing vacuously.

• rule (TDVAR)
By the premise of rule (TDVAR) K(x̂) = (τ, ∆),
where ∆ =

⊗
i∈{1,...,n} ask Gi.Hi ⊗ fail . We have

to prove that if ρ ` C, x̂ → C ′, e then Γ;K `
e : τ . H ′. By the premises of the rule we know
that ρ(x̂) = G1.e1, . . . , Gn.en and that there exists a
j ∈ {1, . . . , n} such that e = ej . Since Γ ` ρ : K we
have that for all i ∈ {1, . . . , n} it holds Γ,−→yi : −→τi `
ei : τ.Hi where γ(Gi) = −→yi : −→τi and by Lemma A.9
we conclude that Γ;K ` ei{

−→
ti /
−→yi} : τ . Hi for all

i ∈ {1, . . . , n}. The thesis holds from Lemma A.14.
• rule (TAPP)

By the premise of rule (TAPP) we know that Γ;K `
e1 : τ1

K′|H3−−−−→ τ2 . H1, Γ;K ` e2 : τ1 . H2 and
K ′ v K hold. There are three rules only may drive
ρ ` C, es → C ′, e′s.

– rule (APP1)
We know that e′s = e′1 e2. By using the in-

duction hypothesis we have that Γ;K ` e′1 :

τ1
K′|H3−−−−→ τ2 . H

′
1 with C,H1 →∗ C ′, H for

some H v H ′1. By the (TAPP) rule we have
Γ;K ` e′s : τ2.H

′
1·H2·H3 and by Lemma A.14

and Property A.17 we can conclude the thesis.
– rule (APP2)

We know that e′s = (λfx.e) e2. By using
Lemma A.11 we have Γ;K ` λfx.e :

τ1
K′|H3−−−−→ τ2 . ε and by the induction hypoth-

esis Γ;K ` e′2 : τ1 . H
′
2 with C, H2 →∗

C ′, H for some H v H ′2. By (TAPP) Γ;K `
e′s : τ2 . ε · H ′2 · H3 holds. By Property A.15
ε · H ′2 · H3 = H ′2 · H3 holds, and also we
have H1 = (ε +

∑1
i=1Hi) by Lemma A.12.

So we have C,H1 ·H2 ·H3 → C, ε ·H2 ·H3 →
C,H2 · H3 →∗ H · H3 and the thesis follows
by Property A.17.

– rule (APP3)
We know that e′s = e{v/x, (λfx.e)/f} and
ρ ` C, es → C, e′s. We prove that Γ;K `
e{v/x, (λfx.e)/f} : τ2 . H3. By Lemma A.11

we know that Γ;K ` e1 : τ1
K′|H3−−−−→ τ2 . ε

and Γ;K ` e2 : τ1 . ε. By hypothesis and
Lemma A.8 we conclude that Γ, x : τ1, f :

τ1
K′|H3−−−−→ τ2;K ` e : τ2 . H3. By Lemma A.9

we have that Γ;K ` e{v/x, (λfx.e)/f} :
τ2 . H3. The thesis follows because it holds
Hj = (ε +

∑n
i=1Hi) for j ∈ {1, 2} by

Lemma A.12 and because C,H1 · H2 · H3 →
C, ε·H2 ·H3 → C,H2 ·H3 → C, ε·H3 → C,H3.

• rule (TLET)
By the premise of rule (TLET) we know that Γ;K `
e1 : τ1 . H1 and Γ, x : τ1;K ` e2 : τ2 . H2 hold.
There are only two rules by which ρ ` C, es →
C ′, e′s can be derived.

– rule (LET1)
We know that e′s = let x = e′1 in e2. By the
induction hypothesis we have that Γ;K ` e′1 :
τ1 .H

′
1 and C,H1 →∗ C ′, H for some H v H ′1

and Γ;K ` e′s : τ2.H
′
1 ·H2. The thesis follows

by Lemma A.14 and Property A.17.
– rule (LET2)

We know that e′s = e2{v/x}, ρ ` C, es →
C, e′s, Γ;K ` v : τ1 . H1 and Γ, x : τ1;K `
e2 : τ2 .H2. By Lemma A.11 Γ;K ` v : τ1 . ε
and by Lemma A.9 Γ;K ` e2{v/x} : τ2 . H2.
By Lemma A.12 we have H1 = (ε+

∑n
i=1Hi),

so C,H1 ·H2 → C, ε ·H2 → C,H2 proving the
thesis.

• rule (TIF)
By the premise of rule (TIF) we know that Γ;K `
e1 : bool . H1, Γ;K ` e2 : τ . H2 and Γ;K `
e3 : τ .H3 hold. There are three rules only by which
ρ ` C, es → C ′, e′s can be derived.

