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Abstract: Artificial intelligence (AI) models and procedures hold remarkable predictive efficiency in
the medical domain through their ability to discover hidden, non-obvious clinical patterns in data.
However, due to the sparsity, noise, and time-dependency of medical data, AI procedures are raising
unprecedented issues related to the mismatch between doctors’ mentalreasoning and the statistical
answers provided by algorithms. Electronic systems can reproduce or even amplify noise hidden
in the data, especially when the diagnosis of the subjects in the training data set is inaccurate or
incomplete. In this paper we describe the conditions that need to be met for AI instruments to be
truly useful in the orthodontic domain. We report some examples of computational procedures that
are capable of extracting orthodontic knowledge through ever deeper patient representation. To have
confidence in these procedures, orthodontic practitioners should recognize the benefits, shortcomings,
and unintended consequences of AI models, as algorithms that learn from human decisions likewise
learn mistakes and biases.

Keywords: machine learning; artificial intelligence; orthodontics; complexity; prognosis optimization

1. Introduction

For thirty years now, AI procedures have proven to be highly effective tools when
implemented correctly, allowing one to perceive subtle information and ultimately convert
information into actions, from speech recognition to natural language processing, spam
filters, fraud detection, and many other applications [1–6]. Machine learning (ML), a subcat-
egory of AI, is the method of creating models that perform a specific task without the need
to be explicitly programmed by a human for the discovery of intricate correlations within
large masses of data [7–10]. In biomedicine, ML tools have been widely applied in the
handling of large numbers of patient micro-variables and in predicting the future outcomes
of diseases based on previous data collected regarding similar diseases [11–17]. Despite
its success, ML is a still-emerging technique in medicine, even more so in orthodontics,
and many opportunities remain unexplored.

Physicians seem to overlook the fact that machine judgment is, on average, at least
as reliable as expert judgments and, in many circumstances, even better [6,9]. In recent
years, an excessive tendency to rely on ML systems (“over-reliance”), overdependence,
“deskilling”, and even potential desensitization to patient problems have been the most com-
mon criticisms related to the use of these models in medicine [18–21]. Concerns have arisen
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regarding the possibility of incorporating “dirty” data and spurious correlations based on
uncertain clinical interpretations [22]. Some practitioners believe that using computational
systems could lead to the establishment of a new, problematic medical empiricism, based
not on concrete facts and data relating to patients but rather on interconnections of data,
meaning that the most straightforward clinical situations can become complicated and con-
fusing [23]. Is there any truth to these claims? If it is true that automation will not turn us
into robots (just as industrialization did not turn us into machines), is it possible that these
computational procedures could increase rather than decrease the risk of statistical-clinical
misunderstandings? In this paper we discuss the persisting unresolved issues related to
ML computational predictive tools applied to orthodontics, which still limit the automatic
extraction of valuable, clinically actionable orthodontic knowledge.

2. Challenging Interface between Machine Learning Models and Orthodontic Features

Many reports have highlighted the usefulness and potential of predictive electronic
systems in clinical and research orthodontics [23–27]. The potential identified in these re-
ports is similar to what has been hypothesized in medical practice—the records of the best
clinical decisions made by thousands of professionals must be exploited to optimize patient
care [28–30]. Although ordinary medical diagnostic approaches are based on the slow, care-
ful recruitment of clinical and laboratory data, on subjects including the causes and effects
of clinical phenomena, the significance of symptoms, and so on, the most sophisticated
predictive ML implementations learn and store information at great speed, solving complex
problems by repeatedly re-examining the data and layering simple concepts onto more
complex ones. Translating from daily orthodontics to ML models, an orthodontist might
(i) identify hidden craniofacial trends in large datasets of growing patients, (ii) leverage
trends to make growth outcome predictions, (iii) compute the probability for each possible
growth and treatment outcome, or (iv) clarify the effects of the co-occurrence of skeletal
defects and the renormalization phenomena on growth and treatment outcomes [28–34].

The fundamental requirement of predictive analytics procedures applied to orthodon-
tics concerns the availability of accurate clinical data, with which the machine can gain
“domain experience” [35,36]. Computer scientists use what they know how to do (algo-
rithms) to data, the peculiarities of which they do not always understand. ML developers
assume that the patient dataset used to train models is uniformly and fully representative
of the target patient population. However, in medicine, not all subjects are equal. Some
patients give more representative information about their clinical condition than others.
Moreover, the reference data of some patients may not be 100% accurate. Thus, the process
of weighing higher-quality information against other information is debatable and subjec-
tive, so the data quality dimension in orthodontic records remains a cognitively elusive
concept [12,16,17]. There are differences between actual craniofacial morphology assess-
ments, as experienced by orthodontists, and their codified representation in a numerical
form, which is the case for the data input for any ML algorithm.Computational machines
teach orthodontists to map medical phenomena into numerical structures in order to quan-
tify them. Based on associations, algorithms can exploit features that the orthodontist may
consider irrelevant to the problem. It is not essential to understand in depth the functioning
of various patient characteristicsin order to extract answers. It is necessary to engage with
constant change, randomness, and noise in the data relating to orthodontic treatment and
look for regularities within the data, rather than for for clinical-logical hypotheses. In other
words, one must allow the numbers to speak for themselves (Figure 1).



