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a b s t r a c t

This paper introduces a framework for solving time-autonomous nonlinear infinite horizon optimal
control problems, under the assumption that all minimizers satisfy Pontryagin’s necessary optimality
conditions. In detail, we use methods from the field of symplectic geometry to analyze the eigenvalues
of a Koopman operator that lifts Pontryagin’s differential equation into a suitably defined infinite
dimensional symplectic space. This has the advantage that methods from the field of spectral analysis
can be used to characterize globally optimal control laws. A numerical method for constructing optimal
feedback laws for nonlinear systems proceeds by computing the eigenvalues and eigenvectors of a
matrix that is obtained by projecting the Pontryagin–Koopman operator onto a finite dimensional
space. We illustrate the effectiveness of this approach by computing accurate approximations of the
optimal nonlinear feedback law for a Van der Pol control system, which cannot be stabilized by a
linear control law.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

During the last decades algorithms and software for comput-
ng local solutions of nonlinear optimal control problems have
eached a high level of maturity (Biegler, 2007; Diehl et al., 2002;
avala & Biegler, 2009), enabling its deployment in industrial
pplications (Qin & Badgwell, 2003). By now, such local solutions
an be computed within the milli- and microsecond range. More-
ver, auto-generated implementations of real-time local optimal
ontrol solvers run on embedded hardware systems (Houska,
erreau, & Diehl, 2011; Mattingley & Boyd, 2009). In contrast
o these developments in local optimal control, algorithms for
ocating global minimizers of non-convex optimal control prob-
ems, can hardly be claimed to be ready for widespread industrial
pplication. There are at least two reasons for this. Firstly, generic
lobal optimization methods can often only be applied to prob-
ems of modest dimensions. And secondly, their run-time usually
xceeds the run-time of local solvers by orders of magnitude.
evertheless, in the last years there have been a number of

✩ MEV and BH acknowledge financial support via ShanghaiTech University.
Grant F-0203-14-012. CNJ would like to acknowledge support received from the
Swiss National Science Foundation under the RISK project (Risk Aware Data-
Driven Demand Response), grant number 200021 175627. The material in this
paper was not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Kok Lay Teo under the direction
of Editor Ian R. Petersen.
∗ Corresponding author.

E-mail addresses: meduardov@shanghaitech.edu.cn (M.E. Villanueva),
olin.jones@epfl.ch (C.N. Jones), borish@shanghaitech.edu.cn (B. Houska).
ttps://doi.org/10.1016/j.automatica.2021.109610
005-1098/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
promising developments in the field of global optimal control,
which are reviewed next.

Dynamic Programming (DP) (Bellman, 1957), which proceeds
by approximately solving the Hamilton–Jacobi–Bellman (HJB)
equation (Frankowska, 1993), is a historically important method
able to find globally optimal feedback laws. In Luss (1990) and
Grüne and Semmler (2002) tailored discretization grids for DP
implementations have been developed that can successfully solve
nonlinear optimal control problems, as long as the dimension of
the state of the system is small. For higher dimensional state-
spaces these methods are, however, not applicable as the com-
plexity of storing and processing the value functions during the
DP recursion grows exponentially with the number of states.
Other deterministic methods for global optimization problems
involving nonlinear differential equations are based on Branch-
and-Bound (BB) (Chachuat, Singer, & Barton, 2006; Esposito &
Floudas, 2000; Lin & Stadtherr, 2007; Singer & Barton, 2006)
and its variants, including α-BB methods (Diedam & Sager, 2017;
Papamichail & Adjiman, 2002). These BB algorithms have in
common that they can effectively solve problems with a small
number of decision variables. Unfortunately, implementations of
branch-and-bound search easily run out of memory in higher
dimensional spaces due to exponentially growing search trees. In
particular, as the discretization of control inputs typically leads to
a large number of optimization variables, BB-methods are usually
not suited for solving optimal control problems.

An alternative to Branch-and-Bound are the so-called Branch-
and-Lift (BL) methods (Houska & Chachuat, 2014). In contrast to

BB, these methods never discretize the control inputs directly.

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nstead, these methods branch over orthogonal projections of the
ontrol function in lower dimensional subspaces of increasing
imension, until an ϵ-suboptimal global control input is found.
rigorous analysis of the mathematical properties of such BL
ethods can be found in Houska and Chachuat (2019). However,

n the context of developing practical implementations of BL one
aces numerical challenges. In particular, these methods require
he computation of accurate enclosures of moment-constrained
eachable sets of nonlinear differential equations. At the current
tate of research, the lack of generic methods for computing such
oment-constrained reachable set enclosures limits the applica-
ility of BL. Although, currently, some problems have been solved
uccessfully with BL by using enclosure propagation methods that
re tailored to particular applications (Feng, Villanueva, Chachuat,
Houska, 2017; Houska & Chachuat, 2014).
In order to mitigate some of the limitations of existing global

ptimal control methods, this paper proposes a completely new
ramework for constructing methods for solving nonlinear infinite
orizon optimal control problems. Here, the main idea is to
nalyze the spectrum of a Koopman operator that is associated
ith Pontryagin’s differential equation—under the assumption
hat Pontryagin’s optimality condition (Pontryagin, Boltyanskii,
amkrelidze, & Mishchenko, 1962) is satisfied at the optimal
olution. To understand the contributions of this paper, it is
mportant to first be aware of the fact that Koopman operators
ave originally been introduced almost 90 years ago—in fact,
y Koopman himself (Koopman, 1931). This theory has later
een extended for more general nonlinear differential equations
n Mezić (2005), where the concept of Koopman mode analysis
as been introduced. A more detailed analysis of these Koopman
ode-based methods from the field of ergodic theory has, how-
ver, only appeared much later (Arbabi & Mezić, 2017). Notice
hat a mathematical analysis of finite dimensional approxima-
ions of the Koopman operator can be found in Govindarajan,
ohr, Chandrasekaran, and Mezić (2019) and a variety of related
pplications of approximate Koopman mode analysis methods
an be found in Budišić, Mohr, and Mezić (2012). Moreover,
n Korda and Mezić (2018) Koopman mode estimation heuristics
or data driven control have been introduced.