– rule (IF1)
We know that e′s = if e′1 then e2 else e3. By
using the induction hypothesis we have that

32

Γ;K ` e′1 : bool . H ′1 with C, H1 →∗ C ′, H
for some H v H ′1. So by rule (TIF) we con-
clude that Γ;K ` e′s : τ . H ′1 · (H2 + H3)
and the thesis follows by Lemma A.14 and
Property A.17.

– rule (IF2)
We know that e′s = e2, ρ ` C, es → C, e′s and
Γ;K ` e2 : τ . H2. By Lemma A.12 we know
H1 = (ε+

∑n
i=1Hi), so the thesis is immediate

because C,H1 ·(H2+H3)→ C, ε·(H2+H3)→
C,H2.

– rule (IF3)
Similar to rule (IF2)

• rule (TSUB)
By the premise of rule (TSUB) we know Γ;K `
es : τ ′ . H ′, τ ′ ≤ τ and Hs = H ′ + H . Then
by the induction hypothesis Γ;K ` e′s : τ ′ . H ′1,
and C, H ′ →∗ C ′, H ′2 for some H ′2 v H ′1. By
applying the (TSUB) rule with H ′s = H ′1 + H we
have Γ;K ` e′s : τ ′ . H ′s. The thesis follows because
C,Hs = C,H ′+H → C,H ′ →∗ C ′, H ′2 and because
H ′2 v H ′1 v H ′s.

Proposition 6.3 (Over-approximation). Let es be a closed
expression. If Γ;K ` es : τ . Hs ∧ ρ ` C, es →∗ C ′, e′,
for some ρ such that Γ ` ρ : K , then Γ;K ` e′ : τ . H ′s and
there exists a sequence of transitions C, Hs →∗ C ′, H ′ for some
H ′ v H ′s.

Proof. An easy inductive reasoning on the length of the
computation then suffices to prove the statement by using
Theorem 6.1.

Theorem 6.2 (Progress). Let es be a closed expression such that
Γ;K ` es : τ . Hs; and let ρ be a dynamic environment such
that dom(ρ) includes the set of parameters of es, and such that
Γ ` ρ : K . If ρ ` C, es 9 ∧ C, Hs 9+ C ′, fail then es is a
value.

Proof. By induction on the depth of the typing derivations
and then by cases on the last rule applied. The cases
(TCONST), (TFACT), (TABS), (TVARIATION) are immediate
since es is a value. The case (TVAR) cannot occur because
es is closed with respect to identifiers. So we assume that es
is not a value and it is stuck in C .

• rule (TIF) es = if e1 then e2 else e3

If es is stuck, then it is only the case that e1 is
stuck. By induction hypothesis this can occur only
when e1 is a value. Since Γ;K ` e1 : bool . H1

by our hypothesis and v = true or v = false
by Lemma A.7(1), either rule (IF2) or (IF3) applies,
contradiction.

• rule (TLET) es = let x = e1 in e2

If es is stuck, then it is only the case that e1 is stuck.
By induction hypothesis this can occur only when e1

is a value, hence (LET2) rule applies, contradiction.
• rule (TTELL) es = tell(e)

If es is stuck, then it is only the case that e is stuck.
By induction hypothesis this can occur only when e

is a value v and by Lemma A.7(4) v = F , so the rule
(TELL2) applies, contradiction.

• rule (TRETRACT) es = retract(e)
Similar to the (TTELL) case.

• rule (TAPPEND) es = e1 ∪ e2

If es is stuck then there are only two cases: (1)
e1 is stuck; (2) e1 is a value and e2 is stuck. If
e1 is stuck by induction hypothesis e1 is a value
and by Lemma A.7(3) e1 = (x){V a}. If e2 reduces,
rule (VAPPEND2) applies, contradiction. If e2 is stuck
we are in case (2). By induction hypothesis e2 is a
value and Lemma A.7(3) e2 = (y){V a}, hence, rule
(VAPPEND3) applies, contradiction.

• rule (TSUB)
Straightforward by induction hypothesis

• rule (TAPP) es = e1 e2

If es is stuck then there are only two cases: (1) e1

is stuck; (2) e1 is a value and e2 is stuck. If e1 is
stuck by induction hypothesis e1 is a value and by
Lemma A.7(2) e1 = λfx.e. If e2 reduces, rule (APP2)
applies, contradiction. If e2 is stuck we are in case
(2). By induction hypothesis e2 is a value, hence, rule
(APP3) applies, contradiction.

• rule (TDVAR) es = x̂
If es is stuck we can have two cases only. The first
case is that x̂ /∈ dom(ρ). But this is not possible
because DFV (es) ⊆ dom(ρ) by our hypothesis. The
second case is that ρ(x̂) = V a and dsp(C, V a) is not
defined. But this is not possible because C, Hs 9?

C ′, fail by our hypothesis, so the dsp(C, V a) is de-
fined and (DVAR) rule applies, contradiction.