J. Pers. Med. 2022, 12, 957 3 of 13

Figure 1. Classification trees are predictive models that can be used to decompose a problem into
increasingly simple subcomponents. A tree is composed of branching processes that emerge from a
series of binary selections (which are set to be larger or smaller than a reference). Tree algorithms
learn through repeated exposure to clinical cases (“examples”). For classification purposes, a tree
is built by repeatedly dividing the observations (e.g., cephalometric features as independent input
features) into subsets that are as homogeneous as possible in relation to the dependent variable (the
label). For learning to occur, data used for training must be labeled. In the example provided, the time
progressionof cephalometric data from 80 class III male and female growing subjects (aged from 7 to
14 years) was associated with a label indicating good (improving) or bad (worsening) craniofacial
growth. The initial ANB angle reference (−0.05 degrees) was chosen to start the branching process,
including other cephalometric characteristics (each associated with a specific reference). In the end,
it was possible to establish whether the whole configuration was associated with bad (B) or good
(G) growth. This simple procedure may constitute a prognostic aid for the orthodontic operator in
communicating risk to parents. The symbolic learning related to classification trees is probably the
most expressive procedure for medical data analysis when interpretability is desired. Trees were
produced using the R package “tree” v1.0-37. ANB angle (degrees): measure of the relative position
of the maxilla to the mandible; SNB angle (degrees): measure of the angle between the sella/nasion
plane and nasion/B plane; NSAr angle (degree): measure of the angle between the anterior and
posterior cranial base; SN (mm): antero-posterior length of the cranial base. Patient datawere kindly
offered by professors Lorenzo Franchi and James A. McNamara Jr.

Concerning the use of ML models, there are problems related to the the steps necessary
to move from the observed patient data to the statements concerning future patients who
have never been seen before. Machines can capture hierarchical regularities and dependen-
cies in the data to learn complex correlations between input and output features without
any inherent representation of causality [10,13,21,22]. ML procedures do not require theo-
retical bases.Unfortunately, predictions based on data rely on mere correlations without
theories and models. A correlation quantifies the statistical relationship between the values
of two parameters without clarifying the inner mechanisms of a system. Probabilities based
on scarce data are not reliable, but it is not just a question of quantity. The primary source
of data for the training of ML orthodontic models is data produced during growth and/or
during treatment. The most difficult factor to respond to is the possible shifts between
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time-series data that may induce temporal drifts, which can cause algorithms to become
progressively inaccurate. Craniofacial data continually evolve throughout growth, so the
future does not always look like the past. Given these premises, one may suspect that the
procedural ML logic applied to orthodontics may pose more than one interpretive problem.
However, sufficient evidence has accumulated that ML tools, when applied to orthodontics,
perform well [22–26].

When numbers are the only object of interest in diagnostic and prognostic processes,
some dehumanization occurs. Consequently, a certain amount of ineradicably intrinsic
potential distortion in the interpretation of orthodontic conditions may arise. However,
humans are fortunate to possess a fundamental property that the most up-to-date ML
systems lack: common sense. Humans can infer the reasons behind processes, identifying
abstract similarities and analogies based on only a few observed patients. Machines have
facilitated disparate orthodontic clinical situations: diagnostic assessments; prognostic
predictions; and the identification of salient features in growing patients at risk of skeletal
imbalance, poor response to treatment, maxillofacial tumours, cysts, periapical abscesses,
etc. [27–30]. The accurate localization of cephalometric landmarks using ML tools has
led to a mitigation of the problem of interpersonal variation in landmark tracing and
related errors in diagnosis and treatment planning [24]. The application of photography-
based systems to assess jaw disharmonies (responsible for masticatory dysfunctions and
apnea syndrome) and to establish the need for extractions in cases of tooth crowding and
protrusion, are additional crucial steps for the successful application of ML-supported
decision procedures [25,26] (see Appendix A).

3. How Can Orthodontic Input Be Incorporated into the Machine Learning Process?

During the growth process, the clinical and cephalometric data used to feed ML
machines have inherent randomness related to massively parallel processes of skeletal
plasticity, which propagate through algorithms with an unavoidable degree of inaccuracy.
The stochastic processes that cause a developmental trait to deviate from its expected
path [20], also known as developmental noise, are an inherent part of craniofacial devel-
opment and remodelling. Significant variations at the organ and whole organism level
are related to the stochasticity of random intermolecular collisions, gene fluctuations, sig-
nal transduction factors, chromatin structure, DNA methylation state, morphogenetic
cytoskeleton dynamics, bone translations, and other factors [20,21]. The complex pathobiol-
ogy of craniofacial growth recalls a well-known saying among data scientists: all data is
dirty. Nevertheless, the hypothesis offered by electronic systems is that the combination of
multiple subtle aspects and a sequence of non-linear data transformations can be performed
to extract both clinical and subclinical patient nuances (Figure 2), covertly containing the
answer to a given problem.