These approaches for lifting nonlinear differential equations
nto an infinite dimensional space using Koopman operators
re closely related to similar reformulations based on Perron–
robenius operators—which are, in fact, dual to the Koopman
perator (Ding, 1998). This is relevant in the context of this
aper as Perron–Frobenius operators can be used to reformulate
onlinear optimal control problems as linear programs (Vinter,
993). For example, in Lasserre, Henrion, Prieur, and Trelat (2008)
onlinear optimal control problems are lifted into an infinite
imensional space using occupation measures. The corresponding
ethod for global optimal control could be called a ‘‘first-lift-

hen-optimize’’ approach. First, the optimal control problem is
‘lifted’’ by reformulating it as an infinite dimensional linear pro-
ramming problem. The resulting optimization problem is then
olved in a second step using a generic LMI hierarchy (Lasserre
t al., 2008). In contrast to this, the current paper proposes a
‘first-optimize-then-lift’’ approach, which formulates first the
ontryagin’s necessary conditions for optimality and then lifts the
orresponding condition into an infinite dimensional space. The
elated contributions are summarized below.

ontribution. The key idea of this paper is to introduce a Koop-
man operator that is associated with the Pontryagin differential
equation of a nonlinear infinite-horizon optimal control
problem—in the following called a Pontryagin–Koopman opera-
or—which can be used to construct globally optimal feedback
aws. Section 2 introduces infinite horizon optimal control prob-

ems and briefly reviews Pontryagin’s necessary condition for
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optimality. This review section is followed by a presentation of
the main contributions of this article, which can be outlined as
follows.

(1) Section 3 uses ideas from symplectic geometry (Arnold &
Novikov, 2001) to characterize the structural properties
of Pontryagin–Koopman operators. Section 4 leverages on
these structural properties in order to perform a symplectic
spectral analysis that finally leads to a complete charac-
terization of globally optimal feedback control laws (see
Section 5, Theorem 3). Although such an exploitation of
the global structure of Pontryagin’s differential equation is
only possible under relatively strong technical assumptions
that will be introduced throughout this paper, it should
be noted that this is the first time that the symplecticity
of Pontryagin–Koopman operators is analyzed and used to
derive practical characterizations of optimal control laws.
In this sense, Theorem 3 can be regarded as the main
theoretical contribution of this paper.

(2) In order to avoid misunderstandings, it is mentioned clearly
that this paper does not claim to solve all the numerical
issues regarding the discretization of Pontryagin–Koopman
operators that would have to be solved to develop a generic
software for global optimal control. However, Section 6
illustrates the practical applicability of the proposed the-
oretical framework by designing an optimal regulator for a
controlled Van der Pol oscillator. Although this implemen-
tation is only based on a naive Galerkin projection of the
Pontryagin–Koopman operator onto a finite dimensional
Legendre basis, the proposed framework is successfully
applied to construct accurate approximations of nonlinear
globally optimal feedback laws, for a system that cannot be
stabilized by a linear control law.

The above contributions are relevant for the future of optimal
control algorithm developments, as they pave the way towards
the development of practical procedures for approximating glob-
ally optimal control laws of a very general class of nonlinear
systems. Therefore, Section 7 does not only conclude the paper,
but also outlines the potential and relevance of the proposed
framework for future research in control.

Notation. The distance of a point x ∈ Rnx to a trajectory φ : R→
Rn is denoted by

dist (x, φ) = inf
t∈R
∥x− φ(t)∥ .

We denote with Ln
p the set of (potentially complex-valued)

Lebesgue measurable functions ϕ : Rn
→ C whose pth power

of the absolute value is integrable on Rn. Moreover, we use the
notation Wn

k,p to denote the Sobolev space of k-times weakly
differentiable functions on Rn, whose weak derivatives up to
order k are all in Ln

p . The symbol M⊺ denotes the Hermitian
transpose of the matrix M ∈ Cn×m. The symbol ∇ denotes
the gradient operator. The associated second order derivative
operator is denoted by ∇2

= ∇∇
⊺. Last but not least, the support

of a function ϕ : Rn
→ C is denoted by

supp(ϕ) = {x ∈ Rn
| ϕ(x) ̸= 0} .

2. Infinite horizon optimal control

This section introduces infinite horizon optimal control prob-
lems and briefly summarizes existing methods for analyzing the
local stability properties of optimal periodic limit orbits (see
Section 2.2). Moreover, Sections 2.3 and 2.4 review Pontryagin’s
necessary optimal condition thereby introducing the notation

that is used throughout the paper.
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.1. Problem formulation

This paper considers infinite horizon optimal control problems
f the form

V (x0) = min
x,u

∫
∞

0

[
l(x(t), u(t))− l⋆

]
dt

s.t.

⎧⎨⎩
∀t ∈ [0,∞),
ẋ(t) = f (x(t), u(t))
x(0) = x0 .

(1)

Here, x : R→ Rnx denotes the state trajectory and u : R→ Rnu

denotes the control input. The initial value x0 ∈ Rnx is assumed
to be given. Throughout this paper the following assumptions are
imposed.

Assumption 1. The function f : Rnx × Rnu → Rnx is twice
continuously differentiable and globally Lipschitz continuous in x.

Assumption 2. The function l : Rnx × Rnu → R is twice
continuously differentiable.

The constant l⋆ ∈ R in (1) denotes the optimal average cost,

l⋆ = lim
T→∞

min
x,u

1
T

∫ T

0
l(x(t), u(t)) dt

s.t.

⎧⎨⎩
∀t ∈ [0, T ],
ẋ(t) = f (x(t), u(t))
x(0) = x0 ,

assuming that this limit exists. Notice that l⋆ does not need to be
known explicitly in order to solve (1), as adding constant offsets
to the objective does not affect the solution of an optimization
problem. In this paper, the constant l⋆ is merely introduced for
mathematical reasons, such that V (x0) remains finite and well-
defined on infinite horizons under mild regularity assumptions
that shall be introduced further below.

Remark 1 (Limitations). As much as the problem formulation (1)
considers a rather general class of nonlinear systems and po-
tentially non-convex stage costs, it should be mentioned that an
explicit analysis of state- and control constraints is beyond the
scope of this paper. Moreover, we assume that (1) is a time-
autonomous optimal control problem, which means that f and l
may depend on x(t) and u(t), but they are not allowed to explicitly
depend on the time t . As we will see below, this assumption on
the time-autonomy of (1) is crucial for the developments in this
paper.

2.2. Limit behavior and periodic orbits

In practical instances, one is often interested in whether opti-
mal solutions for the state trajectory of (1) converge to an optimal
steady-state or, in more generality, to an optimal periodic limit
orbit. These optimal steady states or more general periodic orbits
are defined as follows.