• rule (TVAPP) es = #(e1, e2)
If es is stuck then there are only two cases: (1) e1

is stuck; (2) e1 is a value and e2 is stuck. If e1 is
stuck by induction hypothesis e1 is a value and by
Lemma A.7(3) e1 = (x){V a}. If e2 reduces, rule
(VAAPP2) applies, contradiction. If e2 is stuck we are
in case (2). By induction hypothesis e2 is a value,
hence, rule (VAAPP3) applies, contradiction. If both
e1 and e2 are values: trivial.

• rule (TDLET) es = dlet x̂ = e1 whenG in e2

If es is stuck, then it is only the case that e2

is stuck. By the premise of (TDLET) rule and by
Lemma 6.1 Γ ` ρ′ : K ′ with ρ′ = ρ[G.e, ρ(x̂)/x̂] and
K ′ = Kx̂, (x̂, τ,∆

′). Since DFV (e2) ⊆ DFV (es) ⊆
dom(ρ) ⊆ dom(ρ′) we can apply the induction hy-
pothesis so e2 is a value. In this case the (DLET2) rule
applies, contradiction.

Theorem 6.4 (Correctness). Let es be a closed expression such
that Γ;K ` es : τ . Hs; let ρ be a dynamic environment such
that dom(ρ) includes the set of parameters of es, and that Γ `
ρ : K ; finally let C be a context such that C,Hs 9+ C ′, fail .
Then either the computation of es terminates yielding a value
(ρ ` C, es →∗ C ′′, v) or it diverges, but it never gets stuck.

(By contradiction). Assume that ρ ` C, es →i C ′′, eis 9 for
some i ∈ N where eis is a non-value stuck expression. By
Proposition 6.3 we have Γ;K ` eis : τ . Hi

s and C,Hs →?

C ′′, Hi
s, and since C,Hs 9 C ′, fail we have also C,Hi

s 9
C ′, fail . Then, Theorem 6.2 suffices to show that eis is a value
(contradiction).

33

PROPERTIES OF THE LOAD TIME ANALYSIS

Specification of the Analysis
In this subsection we prove some properties about the load
time analysis in Section 7, in particular we prove Theo-
rems 7.1, 7.2 . Firstly, we define the complete lattice of the
analysis estimate by ordering ℘(Context) by inclusion and
by exploiting the standard construction of cartesian product
and functional space.

Definition A.2. Given two analysis estimates (Σ1
◦,Σ

1
•) and

(Σ2
◦,Σ

2
•) we say (Σ1

◦,Σ
1
•) v (Σ2

◦,Σ
2
•) iff Σ1

◦(l) ⊆ Σ2
◦(l) and

Σ1
•(l) ⊆ Σ2

•(l) for all l ∈ Lab, where ⊆ is the order of
℘(Context). Furthermore, we define (Σ1

◦,Σ
1
•) u (Σ2

◦,Σ
2
•) =

(Σ1
◦ u Σ2

◦,Σ
1
• u Σ2

•) = (λl.Σ1
◦(l) ∩ Σ2

◦(l), λl.Σ
1
•(l) ∩ Σ2

•(l)).

By exploiting standard lattice theory results it is straight-
forward prove that analysis estimates are a complete lattice.
In the following we denote the top of this lattice with
(Σ>,Σ>).

Lemma A.18.

1) Let be (Σ>,Σ>) the top of lattice of the analysis esti-
mates, then (Σ>,Σ>) � H l for all H l

2) Let be (Σ1
◦,Σ

1
•) and (Σ2

◦,Σ
2
•), if (Σ1

◦,Σ
1
•) � H l and

(Σ2
◦,Σ

2
•) � H l then (Σ1

◦ u Σ2
◦,Σ

1
• u Σ2

•) � H l

Proof. The thesis can be proved by induction on the struc-
ture of H l and by using the analysis rules. The proof
is quite standard and below we only discuss the case
H l = (H l1

1 ·H
l2
2)l.

1) By induction hypothesis we know that (Σ>,Σ>) �
H li
i for i ∈ {1, 2}. By definition of Σ>, it holds that
∀l′ ∈ LabΣ>(l′) = Context. Then, it holds Σ>(l) ⊆
Σ>(l1) and Σ>(l1) ⊆ Σ>(l2) and Σ>(l2) ⊆ Σ>(l).
These inclusions satisfy the premise of the rule
(ASEQ1), then we conclude (Σ>,Σ>) � H l. The
others cases follows the same schema.

2) From hypothesis (Σ1
◦,Σ

1
•) � H l and the premise

of rule (ASEQ1), we know that Σ1
◦(l) ⊆ Σ1

◦(l1),
Σ1
•(l1) ⊆ Σ1

◦(l2), Σ1
•(l2) ⊆ Σ1

•(l) and that Σ2
◦(l) ⊆

Σ2
◦(l1), Σ2

•(l1) ⊆ Σ2
◦(l2), Σ2

•(l2) ⊆ Σ2
•(l). Since ∩ is

monotonic with respect ⊆ it holds Σ1
◦(l) ∩ Σ2

◦(l) ⊆
Σ1
◦(l1) ∩ Σ2

◦(l1), Σ1
•(l1) ∩ Σ2

•(l1) ⊆ Σ1
◦(l2) ∩ Σ2

◦(l2),
Σ1
•(l2) ∩ Σ2

•(l2) ⊆ Σ1
•(l)∩ ⊆ Σ2

•(l). Then by the
induction hypothesis and by the above inclusions
we satisfy the premise of rule (ASEQ1) and we
conclude (Σ1

◦ u Σ2
◦,Σ

1
• u Σ2

•) � H l.