In the unfolding of clinical reasoning, physicians make diagnostic errors 5%–15% of
the time, depending on their speciality [16]. Two to four pieces of clinical information are
sufficient to generate diagnostic hypotheses through intuition. The errors are related to the
fast closure of the diagnostic process, as well as the tendency not to consider alternative
views to the first diagnosis (“anchoring bias”), the tendency to consider diagnoses that are
easy to remember (“availability bias”), and the tendency to include only confirmatory data
for the initial diagnosis while ignoring contradictory data (“confirmatory bias”) [13,17].
Conversely, errors for machines mainly occur during the learning step. Since machines do
not have the capability for intuition, the most common cause of errors lies in the poor qual-
ity of training data, such as irrelevant features, spurious associations, false assumptions,
inappropriate patient attributions, and indications that are unable to represent the patient’s
clinical background [9–12]. Computational models define their reality and use it to justify
their results and make predictions. However, living organisms cannot be reduced to a set
of mathematical equations suitable for describing an elementary mechanism; the internal
parts are not endowed with the statistical homogeneity that would allow the application
of probability theory. Craniofacial imbalance constitutes a repository of physical order in
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which a large amount of information is concentrated. Patients’ unequal developmental
probabilities are due to morphological constraints, competition/collaboration strategies of
skeletal elements, emergent phenomena, bone translations, and more. Patients with severe
facial imbalance escape dento-alveolar renormalization systems since they tend to maintain
disharmony over time (Figure 3). Some developmental properties directionally constrain
the possible path of evolution, defining the limits of the possible craniofacial variations
associated with that specific initial morphology (“canalization”) [13]. Intuitively, the nu-
merical transposition of these concepts is somewhat problematic. Algorithmic decisions are
expressed in the form of rigid, not-fuzzy binary classifications (spam-not-spam, dog-cat,
etc.). Making prognostic clinical predictions means identifying the presence of unfavorable
factors when they have not yet occurred. To obtain a satisfying computer-assisted predic-
tive ability, the operator must provide the machine with a series of expressive examples of
the condition to be detected, i.e., examples of patients with signs and symptoms typical of
the disease, which can easily be differentiated from healthy, symptom-free patients [35–38].
In the orthodontic scenario, in the same patient, shaded morphological/radiographic fea-
tures of malocclusion may coexist with typical craniofacial characteristics or even with
signs of a different malocclusion. There is no such vagueness in mathematical language.
In mathematical language, everything is precise. Machines tend to complete information
when only part of the system is known. Each orthodontic patient contains a different
amount of hidden data and latent variables not expressed in numerical format (the “hidden
half”) [20]. All of these affect the outcome, so two similar patients can carry a very different
facial growth potential and potential responses to treatment related to different inherent
amounts of developmental noise. Strains related to the imbalance between ideal prognostic
models and the everyday fuzzy orthodontic reality are called “misdiagnoses” and “wrong
prognoses” by orthodontists and “residuals” by statisticians (see Appendix B).

Figure 2. Cephalometric angular and linear measures.
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Figure 3. A simplified Neural Network. Artificial neural network (ANN) models can “learn” from
the data without any pre-specified rules and can focus mathematically on predictive performance.
ANNs take the raw data at the lower (input) layer and transform them into an increasingly “abstract”
representation of the characteristics. ANNs are flexible and versatile tools. A few assumptions are
required about the normal distribution of errors, correlations among variables, and linear relationships
among variables. They are highly applicable for any real-world situation but require many attributes
and observations. The difficulties in ANN research applied to orthodontics come in many different
forms. The most important contribution is the lack of a uniform feature standards in building
ANN models. The second primary reason is that ANNs have fewer assumptions and many more
options in the modelling process, which opens up several possibilities for their inappropriate use and
applications. Deep learning is a type of ANN procedure carrying multiple Although node layers.
Each layer learns the representation of data by abstracting data in many ways. While traditional
statistical techniques require transforming raw data (feature engineering) to represent the problem
and make predictions, deep learning algorithms achieve this automatically, using more and more
abstract levels of representation, encapsulating highly complicated functions in the process.

4. Tell Me What You Have Understood about This Patient

Practitioners generally trust their subjective intuition more than the answer provided
by an algorithm [2,3,39,40]. Humans are poor at making probabilistic decisions based
on partial information and cannot even precisely calculate how data interfere with each
other [31,41]. As already mentioned, in a patient dataset, some components (for instance,
dentoalveolar adaptive remodelling) can remain below the threshold of perception of
ML tools [42–55]. Some features may be irrelevant, missing, or redundant. The most
up-to-date deep artificial neural networks do not require any additional pre-processing;
they automatically cut out uninteresting correlations between parameters to build up a
meaningful subset of data (Figure 4).
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Figure 4. Trajectories of ArGoMe angle values during the growth process in 140 patients with Class
III malocclusion, divided into eight classes of age. ArGoMe (Gonial angle) is the angle between
the corpus and the ramus of the mandible. The Sankey diagram is usually used to indicate a data
transfer in a process. In this data visualization, the width of the arrows is proportional to the number
of feature flows. Sankey diagrams (A,B) draw attention to the transfer of values of the ArGoMe
angle between two temporal acquisitions, T1 and T2. Plot (A) shows how the eight classes of age
are distributed across the ArGoMe values at T1 and their evolution towards T2; plot (B) reveals
how the ArGoMe values at T2 are distributed across the classes of age at T2. The Sankey diagram
was obtained in ggplot2. Patient data were kindly offered by professors Lorenzo Franchi and James
McNamara Jr.