Definition 1. The function (xp, up) ∈ Wnx
1,1 × Lnu

1 is called an
optimal periodic orbit, if there exists a period T > 0 such that
for all t ∈ [0,∞)

1. xp(t + T ) = xp(t) and up(t + T ) = up(t),
2. ẋp(t) = f (xp(t), up(t)) for all t ∈ [0, T ], and
3. 1

T

∫ T
0 l(xp(t), up(t)) dt = l⋆.

or the special case that xp and up are constant functions, this pair
is called an optimal steady-state.
3

In order to prepare the following analysis, it is helpful to
introduce the shorthands
A(t) = fx(xp(t), up(t)) , B(t) = fu(xp(t), up(t)) ,

Q (t) = lxx(xp(t), up(t)) , R(t) = luu(xp(t), up(t)) ,

S(t) = lxu(xp(t), up(t))

ssuming that (xp, up) is an optimal periodic orbit. Here, fx and fu
enote the partial derivatives of f with respect to x and u and
n analogous notation is then also used for the mixed second
rder derivatives of l. The above matrix-valued functions can be
sed to construct sufficient conditions under which an optimal
eriodic orbit is locally stabilizable. Here, one relies on the theory
f periodic Riccati differential equations (Bittanti, Colaneri, & De
icolao, 1991) of the form

Ṗ(t) = P(t)A(t)+ A(t)⊺P(t)+ Q (t)
− (P(t)B(t)+ S(t))R(t)−1(P(t)B(t)+ S(t))⊺

P(0) = P(T ) ≻ 0. (2)

t is well-known (Bittanti et al., 1991) that if Assumption 1 and 2
re satisfied and if R has full rank, then the existence of a periodic
nd positive definite function P satisfying (2) is sufficient to en-
ure that the solution x⋆ of (1) converges to the optimal periodic
rbit xp as long as dist

(
x0, xp

)
is sufficiently small—that is, if x0

s in a small neighborhood of the optimal orbit xp. However, this
tatement is of a rather local nature. This means that, if we wish
o understand the global behavior of system (1), an analysis of the
eriodic Riccati equation is not sufficient. The following sections
ocus on analyzing global solutions of (1), under the assumption
hat dist

(
x0, xp

)
is not necessarily small.

.3. Pontryagin’s differential equations

Pontryagin’s maximum principle (Pontryagin et al., 1962) can
e used to derive necessary conditions for the minimizers of (1).
he first order variational optimality condition is summarized as
ollows. Let H : Rnx×Rnu×Rnx → R be the Hamiltonian function
f (1),

(x, u, λ) = λ⊺f (x, u)+ l(x, u). (3)

f Assumption 1 and 2 hold, H is, by construction, twice continu-
usly differentiable in all variables. Next, let
⋆(x, λ) = argmin

u
H(x, u, λ) (4)

enote the associated parametric minimizer of H . At this point,
e introduce the following regularity assumption.

ssumption 3. The parametric minimizer u⋆ in (4) satisfies the
econd order sufficient condition, Huu ≻ 0.

Notice that for the practically relevant special case that f is
ffine in u and l strongly convex in u, Assumption 3 always holds
henever Assumption 1 and 2 are satisfied.
Next, if Assumption 1, 2, and 3 are satisfied, it is well-known

Pontryagin et al., 1962) that any minimizer (x, u) of (1) necessar-
ly satisfies Pontryagin’s differential equation

ẋ(t) = f (x(t), u⋆(x(t), λ(t))) (5)
˙ (t) = −∇xH(x(t), u⋆(x(t), λ(t)), λ(t)) (6)

or a co-state function λ ∈ Wnx
1 . In the following, we summarize

his differential equation in the form

˙(t) = F (y(t)) , (7)

here y = [x⊺, λ⊺
]
⊺ denotes the stacked state and F a stacked

ersion of the right-hand side functions of (5) and (6).
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.4. Necessary boundary and limit conditions

Besides Pontryagin’s differential equation (7), optimal solu-
ions of (1) satisfy necessary boundary conditions. First, of course,
he initial condition x(0) = x0 must hold. Moreover, the co-state
λ satisfies a necessary limit condition, which can be summarized
as follows.

Proposition 1. Let Assumptions 1, 2, and 3 hold. Moreover, let
x⋆, u⋆) be a primal optimal solution of (1) converging to an optimal
eriodic orbit (xp, up) ∈ Wnx

1,1 × Lnx
1 at which the periodic Riccati

ifferential equation (2) admits a positive definite solution. Then,
here exists a periodic function λp ∈ Wnx

1,1 such that the associated
o-state λ⋆ necessarily satisfies

lim
→∞
∥λ⋆(t)− λp(t)∥ = 0 .

Notice that Proposition 1 is—at least in very similar versions—
ell-known in the literature (Liberzon, 2012; Pontryagin et al.,
962). However, as this result is important for understanding the
evelopments in this paper, the following proof briefly recalls the
ain argument supporting why this proposition holds.

roof. Since (2) admits a positive definite solution, the value
unction V in (1) is well-defined and differentiable in a neigh-
orhood of the optimal orbit x⋆. Thus, (1) can be replaced by
n equivalent finite-horizon optimal control problem as long as
is used as a terminal cost. Now, Pontryagin’s principle for

ptimal control problems with Mayer terms (Pontryagin et al.,
962) yields the boundary condition
⋆(t) = ∇V (x⋆(t))

or any horizon length t > 0. Clearly, since x⋆ converges to the
ptimal periodic orbit xp, λ⋆ must converge to the associated dual
imit orbit λp(t) = ∇V (xp(t)). □

In the next sections we will see that Proposition 1 implies
that the states of Pontryagin’s differential equation for stabilizable
systems must evolve along certain stable manifolds, which can be
characterized using a Koopman mode analysis (Mezić, 2005).

3. Symplectic Koopman operators

This section analyzes the symplectic structure of the flow
associated with Pontryagin’s differential equation. These sym-
plectic structures are needed to understand the properties of
Pontryagin Koopman operators. In fact, Section 3.2 introduces a
symplectic test space—that is, a space of observables—in which
the Pontryagin–Koopman operator inherits certain symplecticity
properties of its underlying incompressible flow field. Moreover,
Section 3.3 leverages on ideas from the field of symplectic geom-
etry (Arnold & Novikov, 2001) in order to work out the symplec-
tic dual of the Pontryagin–Koopman operator. Notice that these
developments are the basis for those in Section 4, which use
a symplectic spectral analysis in order to characterize globally
optimal control laws.

3.1. Symplectic flows

Let Γt : R2nx → R2nx denote the flow of Pontryagin’s
ifferential equations such that
d
dt

Γt (z) = F (Γt (z)) and Γ0(z) = z

for all z ∈ R2nx . If Assumptions 1, 2, and 3 hold, then Γt is a well-
defined, continuously differentiable function. In the mathematical
literature (Arnold & Novikov, 2001) it is well-known that Γ is
t

4

a so-called symplectic flow. In order to reveal this symplectic
structure it is helpful to introduce the block matrix

Ω =

(
0 I
−I 0

)
∈ R2nx×2nx .