By exploiting the above two lemmata we can prove

Theorem 7.1 (Existence of solutions). Given H l and an initial
context C , the set {(Σ◦,Σ•) | (Σ◦,Σ•) � H l} of the acceptable
estimates of the analysis for H l and C is a Moore family; hence,
there exists a minimal valid estimate.

Proof. We need to show that given a set of solutions Y =
{(Σi◦,Σi•) | i ∈ {1, . . . , n}} ⊆ {(Σ◦,Σ•) | (Σ◦,Σ•) � H l},
uY ∈ {(Σ◦,Σ•) | (Σ◦,Σ•) � H l}. By applying n + 1 times
the Lemma A.18 we have that (Σ>,Σ>) u (Σ1

◦,Σ
1
•) u · · · u

(Σn◦ ,Σ
n
•) � H l holds.

Two prove the subject reduction we need the following
definition and two lemmata.

Definition A.3 (Immediate subterm). Let H and H1 be
history expressions (for simplicity we ignore labels). We say
that H1 is an immediate subterm of H if H = H1 + H2,
H = H2 + H1, H = H1 · H2, H = H2 · H1, H = µh.H1,
H = askG.H1 ⊗∆.

Lemma A.19 (Pre-substitution). Let H l, H l1
1 and H l2

2 be
history expressions such that H l1

1 is an immediate subterm of
H l; let (Σ◦,Σ•) � H l, (Σ◦,Σ•) � H l1

1 and (Σ◦,Σ•) � H l2
2 ,

for some (Σ◦,Σ•).
If Σ◦(l1) ⊆ Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) then (Σ◦,Σ•) �
H l[H l2

2 /H
l1
1].

Proof. The proof is by cases on the structure of H l.

• case �, εl, tell F l, fail l, retract F l, hl
straightforward

• case H l = (H l1
1 +H l3

3)l

From the hypothesis and from the premise of rule
(ASUM) it holds Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the
rule (ASUM) with the new inclusions we conclude
(Σ◦,Σ•) � (H l2

2 +H l3
3)l

• case H l = (H l3
3 +H l1

1)l

Similar to the previous case.
• case H l = (H l1

1 ·H
l3
3)l

From the hypothesis and by the premise of rule
(ASEQ1) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l3). So by applying the
rule (ASEQ1) with the new inclusions we conclude
(Σ◦,Σ•) � (H l2

2 ·H
l3
3)l.

• case H l = (H l3
3 ·H

l1
1)l

From the hypothesis and by the premise of rule
(ASEQ1) we have Σ•(l3) ⊆ Σ◦(l1) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the
rule (ASEQ1) with the new inclusions we conclude
(Σ◦,Σ•) � (H l3

3 ·H
l1
1)l.

• case H l = (µh.H l1
1)l

From the hypothesis and from the premise of rule
(AREC) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the rule
(AREC) with the new inclusions we have (Σ◦,Σ•) �
(µh.H l2

2)l

• case H l = (askG.H l1
1 ⊗∆l3)l

From the hypothesis and from the premise of rule
(AASK1) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by the rule (AASK1)
with the new inclusions we conclude (Σ◦,Σ•) �
(askG.H l2

2 ⊗∆l3)l

Lemma A.20 (Substitution). Le H l, H l1
1 and H l2

2 be history
expressions such that H l1

1 is a subterm of H l; let (Σ◦,Σ•) � H l,
(Σ◦,Σ•) � H l1

1 and (Σ◦,Σ•) � H l2
2 , for some (Σ◦,Σ•).

If Σ◦(l1) ⊆ Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) then (Σ◦,Σ•) �
H l[H l2

2 /H
l1
1].

Proof. Since H l1
1 is subterm of H , there exists then another

subterm of H , say H l3
3 , such that H l1

1 is an immediate
subterm of H l3

3 . Since (Σ◦,Σ•) � H l, there exists then a
subderivation with conclusion (Σ◦,Σ•) � H l3

3 . Since H l1
1

is an immediate subterm of H l3
3 there exists another sub-

derivation with conclusion (Σ◦,Σ•) � H l1
1 . So by applying

34

Lemma A.19, we have (Σ◦,Σ•) � H l3
3 [H l2

2 /H
l1
1]. Since

our analysis is defined on the history expressions syntax
and since Σ◦(l3) and Σ•(l3) have not changed, we can
reuse the same steps used for (Σ◦,Σ•) � H l to prove
(Σ◦,Σ•) � H l[H l2

2 /H
l1
1]

Theorem 7.2 (Subject Reduction). Let H l be a closed history
expression such that (Σ◦,Σ•) � H l.
If for all C ∈ Σ◦(l) such that C,H l → C ′, H ′l

′
then (Σ◦,Σ•) �

H ′l
′

and Σ◦(l) ⊆ Σ◦(l
′) and Σ•(l

′) ⊆ Σ•(l).