This procedure allows for the comparison of the results expected by an expert, based on
experience, and what is discovered by means of computational rules. One of the fascinating
elements of ML algorithms lies in their ability to attribute the degree of reliability of
each prediction to a self-validation process [1–3]. The ability of machines to give proper
weight to the various patient factors involved in the prediction is much larger than that of
humans. Paradoxically, to optimize predictions and to generalize to as many patients as
possible, the software logic requires individual patient specificities to be flattened out (the
“regularization” procedure) [17,18,51]. A system that is too smart in the diagnostic process
ends up focusing too much on individualized patient information and has difficulties
in diagnosing new patients with only slightly different characteristics (the “overfitting”
phenomenon) [1–3]. To facilitate the generalization of the model performance, sometimes
there is a need to inflate the data set with confounding noise. There is also the possibility
of implementing procedures of data augmentation, as ML systems can create additional
“synthetic patients” to improve the accuracy of forecasts [20,52–55].

Without proper professional orthodontic supervision, the science that has allowed us
to refine the patient description through feature engineering and feature selection risk may
lead us to implement naïve approaches and to base decisions upon elementary clinical-
technological, over-purified versions of patients. An example of the difficult balance
between patient specificity, patient context, and computational answers is offered by the
(sometimes too ingenuous) treatment programs underlying dental aligners. To achieve
the desired outcome, a good dental alignment program, in theory, should be able to
incorporate the interactions between dental movements and facial aesthetics and account
for the co-occurrence of different patient characteristics, including skeletal and functional
constraints, atypical swallowing, mouth breathing, and many others [24]. In the age of
big data in biomedicine, it is becoming less and less possible to know in advance the
direction and nature of calculations based on collective data [32–34,37–46]. Currently,
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fully automated methods for model selection and automatic parameter optimization are
available, such as AutoML, neural architecture search, differentiable architecture search,
reinforced learning, and many others [54,55]. These procedures allow the discovery of data
architectures that are far more complicated than those which humans may think of trying.
As there is an apparent difference between patient recognition and genuine comprehension,
the orthodontist must attempt to integrate computational responses with his cognitive
cause-and-effect system carefully. Often, the advice is to broaden the patient sample to
better frame the system’s structure. The amount of data does not allow the consideration of
fundamental questions regarding the validity of constructs such as the question of whether
the patient traits are stable and comparable across patients and over time. When searching a
more extensive biomedical database, it is easy to find a pattern that seems interesting, even
when it is not actually relevant.Each random dataset observed over time can determine
any pattern [17]. Despite the element of predictability that is missing (not expressed in the
available data), relying on the algorithmic outcome prediction means trusting the ability of
computational abstractions to nevertheless understand the patient by probing deeply and
recursively into both visible and latent attributes. The computer-aided orthodontic operator
hopes to overcome the prognostic uncertainty through repeated “deep” situational data
abstractions, applying a more significant number of patients and a greater number of layers
of computation.

5. A Matter of Trust

Human memory is an active process, based on encoding, storing, and retrieving
previously acquired information [35,42]. At the chairside, orthodontists make reasoned
decisions based on the logic of biomechanics and a somewhat schematic taxonomy of
malocclusions. Their cognitive statistics (experience) highlight the underlying prevailing
clinical trends for each patient and elements that are not very or not at all “datable”, such
as cultural and family aspects, compliance, and others [39]. ML statistics help orthodon-
tists to highlight the outcome probabilities and the probabilities of escaping these trends.
To disseminate the best practices and to enable researchers and practitioners to trust ML
procedures, they first need to understand the bases underlying the algorithmic decisions
and predictions. This would require a comprehension, at least in principle, of differences
in numerical and orthodontic formalisms within the inscrutable hidden “black box” of
algorithms [56]. Although the nature of ML optimization is purely mathematical, cran-
iofacial feature optimization during growth is, above all, a matter of adaptation [57–59].
The best possible clinical-digital model may include neither the past nor the present, but
only a situation calculated at every moment. When prognostic processes are conducted
across both technological and morphological boundaries, new orthodontic theories could
be derived through the pure power of technology [58–61]. Machines must be understand-
able and acceptable, even though the understandability of the algorithmic answers is often
inversely proportional to the transparency and the complexity of the predictive models [46]
(Figure 5). Computational models attempt to organize thoughts. Despite the necessary
refinements that have been, when applied to orthodontics, these procedures have been
proven to improve the professional skills of orthodontists and will soon do so even more
effectively. For the benefits of a more productive man-machine operational coupling, future
research should focus on a new form of digital ecology. Specifically, better interactive
methods are needed for dealing with residual algorithmic standardization issues, better
guidelines of algorithmic procedures, and better governance of the processes involved in
the creation, validation, and updating of predictive orthodontic models.