Now, the structural properties of Γt can be summarized as fol-
lows.

Lemma 1. Let Assumptions 1, 2, and 3 be satisfied. Then, the
function ∂

∂z Γt satisfies the equation

∀t ∈ R,

[
∂

∂z
Γt

]⊺

Ω

[
∂

∂z
Γt

]
= Ω , (8)

that is, Γt is a symplectic function.

Proof. Let us first recall that the right-hand side F of Pontryagin’s
differential equation is given by (5) and (6), which can also be
summarized as

F =
[

f
−H⊺

x

]
with y =

[
x
λ

]
. (9)

This implies that the derivative of F with respect to y can be
written in the form

Fy =
(

fx − fuH−1uu Hux −fuH−1uu f ⊺u
−Hxx + HxuH−1uu Hux −f ⊺x + HxuH−1uu f ⊺u

)
. (10)

Here, we have used Assumptions 1 and 2 to ensure that the
second derivatives of H with respect to x and u exist. Moreover,
we have used Assumption 3, which implies that Huu is invertible
and, as a consequence, that the implicit function theorem holds.
In particular, we have

u⋆
x = −H

−1
uu Hux and u⋆

λ = −H
−1
uu Huλ = −H−1uu f ⊺u .

n this form, it becomes clear that the matrix ΩFy is symmetric
nd we arrive at the intermediate result

Fy = F ⊺
y Ω⊺
= −F ⊺

y Ω. (11)

n order to proceed, we write the first order variational differen-
ial equation for Γt in the form

d
dt

[
∂

∂z
Γt

]
= Fy

[
∂

∂z
Γt

]
with

[
∂

∂z
Γ0

]
= I. (12)

Now, the main idea of this proof is to show that the function

∆(t) =
[

∂

∂z
Γt

]⊺

Ω

[
∂

∂z
Γt

]
−Ω (13)

vanishes, that is ∆(t) = 0. Here, we first have ∆(0) = 0 by
onstruction, since

[
∂
∂z Γ0

]
= I . Moreover, the derivative of ∆

with respect to time is given by

∆̇(t) =
d
dt

[
∂

∂z
Γt

]⊺

Ω

[
∂

∂z
Γt

]
+

[
∂

∂z
Γt

]⊺

Ω
d
dt

[
∂

∂z
Γt

]
(12)
=

[
∂

∂z
Γt

]⊺ [
F ⊺
y Ω +ΩFy

] [ ∂

∂z
Γt

]
(11)
= 0

Thus, in summary, we must have ∆(t) = 0 for all t ∈ R, which
yields the statement of this lemma. □

The following corollary summarizes two immediate conse-
quences of Lemma 1 which are both equivalent to stating that
Γ is an incompressible flow.
t
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orollary 1. Let Assumptions 1, 2, and 3 be satisfied. Then, Γt is
n incompressible flow; that is, we have

t ∈ R, det
([

∂

∂z
Γt

])
= 1. (14)

oreover, the divergence of the associated vector field F vanishes,
iv(F ) = ∇⊺F = 0.

roof. By taking the determinant on both sides of (8) and using
hat det(Ω) = 1, we find that

et
([

∂

∂z
Γt

])2

= 1 ⇐⇒ det
([

∂

∂z
Γt

])
= ±1 .

ince ∂
∂z Γ0 = I and since ∂

∂z Γt is continuous, this is only possible
if (14) holds. Next, by taking the logarithm on both sides of (14)
and differentiating with respect to time, we find1

=
d
dt

log
(
det

([
∂

∂z
Γt

]))
= Tr

([
∂

∂z
Γt

]−1 d
dt

[
∂

∂z
Γt

])
(12)
= Tr(Fy) = div(F ) .

This completes the proof of the corollary. □

3.2. Pontryagin-Koopman operators

The developments from the previous section can be used
to analyze the structural properties of the Pontryagin–Koopman
operator, which are defined to be the Koopman operator that is
associated with the flow Γt of Pontryagin’s differential equation,
or, more formally:

Definition 2 (Pontryagin–Koopman Operator). We use the no-
tation Ut : W

2nx
1,2 → W2nx

1,2 to denote the Pontryagin–Koopman
operator of Γt , which is defined such that

Φ ∈ W2nx
1,2 , ∀t ∈ R, UtΦ = Φ ◦ Γt

with ◦ denoting the composition operator.
It is well known (Koopman, 1931; Mezić, 2005) that Ut is

a linear operator satisfying Ut1+t2 = Ut1Ut2 for all t1, t2 ∈ R.
Moreover, since the relation

U0Φ = Φ ◦ Γ0 = Φ

holds for all Φ ∈ W2nx
1,2 , the operator U0 = id corresponds to the

identity operator. Next, if we substitute t = t1 = −t2 in the above
equation, we find the relation

id = U0 = UtU−t .

Consequently, the operator Ut is not only linear but also invertible
and its inverse is given by U−1t = U−t .

In order to introduce a notion of symplecticity in the space of
observables of the Pontryagin–Koopman operator, we introduce
the bilinear form

ω : W2nx
1,2 ×W2nx

1,2 → R ,

which is defined as

ω(ϕ, Φ) =
∫
R2nx
∇ϕ(z)⊺Ω∇Φ(z) dz

for all ϕ, Φ ∈ W2nx
1,2 . Because we have Ω⊺

= −Ω , the bilinear
form ω is skew-symmetric, i.e.

ω(ϕ, Φ) = −ω(Φ, ϕ),

and
(
W2nx

1,2 , ω

)
is a symplectic space (Arnold & Novikov, 2001).

1 Alternatively, the equation Tr(Fy) = 0 can also directly be found by

substituting the explicit expression (10) from the proof of Lemma 1.

5

Theorem 1. Let Assumptions 1, 2, and 3 be satisfied. Now, Ut is for
all t ∈ R a symplectic operator in the space

(
W2nx

1,2 , ω

)
. This means

that we have

ω(Utϕ,UtΦ) = ω(ϕ, Φ)

for all ϕ, Φ ∈ W2nx
1,2 .

Proof. Assumptions 1, 2, and 3 imply that the function Γt and
its inverse Γ −1t = Γ−t are both continuously differentiable. This
implies in particular that the equivalence

Φ ∈ W2nx
1,2 ⇐⇒ [Φ ◦ Γt ] ∈ W2nx

1,2

holds. Next, the definition of the operator Ut and the chain rule
for differentiation imply that

∇[UtΦ] = ∇[Φ ◦ Γt ] =

[
∂

∂z
Γt

]⊺

(∇Φ) ◦ Γt (15)

holds for all Φ ∈ W2nx
1,2 . Furthermore, because Assumptions 1, 2,

and 3 hold, it follows from Lemma 1 that[
∂

∂z
Γt

]⊺

Ω

[
∂

∂z
Γt

]
= Ω .