Proof. By induction on the depth of the analysis derivation
and then by cases on the last rule applied.

• rule (ANIL)
The statement vacuously holds.

• rule (AASK2)
The statement vacuously holds.

• rule (AEPS)
We know that in this case C, εl → C, �, then the
statement vacuously holds.

• rule (ATELL)
We know that in this case C, tell F l → C ∪ {F}, �,
then the statement vacuously holds.

• rule (ARETRACT)
Similar to (ATELL) rule

• rule (ASEQ1)
In this case we have H = (H l1

1 · H
l2
2)l and H ′ =

(H l3
3 ·H

l2
2)l. We have to prove (Σ◦,Σ•) � (H l3

3 ·H
l2
2)l,

Σ◦(l) ⊆ Σ◦(l) (trivial) and Σ•(l) ⊆ Σ•(l) (trivial).
By (ASEQ1) premise it holds that (Σ◦,Σ•) � H l1

1 ,
(Σ◦,Σ•) � H l2

2 , Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ◦(l). By the premise of the semantic
rule it holds C,H1 → C ′, H l3

3 . The by the induction
hypothesis we have (Σ◦,Σ•) � H l3

3 , Σ◦(l1) ⊆ Σ◦(l3)
and Σ•(l3) ⊆ Σ•(l1). So

Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l3) =⇒ Σ◦(l) ⊆ Σ◦(l3)

Σ•(l3) ⊆ Σ•(l1) ⊆ Σ◦(l2) =⇒ Σ•(l3) ⊆ Σ◦(l2)

Then, by applying (ASEQ1) rule (Σ◦,Σ•) � (H l3
3 ·

H l2
2)l holds.

• rule (ASEQ2)
In this case we know H l = (� · H l2

2)l and H ′l
′

=
H l2

2 . The thesis is straightforward by the premise of
(ASEQ2) rule.

• rule (ASUM)
In this case we haveH l = (H l1

1 +H l2
2)l and two cases

for H ′l
′
:

1) case H ′l
′

= H
′l′1
1 . By semantic rule we know

C,H l1
1 → C ′, H

′l′1
1 , and by induction hypoth-

esis (Σ◦,Σ•) � H
′l′1
1 , Σ◦(l1) ⊆ Σ◦(l

′
1) and

Σ•(l
′
1) ⊆ Σ•(l1). Since

Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l
′
1) =⇒ Σ◦(l) ⊆ Σ◦(l

′
1)

Σ•(l
′
1) ⊆ Σ•(l1) ⊆ Σ◦(l) =⇒ Σ•(l

′
1) ⊆ Σ◦(l)

the thesis holds.
2) case H ′l

′
= H

′l′2
2 . Similar to case (1).

• rule (AASK1)
In this case we have H l = (askG.H l1

1 ⊗ ∆l2)l and
two cases for H ′l

′
:

1) case H ′l
′

= H l1
1 . In this case we know C � G

and by the premise of (AASK1) rule we triv-
ially (Σ◦,Σ•) � H l1

1 , Σ◦(l) ⊆ Σ◦(l1) and
Σ•(l1) ⊆ Σ•(l).

2) case H ′l
′

= ∆l2 . Similar to case (1) but we
know C 2 G.

• rule (AREC)
In this case we know H l = (µ.H l1

1)l and
H ′l

′
= H l1

1 [(µ.H l1
1)l/h]. By rule premise we know

(Σ◦,Σ•) � H l1
1 , Σ◦(l) ⊆ Σ◦(l1) and Σ•(l1) ⊆ Σ•(l).

We have two cases

1) h does not occur in H1. In this case the thesis
trivially follows since H l1

1 [(µ.H l1
1)l/h] = H1.

2) h occurs n times with labels l1, . . . , ln.
Since (Σ◦,Σ•) � H l1

1 and since our analy-
sis rules are defined on the syntax of his-
tory expressions, there exists a subderivation
of (Σ◦,Σ•) � H l1

1 proof with conclusion
(Σ◦,Σ•) � hl

i

. By the premise of the rule
(AVAR) we know Σ◦(li) ⊆ Σ◦(l) and Σ•(l) ⊆
Σ•(li). So by applying the Lemma A.20 n-
times, we have (Σ◦,Σ•) � H l1

1 [(µ.H l1
1)l/hl

i

]
for i ∈ {1, . . . , n} and Σ◦(l) ⊆ Σ◦(l1) and
Σ•(l1) ⊆ Σ•(l) follow by the premise of rule
(AREC).