J. Pers. Med. 2022, 12, 957 9 of 13

Figure 5. Trust in individual predictions is crucial when the model is used for treatment decisions. Us-
ing the LIME explanation procedure [54], we can explain the predictions of any classifier or regressor
by approximating it locally with an interpretable model. The figure shows the cephalometric features
of one Class III male patient with very bad maxillomandibular growth. The bar chart represents the
importance of the most relevant cephalometric features that supported the prediction of increasing
skeletal imbalance. The blue bars supported the predictions, whereas red bars contradicted them.

6. Conclusions

Orthodontics is characterized by prognostic uncertainty, with a strong influence of
factors that are not easy to model. Therefore, reliable computerized predictive tools and
procedures could be particularly welcome, even from a cautionary and medical-legal point
of view. The use ML will not be able to replace orthodontists in the coming years. It will
be used in cooperation with orthodontists to enhance their abilities and clinical sagacity.
The significance of ML results is required to be verified repeatedly by orthodontists, patients,
and computer scientists, using a stable and shared interpretative framework, in order for
this technique to be more extensively applied in research and in clinical orthodontic practice.
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Appendix A. Translating from Orthodontic to ML Models

Human learning is qualitative because it is based on the interaction of meanings; each
new learning experience is embedded in a process of interpretive reasoning. The learning
process of a machine is instead built on the probability of the interactions of the data
in the absence of prior knowledge. Orthodontic data are not stationary. The underlying
processes that generate the data change over time, and so do the underlying concepts
(“drifting concepts”). Invariant historical data can decrease the reliability of predictions.
Because no morphological data are timeless, time trends correspond to the true stories
of patients. Feature engineering (FE) is the process used to extract, aggregate, refine,
and transform raw patient data into numerical features and formats that better represent
the underlying problem, resulting in improved model predictive accuracy. FE aims to
integrate the quantitative and qualitative aspects of a patient, to understand and structure
the biological complexity through mathematical models. FE is a crucial step in the ML
workflow, because the correct understanding of patient features can decrease the difficulty
of modeling [18]. Enhancing the native form of the data represents the most creative
phase of the predictive workflow. It is necessary to provide principles related to the
domain knowledge of the operator, the intuition of the orthodontist, and skillsets regarding
the advantages and disadvantages of every single computational procedure. There is
a fundamental difference between representing and engineering physical features and
biological features. Biological features have the capacity to evolve; this interferes with the
long-term stability of the model. Perceiving these subtle aspects is the key to the successful
representation of orthodontic patients. The value of a cephalometric variable can be better
expressed as a distance from the population values, normalized for age and gender, rather
than in its raw form. The model must therefore contain data from the context to better
expose relevant aspects. Each craniofacial measurement can be related to the subject’s
global sagittal or vertical skeletal imbalance. A skeletal segment can be related with is
morphological counterpart. It is well known that the sagittal skeletal disharmony between
the maxilla and the mandible can be worsened, or mitigated, by the position of the glenoid
fossa. The effect of feature co-occurrences should be included in the model as an important
additional type of data. The machine cannot have any prior knowledge, and it cannot even
be aware of possible concomitant dentoalveolar renormalization phenomena. The complex
interplay of causes underlying atypical growth requires a different perspective on the
disorders affecting the orofacial biological balance. This can be achieved by enlarging the
base of information about the system’s chemical, physical, and mechanical properties [62].
A regulatory or central body to prepare such data and realise an adequate database is
mandatory since the provision of local data for collection within single research centers can
not be sufficient.

Appendix B. Machine Learning Programs Can Uncover Effects of Hidden
Relationships between Components

To implement machine learning successfully in daily orthodontic practice we need
formal rules that lead to intelligible procedures. The concept we are interested in must be
represented in the best possible way, and sometimes this is the operator’s most difficult
task. Concepts are best understood when they are placed in an appropriate background,
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so the contribution of the clinician is decisive in suggesting the degree of typicality of
each patient with respect to the concept to be represented [55–57]. In order to predict
the growth characteristics that lead to a malocclusion early, the learning machine must
be provided with many typical examples of subjects of various ages and affected by
different skeletal disharmonies. Next, time-series of features belonging to subjects with
different growth trajectories are provided to the model, appropriately contrasted with
features from normal subjects. When the training set changes over time, predictions
tend to be ineffective. Hidden changes in context cause problems for any ML approach
that assumes concept stability. Challenges involved with malocclusion mapping into ML
models are as follows: (1) how to mathematize the overall skeletal imbalance; (2) how to
define the background of the problem, and the specific contribution of each characteristic;
(3) how to valorize the patients most expressive of the problem and how to assign feature
weights; (4) how to choose different ML analytical methods designed to examine specific
issues (i.e., related to growth, to habits, to the response to therapy, and so on); (5) how
to identify subgroups of homogeneous patients and related risks of the occurrence and
progression of malocclusion; and (6) how to capture the latent dimensions of unfavorable
growth/unsuccessful treatment. The level of uncertainty that accompanies the collection
of orthodontic data is usually remarkable. The programmer must include in the model
the right amount of unavoidable uncertainty and bias about the data, in order to avoid
excessive adherence to idealized situations. Excessive orthodontic data cleaning offers the
learner an unrealistic, oversimplified representation of reality.