Let us multiply this equation with
[

∂
∂z Γt

]
Ω from the left and

substitute Ω2
= −I . This yields[

∂

∂z
Γt

]
Ω

[
∂

∂z
Γt

]⊺

Ω

[
∂

∂z
Γt

]
= −

[
∂

∂z
Γt

]
.

Next, we multiply the latter equation with
[

∂
∂z Γt

]−1
Ω from the

right and use the relation Ω2
= −I once more, in order to arrive

at the equation[
∂

∂z
Γt

]
Ω

[
∂

∂z
Γt

]⊺

= Ω. (16)

Thus, by substituting the previous equations, we get

ω(Utϕ,UtΦ) =
∫
R2nx
∇[Utϕ](z)⊺Ω∇[UtΦ](z) dz

(15),(16)
=

∫
R2nx
∇ϕ(Γt (z))⊺Ω∇Φ(Γt (z)) dz . (17)

In order to further transform this integral, we need to introduce
the change of variables z ′ = Γt (z). Because Corollary 1 ensures
that⏐⏐⏐⏐det( ∂

∂z
Γt (z)

)⏐⏐⏐⏐ = 1 ,

this change of variables is volume preserving. This implies that

ω(Utϕ,UtΦ) =
∫
R2nx
∇ϕ(z ′)⊺Ω∇Φ(z ′) dz ′ = ω(ϕ, Φ)

for all ϕ, Φ ∈ W2nx
1,2 . Thus, Ut is a symplectic operator. □

3.3. Symplectic duality

In order to prepare the analysis of the properties of the spec-
trum of symplectic Koopman operators, it is helpful to introduce a
notion of duality. However, instead of defining duality in a Hilbert
space, we propose to introduce the following notion of symplectic
duality.

Definition 3. Let A : W2nx
1,2 → W2nx

1,2 be a linear operator. If there
exists a linear operator A⋆

: W2nx
1,2 → W2nx

1,2 with

ω(ϕ, AΦ) = ω(A⋆ϕ, Φ)

for all ϕ, Φ ∈ W2nx
1,2 , then we call A⋆ the symplectic adjoint
operator of A.
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In the following, we consider a linear differential operator
L : W2nx

1,2 → W2nx
1,2 given by

LΦ = F ⊺
∇Φ (18)

for all Φ ∈ W2nx
1,2 . This operator is found by differentiating the

definition of the Pontryagin–Koopman operator Ut with respect
to time, such that L = U̇t .

Lemma 2. Let Assumptions 1, 2, and 3 hold. The operator L admits a
symplectic adjoint L⋆ in the symplectic space (W2nx

2,2 , ω). This adjoint
is given by

L⋆
= −L. (19)

Proof. For any function Φ ∈ W2nx
2,2 , we have

∇(LΦ) =
dF
dy
∇Φ +∇2ΦF , (20)

which follows by differentiating (18) on both sides. Next, we
know from Theorem 1 that Ut is a symplectic operator. Thus, we
can differentiate the equation

ω(Utϕ,UtΦ) = ω(ϕ, Φ)

on both sides with respect to t , which yields

d
dt

ω(Utϕ,UtΦ) = 0 .

ow, if ϕ, Φ ∈ W2nx
2,2 , we can expand the derivative on the right

s

=
d
dt

ω(Utϕ,UtΦ)

(17)
=

d
dt

∫
R2nx
∇ϕ(Γt (z))⊺Ω∇Φ(Γt (z)) dz

=

∫
R2nx

F (Γt (z))⊺∇2ϕ(Γt (z))Ω∇Φ(Γt (z)) dz

+

∫
R2nx
∇ϕ(Γt (z))⊺Ω∇2Φ(Γt (z))F (Γt (z)) dz .

sing the change of variables z ← Γt (z)—recalling the condition
et
(

∂
∂z Γt

)
= 1—and resorting terms leads to∫

R2nx
F (z)⊺∇2ϕ(z)Ω∇Φ(z) dz

= −

∫
R2nx
∇ϕ(z)⊺Ω∇2Φ(z)F (z) dz. (21)

Moreover, we recall that the equation

Ω
dF
dy
=

(
dF
dy

)⊺

Ω⊺
= −

(
dF
dy

)⊺

Ω (22)

lso holds (see Eq. (11)). Thus, in summary, we have

ω(ϕ, LΦ)

=

∫
R2nx

[∇ϕ⊺Ω∇[LΦ]] (z) dz

(20)
=

∫
R2nx

[
∇ϕ⊺Ω

(
dF
dy
∇Φ +∇2ΦF

)]
(z) dz

(21), (22)
= −

∫
R2nx

[(
dF
dy
∇ϕ +∇2ϕF

)⊺

Ω∇Φ

]
(z) dz

= ω(−Lϕ, Φ).

ecause the latter equation holds for all ϕ, Φ ∈ W2nx
2,2 , we find

hat L⋆
= −L is the symplectic adjoint of L, as claimed by the

tatement of this lemma. □
6

Remark 2. In many articles on Koopman operators, a so-called
transport differential equation of the form

∂

∂t
φ = −div(Fφ)

is considered. If one introduces suitable boundary conditions, this
advection PDE can be interpreted as the derivative of a Perron–
Frobenius operator that is dual to the Koopman operator Ut with
respect to the standard L2-scalar product (Ding, 1998). Notice
that in our case, the symplectic adjoint operator

L⋆
: φ → −F ⊺

∇φ = −div(Fφ)+ div(F )  
=0

φ

happens to coincide with the right-hand operator of the above
advection PDE. Thus, physically, one could interpret the operator
L⋆ as an advection operator of the incompressible flow field F
ecalling that div(F ) = 0.

4. Spectral analysis

In this section, we show that the symplectic structures of
the Koopman operator, as analyzed in the previous section, have
important consequences on its set of eigenvalues. Moreover,
Section 5 uses these spectral properties of the Koopman operator
to characterize global optimal control laws that are associated
with the infinite horizon optimal control problem (1).