Analysis algorithm

Here, we present some properties about our constraints and
analysis algorithm. In particular we prove the Theorems 7.3
and 7.4.

The following lemma establishes the height of our prop-
erty domain ℘(Context∗∪{>}). Recall that Context∗ is the
set of all contexts may be generated from the initial context
by a given history expression.

Lemma A.21. The height of the complete lattice ℘(Context∗ ∪
{>}) is #Context∗ + 1.

Proof. The longest chains of ℘(Context∗ ∪{>}) can be built
iteratively from the bottom element ∅ by adding a element
of Context∗ ∪ {>} which is not in the previous element
of the chain. These kind of chains are #Context∗ + 1 in
length.

Definition A.4 (History expression size). Given a history
expression H its size is given by the function size : H → N
inductively defined as

size(�) = size(εl) = size(tell F l) = size(retract F l) =

size(faill) = size(hl) = 1

size((H l1
1 ·H

l2
2)l) = size((H l1

1 +H l2
2)l) =

size(H l1
1) + size(H l2

2) + 1

size((ask G.H l1 ·∆l2)l) = size(H l1
1) + size(∆l2) + 1

size((µh.H l1)l) = size(H l1) + 1

The constraints generated by C [] enjoy the following
properties. The first one gives us an upper bound to the

35

size and to the number of variables of left-hand-size of a
constraint.

Lemma A.22. Let H a history expression and let C [H] be the
generated constraints for H . Then for all E ⊆ X ∈ C [H] the size
of E is at most 3 and the number of variables in E, i.e. vars(E),
is at most 2.

Proof. By Definition 7.5 it is easy to see that the left-hand-
size of all generated constraints can be a variable X , a term
X � F for some fact F and � ∈ {t, \}, a term X�G and a
term X1�G ⇒ X2 with � ∈ {�, 2} for some G and X1 6=
X2. The thesis follows by considering the case X1�G ⇒
X2.

The second property says that the function C [] gener-
ates a linear number of constraints with respect to the size
of the history expression.

Lemma A.23. Let H
lp
p be a history expression such that

size(Hp) = n, then the cardinality of C [H] is at most 4n+ 1.

Proof. By induction over the structure of Hp we prove that
#(C [H] \ {{C} ⊆ Σ̂◦(lp)}) is at most 4n. So the thesis of
the lemma trivially follows.

• cases H = �, H = εl, H = hl, H = tell F l,
H = retract F l, H = faill

In this case #C [H] ∈ {0, 1, 2} and size(H) = 1,
hence, it holds #C [H] ≤ 4.

• case H = (H1 ·H2)l

We have size(H) = n = n1 + n2 + 1 where ni =
size(Hi) for i ∈ {1, 2}. By induction hypothesis it
holds #C [Hi] ≤ 4ni for i ∈ {1, 2}. By Definition 7.5
we have
#C [H] = #C [H1] + #C [H2] + 3 ≤ 4n1 + 4n2 + 3
≤ 4(n1 + n2 + 1) = 4n

• case H = (H1 +H2)l

Similar to that ofH = (H1 ·H2)l except for #C [H] =
#C [H1] + #C [H2] + 4.

• case H = (ask G.H ⊗ ∆)l

Similar to that ofH = (H1 ·H2)l except for #C [H] =
#C [H] + #C [∆] + 4.

• case H = (µh.H1)l

We have size(H) = n = n1 + 1 where
n1 = size(H1). By induction hypothesis it holds
#C [H1] ≤ 4n1. By Definition 7.5 we have

#C [H] = #C [H1]+2 ≤ 4n1+2 ≤ 4(n1+1) = 4n

Theorem 7.3. Let H be a history expression and let (Σ◦,Σ•) be
an analysis estimate, then

(Σ◦,Σ•) � H ⇐⇒ (Σ◦,Σ•) �sc C [H]

Proof. The proof is in two parts. In the first part, we prove

(Σ◦,Σ•) � H =⇒ (Σ◦,Σ•) �sc C [H]

by induction over the structure of history expression.

• case H = �
Trivial since C [�] = ∅ and (Σ◦,Σ•) �sc ∅.

• case H = εl

We need to prove (Σ◦,Σ•) �sc {Σ̂◦(l) ⊆
Σ̂•(l)}, i.e. by Definitions 7.6 JΣ̂◦(l)K(Σ◦,Σ•) ⊆
JΣ̂•(l)K(Σ◦,Σ•). The thesis follows from the premise
of the rule (AEPS).

• case H = tell F l

We have that (Σ◦,Σ•) �sc {Σ̂◦(l) t F ⊆ Σ̂•(l)} is
equivalent to JΣ̂◦(l)tF K(Σ◦,Σ•) ⊆ JΣ̂•(l)K(Σ◦,Σ•)
by Definition 7.6, {C ∪ {F} | C ∈ Σ◦(l)} ⊆ Σ•(l) .
The thesis follows from applying the premise of the
rule (ATELL).