References
1. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef] [PubMed]
2. Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [CrossRef] [PubMed]
3. Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine Learning and the Future of

Medicine. J. Intern. Med. 2018, 284, 603–619. [CrossRef] [PubMed]
4. Weinberger, D. Everyday Chaos: Technology, Complexity, and How We’re Thriving in a New World of Possibility; Harvard Business

Press: Boston, MA, USA, 2019.
5. Obermeyer, Z.; Lee, T.H. Lost in Thought—The Limits of the Human Mind and the Future of Medicine. N. Engl. J. Med. 2017,

377, 1209–1211. [CrossRef]
6. Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from

the Electronic Health Records. Sci. Rep. 2016, 6, 26094. [CrossRef]
7. Bellazzi, R.; Zupan, B. Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inform. 2008, 77,

81–97. [CrossRef] [PubMed]
8. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.

[CrossRef]
9. Sajda, P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng. 2006, 8, 537–565. [CrossRef]
10. Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109.

[CrossRef]
11. Freitas, A.A. Understanding the crucial role of attribute interaction in data mining. Artif. Intell. Rev. 2001, 16, 177–199. [CrossRef]
12. Bzdok, D.; Altman, N.; Krzywinski, M. Points of Significance: Statistics versus machine learning. Nat. Methods 2018, 15, 233–234.

[CrossRef] [PubMed]
13. Goldemberg, J.; Ferguson, C.; Prud’homme, A. The World’s Energy Supply: What Everyone Needs to Know; Oxford University Press:

Oxford, UK, 2015.
14. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
15. Arik, S.Ö.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med.

Imaging 2017, 4, 014501. [CrossRef] [PubMed]
16. Marcus, G.; Davis, E. Rebooting AI: Building Artificial Intelligence We Can Trust; Pantheon Books: New York, NY, USA, 2019.
17. Finlay, S. Predictive Analytics, Data Mining and Big Data; Palgrave Macmillan: New York, NY, USA, 2014; p. 248. [CrossRef]
18. Zheng, A.; Casari, A. Feature Engineering for Machine Learning; Number September; O’Reilly Media, Inc.: Sebastopol, CA, USA,

2018; p. 218.
19. Kelso, J.A.S.; Engstrom, D.A. The Complementary Nature; MIT Press: Cambridge, MA, USA, 2018; p. 317. [CrossRef]
20. Blastland, M. The Hidden Half: The Unseen Forces That Influence Everything; Atlantic Books: London, UK, 2020.
21. Pelaccia, T.; Forestier, G.; Wemmert, C. Deconstructing the diagnostic reasoning of human versus artificial intelligence. CMAJ

2019, 191, E1332–E1335. [CrossRef]

http://doi.org/10.1056/NEJMra1814259
http://www.ncbi.nlm.nih.gov/pubmed/30943338
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
http://www.ncbi.nlm.nih.gov/pubmed/26572668
http://dx.doi.org/10.1111/joim.12822
http://www.ncbi.nlm.nih.gov/pubmed/30102808
http://dx.doi.org/10.1056/NEJMp1705348
http://dx.doi.org/10.1038/srep26094
http://dx.doi.org/10.1016/j.ijmedinf.2006.11.006
http://www.ncbi.nlm.nih.gov/pubmed/17188928
http://dx.doi.org/10.1038/s41591-018-0300-7
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095802
http://dx.doi.org/10.1016/S0933-3657(01)00077-X
http://dx.doi.org/10.1023/A:1011996210207
http://dx.doi.org/10.1038/nmeth.4642
http://www.ncbi.nlm.nih.gov/pubmed/30100822
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1117/1.JMI.4.1.014501
http://www.ncbi.nlm.nih.gov/pubmed/28097213
http://dx.doi.org/10.1057/9781137379283
http://dx.doi.org/10.7551/mitpress/1988.001.0001
http://dx.doi.org/10.1503/cmaj.190506


J. Pers. Med. 2022, 12, 957 12 of 13

22. Bichu, Y.M.; Hansa, I.; Bichu, A.Y.; Premjani, P.; Flores-Mir, C.; Vaid, N.R. Applications of artificial intelligence and machine
learning in orthodontics: A scoping review. Prog. Orthod. 2021, 22, 18. [CrossRef]