4.1. Eigenfunctions and eigenvalues

As already mentioned in the introduction, the spectrum of
general Koopman operators has been analyzed by many authors;
for example in Arbabi and Mezić (2017), Budišić et al. (2012),
Mezić (2005). In the context of this paper, we call a weakly
differentiable function Ψ an eigenfunction of the differential
ontryagin–Koopman operator L, if the Lebesgue measure of the
et supp(Ψ ) is either unbounded, or, if it exists, is not equal to
0, and

LΨ = κΨ ⇐⇒ ∇Ψ ⊺F = κΨ

or a potentially complex eigenvalue κ ∈ C. The fact that the
ymplectic adjoint of the operator L is given by L⋆

= −L has im-
ortant consequences on its spectrum, which can be summarized
s follows.

heorem 2. Let Assumptions 1, 2, and 3 hold and let Ψ1, Ψ2 ∈
2nx
2,2 be two eigenfunctions of L with eigenvalues κ1, κ2 ∈ C. If
(Ψ1, Ψ2) ̸= 0, then we must have κ1 = −κ2.

roof. Because the functions Ψ1, Ψ2 ∈ W2nx
2,2 are eigenfunctions

f L, they satisfy

Ψ1 = κ1Ψ1 and LΨ2 = κ2Ψ2. (23)

hus, since ω is a bilinear form, we have

κ2ω(Ψ1, Ψ2)
(23)
= ω(Ψ1, LΨ2)
(19)
= −ω(LΨ1, Ψ2)
(23)
= −κ1ω(Ψ1, Ψ2)

nd, after resorting terms,

κ1 + κ2)ω(Ψ1, Ψ2) = 0 .

hus, if ω(Ψ1, Ψ2) ̸= 0, we must have κ1 + κ2 = 0. This is
quivalent to the statement of the theorem. □
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emark 3. The statement of Theorem 2 is formally not di-
ectly applicable for eigenfunctions Ψ1, Ψ2 of L that are locally
eakly twice differentiable but whose derivatives are not square

ntegrable, such that Ψ1, Ψ2 are not elements of the Sobolev
space W2nx

2,2 . However, in practice, one is usually interested in
constructing eigenfunctions of L on a compact domain C ⊂ R2nx ,
in the following called the region of interest, such that

∀x ∈ C, [LΨ ](x) = κΨ (x). (24)

This region of interest C can, for example, model a-priori bounds
on the optimal primal and dual trajectories of (1). Consequently,
because we are simply not interested in how the flow Γt and
the associated eigenfunctions Ψ are defined outside of the set
C , these functions can simply be redefined arbitrarily for x /∈ C ,
or example, such that the desired eigenfunctions of L satisfy
∈ W2nx

2,2 by construction. Thus, for the purpose of this paper, it
is not restrictive at all to assume that the derivatives of the eigen-
functions of L are square integrable. Notice that this technique is
also illustrated by our tutorial case study in Section 6, where we
explain how to choose C and how to discretize (24) on C .

Let σ (L) ⊆ C denote the spectrum of L; that is, the set of
igenvalues of the linear operator L. In the following, we use the
otation Ψκ ∈ W2nx

2,2 to denote an eigenfunction that is associated
with an eigenvalue κ ∈ σ (L). Moreover, for a function q : R2nx →

R2nx , we use the shorthand notation

ω(q, q) =

⎛⎜⎜⎝
ω(q1, q1) ω(q1, q2) . . . ω(q1, q2nx )
ω(q2, q1) ω(q2, q2) . . . ω(q2, q2nx )

...
...

. . .
...

ω(q2nx , q1) ω(q2nx , q2) . . . ω(q2nx , q2nx )

⎞⎟⎟⎠
to denote the matrix that is obtained by evaluating the skew
symmetric bilinear form ω for all possible combinations of the
components of q. We call q a skew-orthogonal function in the
symplectic space (W2nx

1,2 , ω), if it satisfies ω(q, q) = Ω . Notice that
the construction of such skew orthogonal functions is straight-
forward by using the standard skew-symmetric variant of the
Gram–Schmidt algorithm (Arnold & Novikov, 2001).

Definition 4. The operator L is said to admit a spectral de-
composition with respect to a given function q, if there exists a
generalized function a : σ (L)→ C2nx such that

=

∫
σ (L)

Ψκa(κ) dκ. (25)

Notice that the above definition uses the ‘‘control engineering
otation’’ for generalized functions, which means that we use a
s if it was a standard function, although this notation suppresses
he distributional nature of a. Thus, in mathematical terms, this
notation has to be translated as ‘‘a represents a distribution of
rder 0; that is, a linear operator on σ (L) that is Lipschitz contin-
ous with respect to the L∞-norm’’.2 The following statement is
consequence of Theorem 2.

orollary 2. Let Assumptions 1, 2, and 3 hold. Let the operator L
dmit a spectral decomposition with respect to a skew-orthogonal
unction q. Then, there exist at least 2nx eigenvalues
+

1 , κ+2 , . . . , κ+nx , κ
−

1 , κ−2 , . . . , κ−nx ∈ σ (L) ,

uch that κ+i = −κ−i , where κ+i has a non-negative real part for all
i ∈ {1, 2, . . . , nx}.

2 Notice that, for example, a could be a Dirac distribution, which is not a
function in the traditional sense but, by construction, a Lipschitz continuous
linear operator.
7

Proof. By substituting (25) in the equation ω(q, q) = Ω , we find
hat the equation

=

∫
σ (L)

∫
σ (L)

ω(Ψκ ′ , Ψκ ) a(κ ′)a(κ)⊺  
rank 1

dκ dκ ′ , (26)

olds. Let us have a closer look at the terms in (26). Clearly, the
atrix Ω on the left has full rank. But, on the other side, we
ave an integral over the rank 1 matrices a(κ ′)a(κ)⊺. This integral
erm can only have full rank, if there are at least 2nx pairs of
igenvalues (κ ′, κ) ∈ σ (L)× σ (L) for which

(Ψκ ′ , Ψκ ) ̸= 0 .

ut now Theorem 2 implies that all these pairs must be such that
′
= −κ and, after sorting all eigenvalues with respect to their

eal-part, we find that there must be at least nx eigenvalues with
on-negative real part and nx associated mirrored eigenvalues
ith non-positive real-part, as claimed by the statement of this
orollary. □

emark 4. Notice that Corollary 2 makes a statement about
he spectrum of L under the rather strong assumption that this
perator admits a spectral decomposition with respect to at least
ne skew orthogonal function. Thus, one should further ask the
uestion under which assumptions the existence of such a spec-
ral decomposition can be guaranteed for at least one such skew
rthogonal function. In full generality, this question is difficult to
nswer, but sufficient conditions for the existence of (much more
eneral and, in our context, sufficient) spectral decompositions
an be found in Arbabi and Mezić (2017), Budišić et al. (2012),
auroy and Mezić (2016), Mezić (2005), which use ideas from

he field of ergodic theory (Wiener & Wintner, 1941) as well as
oshida’s theorem (Yosida, 1978). For example, if the monodromy
atrix, ∂

∂z ΓT (xp(0)), of a periodic optimal orbit with period length
T > 0 is diagonalizable, one can ensure that a spectral decom-
position is possible. This sufficient condition follows by applying
Proposition 3 in Mauroy and Mezić (2016) to the Pontryagin
differential equation. A more complete review of such results
from the field of functional analysis would, however, go beyond
the scope of the present paper.