• case H = retract F l

Similar to the case H = tell F , substitute Σ̂◦(l) \ F
for Σ̂◦(l) t F and C ∪ {F} for C \ {F}.

• case H = (H l1
1 ·H

l2
2)l

We need to prove (Σ◦,Σ•) �sc C [H1] ∪ C [H2] ∪
{Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}.
By the premise of rule (ASEQ1) we know that it
holds (Σ◦,Σ•) � Hi for i = 1, 2; so by applying the
induction hypothesis we have (Σ◦,Σ•) �sc C [Hi] for
i = 1, 2. It remains to prove (Σ◦,Σ•) �sc {Σ̂◦(l) ⊆
Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}, i.e. by Def-
initions 7.6 and 7.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ•(l). These inequalities hold by the
premise of the rule (ASEQ1), so the thesis follows.

• case H = (H l1
1 +H l2)l

We need to prove (Σ◦,Σ•) �sc C
[
H l1

1

]
∪

C
[
H l2

2

]
∪ {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) ⊆

Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By the premise of
the rule (ASUM) we know (Σ◦,Σ•) � Hi for
i = 1, 2; by applying the induction hypothesis
(Σ◦,Σ•) �sc C

[
H li
i

]
holds for i = 1, 2. It remains

to prove (Σ◦,Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆
Σ̂•(l), Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By applying
Definitions 7.6 and 7.4, we have the inequalities
Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Σ◦(l) ⊆ Σ◦(l2) and
Σ•(l2) ⊆ Σ•(l). These inequalities are true by the
premise of the rule (ASUM).

• case H = hl

Knowing K(h) = (µh.H)l1 we need to prove
(Σ◦,Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}, i.e.
by applying Definitions 7.6 and 7.4 Σ◦(l) ⊆ Σ◦(l1),
Σ•(l1) ⊆ Σ•(l)

• case H = faill

By Definitions 7.6 and 7.4 (Σ◦,Σ•) �sc {>} ⊆ Σ̂•(l)
holds iff {>} ⊆ Σ•(l). The thesis follows from the
premise of the rule (AASK2).

• case H = (µh.H l1
1)l

We need to prove (Σ◦,Σ•) �sc C [H] ∪ {Σ̂◦(l) ⊆
Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}. By the premise of the
rule (AREC) we know (Σ◦,Σ•) � H1 holds, so
by applying the induction hypothesis we have that
(Σ◦,Σ•) �sc C [H1] holds too. It remains to prove
(Σ◦,Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}, i.e.
by definitions 7.6 and 7.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆
Σ•(l). These inequalities hold by the premise of the
rule (AREC).

• case H = (ask G.H l1
1 ⊗∆l2)l

36

We need to prove (Σ◦,Σ•) �sc C [H]∪C [∆]∪{Σ̂◦(l) �
G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) � G ⇒ Σ̂•(l1) ⊆
Σ̂•(l), Σ̂◦(l) 2 G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒
Σ̂•(l2) ⊆ Σ̂•(l)}. By the premise of the rule (AASK1)
we know (Σ◦,Σ•) � H and (Σ◦,Σ•) � ∆ hold,
so by applying the induction hypothesis we have
(Σ◦,Σ•) �sc C [H] and (Σ◦,Σ•) �sc C [∆]. It remains
to prove (Σ◦,Σ•) �sc {Σ̂◦(l) � G ⇒ Σ̂◦(l) ⊆
Σ̂◦(l1), Σ̂◦(l) � G ⇒ Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) 2 G ⇒
Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒ Σ̂•(l2) ⊆ Σ̂•(l)}, i.e.
by Definitions 7.6 and 7.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆
Σ•(l) if at leaf aC ∈ Σ◦(l) satisfiesG, Σ◦(l) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ•(l) if at least a C ∈ Σ◦(l) does not
satisfy G. The thesis follows by the premise of the
rule (AASK1).

In the second part, we prove by structural induction over
H that

(Σ◦,Σ•) �sc C [H] =⇒ (Σ◦,Σ•) � H

• case H = �
trivial since the rule (ANIL) is an axiom.

• case H = εl

By our assumption and by Definitions 7.6 and 7.4 we
know Σ◦(l) ⊆ Σ•(l), so by applying the rule (AEPS)
we have (Σ◦,Σ•) � εl.

• case H = tell F l

By our assumption and by Definitions 7.6 and 7.4
we have {C ∪ {F} | C ∈ Σ◦(l)} ⊆ Σ•(l). So the
premise of the rule (ATELL) is satisfied and it holds
(Σ◦,Σ•) � tell F l.

• case H = retract F l

Similar to the case of H = tell F l

• case H = faill

By our assumption and by Definitions 7.6 and 7.4 we
know {>} ⊆ Σ•(l), so by applying the rule (AASK2)
we have (Σ◦,Σ•) � faill.