23. Nanda, S.B.; Kalha, A.S.; Jena, A.K.; Bhatia, V.; Mishra, S. Artificial neural network (ANN) modeling and analysis for the
prediction of change in the lip curvature following extraction and non-extraction orthodontic treatment. J. Dent. Spec. 2015, 3, 217.
[CrossRef]

24. Asiri, S.N.; Tadlock, L.P.; Schneiderman, E.; Buschang, P.H. Applications of artificial intelligence and machine learning in
orthodontics. APOS Trends Orthod. 2020, 10, 17–24. [CrossRef]

25. Li, P.; Kong, D.; Tang, T.; Su, D.; Yang, P.; Wang, H.; Zhao, Z.; Liu, Y. Orthodontic Treatment Planning based on Artificial Neural
Networks. Sci. Rep. 2019, 9, 2037. [CrossRef]

26. Allareddy, V.; Rengasamy Venugopalan, S.; Nalliah, R.P.; Caplin, J.L.; Lee, M.K.; Allareddy, V. Orthodontics in the era of big data
analytics. Orthod. Craniofacial Res. 2019, 22, 8–13. [CrossRef]

27. Bahaa, K.; Noor, G.; Yousif, Y. The Artificial Intelligence Approach for Diagnosis, Treatment and Modelling in Orthodontic.
In Principles in Contemporary Orthodontics; InTech: London, UK, 2011. [CrossRef]

28. Faber, J.; Faber, C.; Faber, P. Artificial intelligence in orthodontics. APOS Trends Orthod. 2019, 9, 201–205. [CrossRef]
29. Murata, S.; Lee, C.; Tanikawa, C.; Date, S. Towards a fully automated diagnostic system for orthodontic treatment in dentistry.

In Proceedings of the 13th IEEE International Conference on eScience, eScience 2017, Auckland, New Zealand, 24–27 October
2017; pp. 1–8. [CrossRef]

30. Lux, C.J.; Stellzig, A.; Volz, D.; Jäger, W.; Richardson, A.; Komposch, G. A neural network approach to the analysis and
classification of human craniofacial growth. Growth Dev. Aging 1998, 62, 95–106. [PubMed]

31. Deo, R.C.; Nallamothu, B.K. Learning about Machine Learning: The Promise and Pitfalls of Big Data and the Electronic Health
Record. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 618–620. [CrossRef] [PubMed]

32. Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016,
375, 1216–1219. [CrossRef] [PubMed]

33. Ledley, R.S.; Lusted, L.B. Reasoning foundations of medical diagnosis. Science 1959, 130, 9–21. [CrossRef]
34. Holzinger, A. Trends in Interactive Knowledge Discovery for Personalized Medicine: Cognitive Science meets Machine Learning.

IEEE Intell. Inform. Bull. 2014, 15, 6–14.
35. Wood, R.; Baxter, P.; Belpaeme, T. A review of long-term memory in natural and synthetic systems. Adapt. Behav. 2012, 20, 81–103.

[CrossRef]
36. Crawford, J.; Greene, C.S. Incorporating biological structure into machine learning models in biomedicine. Curr. Opin. Biotechnol.

2020, 63, 126–134. [CrossRef]
37. Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology

and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [CrossRef]
38. Saria, S.; Butte, A.; Sheikh, A. Better medicine through machine learning: What’s real, and what’s artificial? PLoS Med. 2018, 15,

e1002721. [CrossRef]
39. Martínez-Abraín, A. Statistical significance and biological relevance: A call for a more cautious interpretation of results in ecology.

Acta Oecologica 2008, 34, 9–11. [CrossRef]
40. Lovell, D.P. Biological importance and statistical significance. J. Agric. Food Chem. 2013, 61, 8340–8348. [CrossRef] [PubMed]
41. Bray, D. Limits of computational biology. Silico Biol. 2015, 12, 1–7. [CrossRef] [PubMed]
42. Auconi, P.; Scazzocchio, M.; Defraia, E.; Mcnamara, J.A.; Franchi, L. Forecasting craniofacial growth in individuals with class III

malocclusion by computational modelling. Eur. J. Orthod. 2014, 36, 207–216. [CrossRef] [PubMed]
43. Barelli, E.; Ottaviani, E.; Auconi, P.; Caldarelli, G.; Giuntini, V.; McNamara, J.A.; Franchi, L. Exploiting the interplay between

cross-sectional and longitudinal data in Class III malocclusion patients. Sci. Rep. 2019, 9, 6189. [CrossRef]
44. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef]
45. Kursa, M.B.; Rudnicki, W.R. Feature selection with the boruta package. J. Stat. Softw. 2010, 36, 1–13. [CrossRef]
46. Iguyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
47. Baumrind, S. Clinical judgment versus prediction: Towards a new paradigm for orthodontic research. In Science and Clinical

Judgment in Orthodontics; Vig PS, R.K., Ed.; Center for Human Growth and Development, The University of Michigan: Ann Arbor,
MI, USA, 1985; pp. 149–162.