5. Optimal feedback control laws

The theoretical results from the previous sections can be used
to derive optimality conditions, which, in turn, can be used to
develop practical numerical algorithms for solving (1). Let us
introduce the set

σ+(L) = {κ ∈ σ (L) | Re(κ) > 0}

of unstable eigenvalues and its associated invariant manifold

M+
=

{
[x⊺, λ⊺

]
⊺
∈ R2nx

⏐⏐⏐⏐⏐ ∀κ ∈ σ+(L),
Ψκ (x, λ) = 0

}
.

ince we assume that the eigenfunctions Ψκ are weakly differ-
ntiable, we may assume without loss of generality that the
unctions Ψκ are also continuous—otherwise there exists a con-
inuous function Ψ̃κ (x) = Ψκ (x) for almost every x ∈ R2nx and
e can use Ψ̃κ instead of Ψκ recalling that we work with Sobolev
paces, in which such arguments are indeed possible.
In the following, we say that µ⋆ is a regular optimal control

aw of (1), if the closed-loop trajectories,

˙
⋆(t) = f (x⋆(t), µ⋆(x⋆(t))) with x⋆(0) = x0 ,

re minimizers of (1) at which Pontryagin’s necessary optimal-
ty conditions are satisfied such that x⋆ converges to an opti-
al periodic orbit at which the conditions of Proposition 1 are
atisfied.
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heorem 3. Let Assumptions 1, 2, and 3 hold. We further assume
without loss of generality) that the eigenfunctions Ψκ ∈ W 2nx

2,2 are
ontinuous. Let µ⋆

: Rnx → Rnu be a regular optimal control law
f (1). Then, there exists a function Λ : Rnx → Rnx such that

x⊺, Λ(x)⊺]⊺ ∈M+ and µ⋆(x) = u⋆(x, Λ(x)) .

roof. Since L is a time-autonomous infinitesimal generator of
t , the eigenfunctions of L also satisfy (Mezić, 2005)

tΨκ = eκtΨκ (27)

or all κ ∈ σ (L). The remainder of the proof is divided into
wo parts. In the first part, we show that (27) implies that the
ptimal periodic limit orbit is a subset of the manifold M+. In
he second part of the proof, we use this property of the limit
rbit to construct a globally optimal feedback law.

art I: Let (xp, λp) denote the optimal periodic limit orbit of (1)
ith period time T . If we would have (xp(t), λp(t)) /∈M+ for a

time t ∈ [0, T ], we must have

Ψκ (xp(t), λp(t)) ̸= 0

for at least one κ ∈ σ+(L). Since the optimal periodic orbit sat-
isfies Pontryagin’s differential equation, this implies in particular
that⏐⏐Ψκ (xp(t + T ), λp(t + T ))

⏐⏐ (27)
=
⏐⏐eκTΨκ (xp(t), λp(t))

⏐⏐
>

⏐⏐Ψκ (xp(t), λp(t))
⏐⏐ (28)

as κ has a strictly positive real part. But this is a contradiction,
since (xp, λp) is periodic. Thus, in summary, we must have

∀t ∈ [0, T ], (xp(t), λp(t)) ∈M+. (29)

Part II: Let (x, λ) denote an optimal solution of (1) with x(0) = x0.
Now, if we would have (x(0), λ(0)) /∈M+, then there would have
to exist at least one κ ∈ σ+(L) for which

Ψκ (x(0), λ(0)) ̸= 0 .

But if this would be the case, then we would also have

lim
t→∞
|Ψκ (x(t), λ(t))| = ∞ , (30)

as Ψκ is strictly unstable. But this limit statement is in conflict
with (29), since Ψκ is continuous and we assume that (x(t), λ(t))
converges to the optimal periodic limit orbit. Thus, in summary,
there exists for every x0 a λ0 = λ(0) with (x0, λ0) ∈ M+ and
the corresponding map from x0 to λ0 can be denoted by Λ. The
associated optimal control input is given by

µ⋆(x0) = u⋆(x0, Λ(x0)) .

This is already sufficient to establish the statement of this theo-
rem, as the optimal feedback law must be time-autonomous. □

Notice that Theorem 3 can be used to systematically search for
globally optimal solutions of (1). Here, one of the key observations
is that if, in addition to the assumptions of Theorem 3, the
assumptions of Corollary 2 are also satisfied and if none of the
non-negative eigenvalues κ+1 , κ+2 , . . . , κ+nx happens to be on the
imaginary axis, then the parametric equation system

∀κ ∈ σ+(L), Ψκ (x0, λ0) = 0. (31)

consists of at least nx independent equations while the number
of variables, dim(λ) = nx, is equal to nx, too. Thus, this equation
system can, in many practical instances, be expected to admit
a finite number of parametric solutions λ0 = Λ(x0) only. This
means that, if all the above regularity assumptions are satis-
fied, Theorem 3 singles out a finite number of candidate control
8

Fig. 1. Optimal control via Koopman lifts.

laws µ⋆(x) = u⋆(x, Λ(x))—at least one of which must be globally
ptimal.
Notice that a practical implementation of the above procedure

equires one to discretize the linear differential operator L. As
lready mentioned in the introduction, a complete overview and
nalysis of possible numerical procedures, which could lead to
uch a practical implementation is beyond the scope of this paper.
evertheless, Fig. 1 outlines a prototype algorithm based on a
alerkin projection (Ayuso & Marini, 2009) of L.

emark 5. As already mentioned in Remark 1, the proposed
ontryagin–Koopman operator based framework is only applica-
le to time-autonomous optimal control problems, because (27)
oes not hold if F depends on t . This is a general limitation of
oopman-operator mode decomposition based methods (Mezić,
005).

emark 6. Notice that many existing local and global opti-
ization methods focus on solving finite horizon optimal control
roblems (Biegler, 2007; Chachuat et al., 2006; Diehl et al., 2002;
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Fig. 2. Left: Comparison between the optimal feedback law µ⋆(x) = −x1x2 , and the approximate feedback law µ̃(x) in (36). Middle: trajectories of the closed-loop
system under the approximate feedback law. Right: Eigenvalues of the projection M ∈ RN×N for N = 4 (blue circles), N = 15 (red squares), and N = 35 (black circles
with a cross).
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Papamichail & Adjiman, 2002). This is in contrast to the pro-
posed Koopman–Pontryagin operator based algorithm focusing
on time-autonomous infinite horizon optimal control problems.
The main reason for this is that the control law that generates the
optimal trajectories of a finite horizon optimal control problem
is in general time-varying. This means that a time-autonomous
characterization of such optimal feedback laws – as established
in Theorem 3 for infinite horizon optimal control problems – is in
this form not possible for general optimal control problems with
finite time horizons.