• case H = hl

By our assumption and by Definitions 7.6 and 7.4
knowing K(h) = (µh.H)l1 we have Σ◦(l) ⊆ Σ•(l1)
and Σ•(l1) ⊆ Σ•(l). The premise of the rule (AVAR)
thus is satisfied and we conclude (Σ◦,Σ•) � hl.

• case H = (H l1
1 ·H

l2
2)l

By our assumption we know (Σ◦,Σ•) �sc C [Hi] for
i = 1, 2 and (Σ◦,Σ•) �sc {Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆
Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By induction hypothesis we
have (Σ◦,Σ•) � Hi for i = 1, 2 hold. Also by Defi-
nition 7.4 we know that inequalities Σ◦(l) ⊆ Σ◦(l1),
Σ•(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l) hold. So the premise
of the rule (ASEQ1) is satisfied and we conclude the
thesis.

• case H = (H l1
1 +H l2

2)l

By our assumption we know (Σ◦,Σ•) �sc C [Hi] for
i = 1, 2 and (Σ◦,Σ•) �sc {Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆
Σ̂•(l), Σ̂◦(l) ⊆ Σ̂•(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By induction
hypothesis we have (Σ◦,Σ•) � Hi for i = 1, 2 hold.
Also by Definition 7.4 we know that inequalities
Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Σ◦(l) ⊆ Σ◦(l2),
Σ•(l2) ⊆ Σ•(l) hold. So the premise of the rule
(ASUM) is satisfied and the thesis holds.

• case H = (µ.H l1
1)l

We know that (Σ◦,Σ•) �sc C [H1] and (Σ◦,Σ•) �sc
{Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)} hold by our
assumption. By induction hypothesis we have
(Σ◦,Σ•) � H1 and by Definition 7.4 we have Σ◦(l) ⊆
Σ◦(l1), Σ•(l1) ⊆ Σ•(l). The thesis follows by the rule
(AREC).

• case H = (ask G.H l1
1 ⊗∆l2)l

By our assumption we know (Σ◦,Σ•) �sc C [H1],
(Σ◦,Σ•) �sc C [∆], (Σ◦,Σ•) �sc {Σ̂◦(l) � G ⇒
Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) � G ⇒ Σ̂•(l1) ⊆
Σ̂•(l), Σ̂◦(l) 2 G ⇒ Σ̂•(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒
Σ̂•(l2) ⊆ Σ̂•(l)}. By applying induction hypoth-
esis we have (Σ◦,Σ•) � H1 and (Σ◦,Σ•) � ∆.
Also by Definition 7.4 we know that inequalities
A◦ ⊆ Σ◦(l1), A• ⊆ Σ•(l) where A◦ = Σ◦(l) and
A• = Σ•(l1) if there exists a C ∈ Σ◦(l) otherwise
A◦ = A• = ∅; also, B◦ ⊆ Σ◦(l2) and B• ⊆ Σ•(l)
where B◦ = Σ◦(l) and B• = Σ•(l2) if there exists a
C ∈ Σ◦(l) otherwise B◦ = B• = ∅. So the premise of
the rule (AASK1) is satisfied and the thesis holds.

Theorem 7.4. Let H be a history expression of size n and let h
be the height of the complete lattice ℘(Context∗ ∪ {>}). The
algorithm in Figure 12 terminates and computes the minimal
solution of the constraints C [H] in time O(h · n).

Proof. Since our algorithm is an instance of the general
schema displayed in Table 6.1 of [70], the termination and
the correctness follows from Lemma 6.4 of [70]. Further-
more, they prove that the time complexity of the general
schema is O(h ·M ·N) where h is the height of the property
lattice; M is an upper bound to the size of the left-hand-size
of constraints; and N is the number of constraints. In our
case we have M = 3 by Lemma A.22 and N = O(n) by
Lemma A.23, thus the complexity is O(h · n). Moreover, by
Lemma A.21 we have that h = O(#Context∗), hence the
overall complexity becomes O(#Context∗ · n).

As said in Section 7 we conjecture that #Context∗ is a
function f(n) of the size of the given history expression and
we plan either to compute f(n) or give a good upper bound
to its value.

	Introduction
	Adaptivity in Programming Languages: A Brief Survey
	The Design of MLCoDa
	Representing the context
	Specifying adaptation
	Programming and execution models

	A Guided Tour of MLCoDaFeatures
	A Multimedia Guide for Museums
	The Context
	The application behaviour
	Context-dependent binding
	Behavioural variations
	Context updates

	Adaptation failures

	The Syntax and the Semantics of MLCoDa
	Syntax
	Semantics of MLCoDa

	Type and Effect System
	History Expressions
	Types and Effects
	Type judgements
	Typing rules
	Formal results

	load time Analysis
	Specification of the Analysis
	Validity and Viability

	Analysis Algorithm
	Constraint generation
	Constraint solution

	A Prototypical Compiler
	Concluding Remarks
	Discussion and Future Work

	References
	Biographies
	Pierpaolo Degano
	Gian Luigi Ferrari
	Letterio Galletta

	Appendix