48. Auconi, P.; McNamara, J.A.; Franchi, L. Computer-aided heuristics in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2020,
158, 856–867. [CrossRef]

49. Gigerenzer, G.; Brighton, H. Homo Heuristicus: Why Biased Minds Make Better Inferences. Top. Cogn. Sci. 2009, 1, 107–143.
[CrossRef]

50. Cabitza, F.; Ciucci, D.; Rasoini, R. A giant with feet of clay: On the validity of the data that feed machine learning in medicine. In
Lecture Notes in Information Systems and Organisation; Springer: Cham, Switzerland, 2019; Volume 28, pp. 121–136. [CrossRef]

51. Benítez, J.M.; Castro, J.L.; Requena, I. Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 1997, 8, 1156–1164.
[CrossRef]

52. Zhang, G.P. Avoiding pitfalls in neural network research. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 3–16.
[CrossRef]

http://dx.doi.org/10.1186/s40510-021-00361-9
http://dx.doi.org/10.5958/2393-9834.2015.00002.9
http://dx.doi.org/10.25259/APOS_117_2019
http://dx.doi.org/10.1038/s41598-018-38439-w
http://dx.doi.org/10.1111/ocr.12279
http://dx.doi.org/10.5772/19597
http://dx.doi.org/10.25259/APOS_123_2019
http://dx.doi.org/10.1109/eScience.2017.12
http://www.ncbi.nlm.nih.gov/pubmed/9894171
http://dx.doi.org/10.1161/CIRCOUTCOMES.116.003308
http://www.ncbi.nlm.nih.gov/pubmed/28263936
http://dx.doi.org/10.1056/NEJMp1606181
http://www.ncbi.nlm.nih.gov/pubmed/27682033
http://dx.doi.org/10.1126/science.130.3366.9
http://dx.doi.org/10.1177/1059712311421219
http://dx.doi.org/10.1016/j.copbio.2019.12.021
http://dx.doi.org/10.1016/j.inffus.2018.09.012
http://dx.doi.org/10.1371/journal.pmed.1002721
http://dx.doi.org/10.1016/j.actao.2008.02.004
http://dx.doi.org/10.1021/jf401124y
http://www.ncbi.nlm.nih.gov/pubmed/23909755
http://dx.doi.org/10.3233/ISB-140461
http://www.ncbi.nlm.nih.gov/pubmed/25318467
http://dx.doi.org/10.1093/ejo/cjt036
http://www.ncbi.nlm.nih.gov/pubmed/23780992
http://dx.doi.org/10.1038/s41598-019-42384-7
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.18637/jss.v036.i11
http://dx.doi.org/10.1016/j.ajodo.2019.10.018
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1007/978-3-319-90503-7_10
http://dx.doi.org/10.1109/72.623216
http://dx.doi.org/10.1109/TSMCC.2006.876059


J. Pers. Med. 2022, 12, 957 13 of 13

53. Lipton, Z.C. The Mythos of Model Interpretability. Queue 2018, 16, 31–57. [CrossRef]
54. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
ACM: New York, NY, USA, 2016; pp. 1135–1144. [CrossRef]

55. Kim, B.; Khanna, R.; Koyejo, O. Examples are not enough, learn to criticize! Criticism for interpretability. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29, pp. 2288–2296.

56. Bien, J.; Tibshirani, R. Prototype selection for interpretable classification. Ann. Appl. Stat. 2011, 5, 2403–2424. [CrossRef]
57. Bergadano, F.; Matwin, S.; Michalski, R.S.; Zhang, J. Learning two-tiered descriptions of flexible concepts: The POSEIDON

system. Mach. Learn. 1992, 8, 5–43. [CrossRef]
58. Vassie, K.; Morlino, G. Natural and artificial systems: Compare, model or engineer? In Proceedings of the Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7426, pp. 1–11. [CrossRef]

59. Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended consequences of machine learning in medicine. Jama 2017, 318, 517–518.
[CrossRef] [PubMed]

60. Anderson, C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired Mag. 2008, 16, 1–2.
61. Shortliffe, E.H.; Buchanan, B.G. A model of inexact reasoning in medicine. Math. Biosci. 1975, 23, 351–379. [CrossRef]
62. Di Carlo, G.; Gili, T.; Caldarelli, G.; Polimeni, A.; Cattaneo, P.M. A community detection analysis of malocclusion classes from

orthodontics and upper airway data. Orthod. Craniofacial Res. 2021, 24, 172–180. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1214/11-AOAS495
http://dx.doi.org/10.1007/BF00994004
http://dx.doi.org/10.1007/978-3-642-33093-3_1
http://dx.doi.org/10.1001/jama.2017.7797
http://www.ncbi.nlm.nih.gov/pubmed/28727867
http://dx.doi.org/10.1016/0025-5564(75)90047-4
http://dx.doi.org/10.1111/ocr.12490
http://www.ncbi.nlm.nih.gov/pubmed/33966341

	Introduction
	Challenging Interface between Machine Learning Models and Orthodontic Features
	How Can Orthodontic Input Be Incorporated into the Machine Learning Process?
	Tell Me What You Have Understood about This Patient
	A Matter of Trust
	Conclusions
	Appendix A
	Appendix B
	References