6. Numerical example

This section illustrates how Theorem 3 can be used to con-
struct accurate approximations of globally optimal control laws
of (1) for a Van der Pol oscillator system with

f (x, u) =
(

x2
x1 − 1

2

(
1− x21

)
x2 + x1u

)
(32)

and l(x, u) =
1
2

(
x22 + u2) . (33)

he associated system, ẋ(t) = f (x(t), u(t)), has a linearly uncon-
rollable equilibrium at x = (0, 0)⊺. Notice that for this particu-
ar example an explicit solution of the Hamilton–Jacobi–Bellman
quation is known (Rodrigues, Henrion, & Cantwell, 2016): it
urns out that the optimal value function V and the globally
ptimal feedback law µ⋆ are given, respectively, by

(x) =
1
2
(x21 + x22) and µ⋆(x) = −x1x2. (34)

n the following, this explicit solution is, however, only used to
ssess the accuracy of the proposed method; that is, the numer-
cal procedure below neither knows the above expression for V
or for µ⋆.

emark 7. The function f in (32) is not globally Lipschitz con-
inuous and, consequently, Assumption 1 is violated. However, as
urther elaborated below, we are interested, at least in this exam-
le, in approximating the control law within a compact region
f interest. Consequently, we can simply replace the function f
y a globally Lipschitz continuous function that coincides with
within this region of interest—without effecting the following
umerical results.

.1. Galerkin discretization

In order to illustrate the practical applicability of the develop-
ents in Section 5, we introduce a simple Galerkin discretization
f the operator L. Let ϕ , . . . , ϕ ∈ W2nx be orthogonal functions
1 N 1,2

9

ith respect to the standard L2-scalar product ⟨·, ·⟩ on W2nx
1,2 .

ext, if we compute the coefficients

i,j = ⟨Lϕi, ϕj⟩

for all i, j ∈ {1, . . . ,N}, the matrix M⊺ can be interpreted as
a Galerkin approximation of the operator L over the subspace
spanned by ϕ1, . . . , ϕN . In our implementation, we set ϕi to
the ith multivariate Legendre polynomial on the 4-dimensional
compact interval box C = [− 1

2 ,
1
2 ]

4 and we set ϕi(x, λ) = 0
utside of this domain; that is, for (x, λ) /∈ C . Consequently,
ur discretization can only be expected to be accurate inside our
egion of interest C , but other choices for C and for the basis
unctions would be possible, too.

emark 8. Standard Galerkin methods are, in general, numeri-
ally unstable when applied to advection operators. Consequently,
lthough this method happens to yield reasonable approxima-
ions for our particular example, such naive discretization schemes
annot be recommended in general (Roos, Stynes, & Tobiska,
008). More advanced discretization schemes for linear advection
perators can be found in the modern PDE literature; see, for
xample (Ayuso & Marini, 2009; Brenner & Scott, 2005; Roos
t al., 2008), where one can also find an in-depth discussion of the
umerical accuracy and convergence properties of such methods.
more complete discussion of such numerical discretization
ethods for Pontryagin–Koopman operators, is, however, beyond

he scope of this paper.

.2. Approximations of the optimal feedback law

The above Galerkin approximation of the operator L can be
sed to construct approximate eigenfunctions. In detail, if a ∈ RN

s a left eigenvector of M with eigenvalue κ ∈ C, then

=

N∑
i=1

aiϕi H⇒ LΨ ≈ κΨ

s an approximation of an eigenfunction of L. The right plot in
ig. 2 shows the spectrum of the matrix M for different choices
f N (blue circles: N = 4, red squares: N = 15, and black circles
ith a cross: N = 35). In order to understand the structure of this
pectrum it is helpful to recall Corollary 2, which predicts that
here exists at least 2 eigenvalues κ1, κ2 of L such that −κ1 and
κ2 are also eigenvalues of L. Notice that such symmetric eigen-
alue pairs are indeed present in the spectrum of M , although M
s only a Galerkin approximation of L.

In order to further illustrate how the above spectral analysis
f M can be used to construct approximations of the globally
ptimal control law µ⋆, we can compute an approximation of the
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m

m

w

a
c

µ̃

H

H

H

K

K

L

L

anifold M+ by using the approximate eigenfunctions instead
of the exact ones (see Theorem 3). For example, for N = 4, the
atrix M has the eigenvalues

κ+1,2 =
1
48

(βm ± βp
√
−1)

ith βp =

√
+983+ 96

√
143

and βm =

√
−983+ 96

√
143 (35)

nd the associated Galerkin approximation of the globally optimal
ontrol law is given by

(x) = (12−
√
143)x21 +

(11− βm)
2

x1x2 . (36)

The left plot in Fig. 2 shows µ̃ and compares it to the optimal
feedback law µ⋆. In fact, the squared integral error over C is
approximately 6 × 10−5. Quite remarkably, this approximate
feedback law can even be used to control the system for initial
values outside of C . The plot in the middle of Fig. 2 shows the
corresponding trajectories of the closed-loop system that are
obtained by using the approximately optimal feedback law µ̃.

7. Conclusions

This paper has presented an analysis of infinite horizon
nonlinear optimal control problems, whose minimizers satisfy
Pontryagin’s necessary conditions of optimality. The proposed
formalism is based on Pontryagin–Koopman operators, which
have been shown to possess a symplectic structure, as revealed
by Theorem 1. Moreover, Theorem 2 and Corollary 2 have estab-
lished conditions under which the spectrum of the differential
Pontryagin–Koopman operator contains at least 2nx mirrored
eigenvalues. This spectral structure is used in Theorem 3 to
characterize optimal control laws.

The theoretical findings of this paper have been applied to
construct accurate approximations of a globally optimal control
law for a Van der Pol oscillator, which illustrates the poten-
tial of the proposed Pontryagin–Koopman operator based frame-
work for the design of global optimal control algorithms. Here, it
needs to be highlighted that, in contrast to dynamic programming
methods, which rely on the discretization of nonlinear Hamilton–
Jacobi–Bellman PDEs, the proposed framework for global optimal
control relies on the computation of eigenfunctions of a linear dif-
ferential operator. This opens the door to an application of linear
algebra methods and tailored discretization schemes for linear
PDEs, which have never been considered for the computation
of optimal control laws. Therefore, the development of tailored,
structure-exploiting projection and linear algebra methods for
symplectic Pontryagin–Koopman operators and their application
to global optimal control can be regarded as a promising direction
for future research.
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